E-Mail Alert

Add your e-mail address to receive forthcoming issues of this journal:

Journal Browser

Journal Browser

Special Issue "Selected Papers from the 1st International Electronic Conference on Medicinal Chemistry"

A special issue of Pharmaceuticals (ISSN 1424-8247).

Deadline for manuscript submissions: closed (30 April 2016)

Special Issue Editor

Guest Editor
Dr. Jean Jacques Vanden Eynde

Formerly head of the Department of Organic Chemistry (FS), University of Mons-UMONS, 7000 Mons, Belgium
Website | E-Mail
Interests: heterocycles; microwave-induced synthesis; medicinal chemistry; green chemistry

Special Issue Information

Dear Colleagues,

For more information on The 1st International Electronic Conference on Medicinal Chemistry (ECMC-1), please go to: http://www.sciforum.net/conf/ecmc-1/.

Dr. Jean Jacques Vanden Eynde
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pharmaceuticals is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 850 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Published Papers (7 papers)

View options order results:
result details:
Displaying articles 1-7
Export citation of selected articles as:

Research

Jump to: Other

Open AccessCommunication Convergent Synthesis of Two Fluorescent Ebselen-Coumarin Heterodimers
Pharmaceuticals 2016, 9(3), 43; doi:10.3390/ph9030043
Received: 12 May 2016 / Revised: 30 June 2016 / Accepted: 1 July 2016 / Published: 8 July 2016
Cited by 3 | PDF Full-text (909 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The organo-seleniumdrug ebselen exhibits a wide range of pharmacological effects that are predominantly due to its interference with redox systems catalyzed by seleno enzymes, e.g., glutathione peroxidase and thioredoxin reductase. Moreover, ebselen can covalently interact with thiol groups of several enzymes. According to
[...] Read more.
The organo-seleniumdrug ebselen exhibits a wide range of pharmacological effects that are predominantly due to its interference with redox systems catalyzed by seleno enzymes, e.g., glutathione peroxidase and thioredoxin reductase. Moreover, ebselen can covalently interact with thiol groups of several enzymes. According to its pleiotropic mode of action, ebselen has been investigated in clinical trials for the prevention and treatment of different ailments. Fluorescence-labeled probes containing ebselen are expected to be suitable for further biological and medicinal studies. We therefore designed and synthesized two coumarin-tagged activity-based probes bearing the ebselen warhead. The heterodimers differ by the nature of the spacer structure, for which—in the second compound—a PEG/two-amide spacer was introduced. The interaction of this probe and of ebselen with two cysteine proteases was investigated. Full article
Figures

Open AccessFeature PaperArticle Site-Specific Labeling of Protein Kinase CK2: Combining Surface Display and Click Chemistry for Drug Discovery Applications
Pharmaceuticals 2016, 9(3), 36; doi:10.3390/ph9030036
Received: 19 May 2016 / Revised: 15 June 2016 / Accepted: 17 June 2016 / Published: 27 June 2016
Cited by 3 | PDF Full-text (4407 KB) | HTML Full-text | XML Full-text
Abstract
Human CK2 is a heterotetrameric constitutively active serine/threonine protein kinase and is an emerging target in current anti-cancer drug discovery. The kinase is composed of two catalytic CK2α subunits and two regulatory CK2β subunits. In order to establish an assay to identify protein-protein-interaction
[...] Read more.
Human CK2 is a heterotetrameric constitutively active serine/threonine protein kinase and is an emerging target in current anti-cancer drug discovery. The kinase is composed of two catalytic CK2α subunits and two regulatory CK2β subunits. In order to establish an assay to identify protein-protein-interaction inhibitors (PPI) of the CK2α/CK2β interface, a bioorthogonal click reaction was used to modify the protein kinase α-subunit with a fluorophore. By expanding the genetic code, the unnatural amino acid para azidophenylalanine (pAzF) could be incorporated into CK2α. Performing the SPAAC click reaction (Strain-Promoted Azide-Alkyne Cycloaddition) by the use of a dibenzylcyclooctyne-fluorophore (DBCO-fluorophore) led to a specifically labeled human protein kinase CK2α. This site-specific labeling does not impair the phosphorylation activity of CK2, which was evaluated by capillary electrophoresis. Furthermore a dissociation constant (KD) of 631 ± 86.2 nM was determined for the substrate αS1-casein towards CK2α. This labeling strategy was also applied to CK2β subunit on Escherichia coli, indicating the site-specific modifications of proteins on the bacterial cell surface when displayed by Autodisplay. Full article
Figures

