Latest Articles

Open AccessArticle
Stochastic Dynamic AC Optimal Power Flow Based on a Multivariate Short-Term Wind Power Scenario Forecasting Model
Energies 2017, 10(12), 2138; doi:10.3390/en10122138 (registering DOI) -
Abstract
The deterministic methods generally used to solve DC optimal power flow (OPF) do not fully capture the uncertainty information in wind power, and thus their solutions could be suboptimal. However, the stochastic dynamic AC OPF problem can be used to find an optimal
[...] Read more.
The deterministic methods generally used to solve DC optimal power flow (OPF) do not fully capture the uncertainty information in wind power, and thus their solutions could be suboptimal. However, the stochastic dynamic AC OPF problem can be used to find an optimal solution by fully capturing the uncertainty information of wind power. That uncertainty information of future wind power can be well represented by the short-term future wind power scenarios that are forecasted using the generalized dynamic factor model (GDFM)—a novel multivariate statistical wind power forecasting model. Furthermore, the GDFM can accurately represent the spatial and temporal correlations among wind farms through the multivariate stochastic process. Fully capturing the uncertainty information in the spatially and temporally correlated GDFM scenarios can lead to a better AC OPF solution under a high penetration level of wind power. Since the GDFM is a factor analysis based model, the computational time can also be reduced. In order to further reduce the computational time, a modified artificial bee colony (ABC) algorithm is used to solve the AC OPF problem based on the GDFM forecasting scenarios. Using the modified ABC algorithm based on the GDFM forecasting scenarios has resulted in better AC OPF’ solutions on an IEEE 118-bus system at every hour for 24 h. Full article
Figures

Figure 1

Open AccessReview
Potential of Bioactive Glasses for Cardiac and Pulmonary Tissue Engineering
Materials 2017, 10(12), 1429; doi:10.3390/ma10121429 (registering DOI) -
Abstract
Repair and regeneration of disorders affecting cardiac and pulmonary tissues through tissue-engineering-based approaches is currently of particular interest. On this matter, different families of bioactive glasses (BGs) have recently been given much consideration with respect to treating refractory diseases of these tissues, such
[...] Read more.
Repair and regeneration of disorders affecting cardiac and pulmonary tissues through tissue-engineering-based approaches is currently of particular interest. On this matter, different families of bioactive glasses (BGs) have recently been given much consideration with respect to treating refractory diseases of these tissues, such as myocardial infarction. The inherent properties of BGs, including their ability to bond to hard and soft tissues, to stimulate angiogenesis, and to elicit antimicrobial effects, along with their excellent biocompatibility, support these newly proposed strategies. Moreover, BGs can also act as a bioactive reinforcing phase to finely tune the mechanical properties of polymer-based constructs used to repair the damaged cardiac and pulmonary tissues. In the present study, we evaluated the potential of different forms of BGs, alone or in combination with other materials (e.g., polymers), in regards to repair and regenerate injured tissues of cardiac and pulmonary systems. Full article
Figures

Figure