Open AccessArticle Synthesis and Pharmacological Properties of Novel Esters Based on Monocyclic Terpenes and GABA
Pharmaceuticals 2016, 9(2), 32; doi:10.3390/ph9020032
Received: 29 April 2016 / Revised: 3 June 2016 / Accepted: 7 June 2016 / Published: 13 June 2016
Cited by 1 | PDF Full-text (1365 KB) | HTML Full-text | XML Full-text
Abstract
Novel esters of γ-aminobutyric acid (GABA) with monocyclic terpenes were synthesized via Steglich esterification and characterized by 1H-NMR, IR and mass spectral studies. Their anticonvulsant, analgesic and anti-inflammatory activities were evaluated by a PTZ-induced convulsion model, AITC-induced hyperalgesia and AITC-induced paw edema,
[...] Read more.
Novel esters of γ-aminobutyric acid (GABA) with monocyclic terpenes were synthesized via Steglich esterification and characterized by 1H-NMR, IR and mass spectral studies. Their anticonvulsant, analgesic and anti-inflammatory activities were evaluated by a PTZ-induced convulsion model, AITC-induced hyperalgesia and AITC-induced paw edema, respectively. All studied esters, as well as their parent terpenes, were found to produce antinociceptive effects in the AITC-induced model and attenuate acute pain more than the reference drug benzocaine after their topical application. GABA esters of l-menthol and thymol were also shown to exceed the reference drug ibuprofen in their ability to decrease the inflammatory state induced by intraplantar injection of the TRPA1 activator AITC. The present findings indicate that GABA esters of carvacrol and guaiacol are not a classical prodrug and possess their own pharmacological activity. Prolonged antiseizure action of the ester based on the amino acid and guaiacol (200 mg/kg) was revealed at 24 h after oral administration. Furthermore, orally co-administered gidazepam (1 mg/kg) and GABA esters of l-menthol, thymol and carvacrol produce synergistic seizure prevention effects. Full article
Figures

Open AccessArticle Alkanediamide-Linked Bisbenzamidines Are Promising Antiparasitic Agents
Pharmaceuticals 2016, 9(2), 20; doi:10.3390/ph9020020
Received: 11 February 2016 / Revised: 8 April 2016 / Accepted: 13 April 2016 / Published: 19 April 2016
Cited by 2 | PDF Full-text (627 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
A series of 15 alkanediamide-linked bisbenzamidines and related analogs was synthesized and tested in vitro against two Trypanosoma brucei (T.b.) subspecies: T.b. brucei and T.b. rhodesiense, Trypanosoma cruzi, Leishmania donovani and two Plasmodium falciparum subspecies: a chloroquine-sensitive strain (NF54)
[...] Read more.
A series of 15 alkanediamide-linked bisbenzamidines and related analogs was synthesized and tested in vitro against two Trypanosoma brucei (T.b.) subspecies: T.b. brucei and T.b. rhodesiense, Trypanosoma cruzi, Leishmania donovani and two Plasmodium falciparum subspecies: a chloroquine-sensitive strain (NF54) and a chloroquine-resistant strain (K1). The in vitro cytotoxicity was determined against rat myoblast cells (L6). Seven compounds (5, 6, 10, 11, 12, 14, 15) showed high potency against both strains of T. brucei and P. falciparum with the inhibitory concentrations for 50% (IC50) in the nanomolar range (IC50 = 1–96 nM). None of the tested derivatives was significantly active against T. cruzi or L. donovani. Three of the more potent compounds (5, 6, 11) were evaluated in vivo in mice infected with the drug-sensitive (Lab 110 EATRO and KETRI 2002) or drug-resistant (KETRI 2538 and KETRI 1992) clinical isolates of T. brucei. Compounds 5 and 6 were highly effective in curing mice infected with the drug-sensitive strains, including a drug-resistant strain KETRI 2538, but were ineffective against KETRI 1992. Thermal melting of DNA and molecular modeling studies indicate AT-rich DNA sequences as possible binding sites for these compounds. Several of the tested compounds are suitable leads for the development of improved antiparasitic agents. Full article
Figures

Open AccessArticle Search for Potent and Selective Aurora A Inhibitors Based on General Ser/Thr Kinase Pharmacophore Model
Pharmaceuticals 2016, 9(2), 19; doi:10.3390/ph9020019
Received: 21 December 2015 / Revised: 29 March 2016 / Accepted: 1 April 2016 / Published: 13 April 2016
Cited by 2 | PDF Full-text (3803 KB) | HTML Full-text | XML Full-text
Abstract
Based on the data for compounds known from the literature to be active against various types of Ser/Thr kinases, a general pharmachophore model for these types of kinases was developed. The search for the molecules fitting to this pharmacophore among the ASINEX proprietary
[...] Read more.
Based on the data for compounds known from the literature to be active against various types of Ser/Thr kinases, a general pharmachophore model for these types of kinases was developed. The search for the molecules fitting to this pharmacophore among the ASINEX proprietary library revealed a number of compounds, which were tested and appeared to possess some activity against Ser/Thr kinases such as Aurora A, Aurora B and Haspin. Our work on the optimization of these molecules against Aurora A kinase allowed us to achieve several hits in a 3–5 nM range of activity with rather good selectivity and Absorption, Distribution, Metabolism, and Excretion (ADME) properties, and cytotoxicity against 16 cancer cell lines. Thus, we showed the possibility to fine-tune the general Ser/Thr pharmacophore to design active and selective compounds against desired types of kinases. Full article
Figures

Figure 1

Open AccessArticle Biomolecules and Natural Medicine Preparations: Analysis of New Sources of Bioactive Compounds from Ribes and Rubus spp. Buds
Pharmaceuticals 2016, 9(1), 7; doi:10.3390/ph9010007
Received: 14 January 2016 / Revised: 31 January 2016 / Accepted: 2 February 2016 / Published: 5 February 2016
PDF Full-text (1751 KB) | HTML Full-text | XML Full-text
Abstract
It is well known that plants are important sources for the preparation of natural remedies as they contain many biologically active compounds. In particular, polyphenols, terpenic compounds, organic acids, and vitamins are the most widely occurring groups of phytochemicals. Some endemic species may
[...] Read more.
It is well known that plants are important sources for the preparation of natural remedies as they contain many biologically active compounds. In particular, polyphenols, terpenic compounds, organic acids, and vitamins are the most widely occurring groups of phytochemicals. Some endemic species may be used for the production of herbal preparations containing phytochemicals with significant bioactivity, as antioxidant activity and anti-inflammatory capacities, and health benefits. Blackberry sprouts and blackcurrant buds are known to contain appreciable levels of bioactive compounds, including flavonols, phenolic acids, monoterpenes, vitamin C, and catechins, with several clinical effects. The aim of this research was to perform an analytical study of blackcurrant and blackberry bud-preparations, in order to identify and quantify the main biomarkers, obtaining a specific phytochemical fingerprint to evaluate the single botanical class contribution to total phytocomplex and relative bioactivity, using a High Performance Liquid Chromatograph−Diode Array Detector; the same analyses were performed both on the University laboratory and commercial preparations. Different chromatographic methods were used to determine concentrations of biomolecules in the preparations, allowing for quantification of statistically significant differences in their bioactive compound content both in the case of Ribes nigrum and Rubus cultivated varieties at different harvest stages. In blackcurrant bud-extracts the most important class was organic acids (50.98%) followed by monoterpenes (14.05%), while in blackberry preparations the main bioactive classes were catechins (50.06%) and organic acids (27.34%). Chemical, pharmaceutical and agronomic-environmental knowledge could be important for obtaining label certifications for the valorization of specific genotypes, with high clinical and pharmaceutical value: this study allowed to develop an effective tool for the natural preparation quality control and bioactivity evaluation through the chemical fingerprinting of bud preparations. Full article
Figures

Other

Jump to: Research

Open AccessMeeting Report First International Electronic Conference on Medicinal Chemistry (ECMC-1)
Pharmaceuticals 2016, 9(1), 14; doi:10.3390/ph9010014
Received: 4 March 2016 / Accepted: 7 March 2016 / Published: 11 March 2016
PDF Full-text (5054 KB) | HTML Full-text | XML Full-text
Abstract
The first International Electronic Conference on Medicinal Chemistry, organized and sponsored by MDPI AG, publisher, and the Journal Pharmaceuticals, took place in November 2015 on the SciForum website. More than 200 authors from 18 countries participated in the event and was attended by
[...] Read more.
The first International Electronic Conference on Medicinal Chemistry, organized and sponsored by MDPI AG, publisher, and the Journal Pharmaceuticals, took place in November 2015 on the SciForum website. More than 200 authors from 18 countries participated in the event and was attended by 25,000 visitors who had the opportunity to browse among 55 presentations, keynotes, and videos. A short description of some works presented during that scientific meeting is disclosed in this report. Full article
Figures

Figure 1

Back to Top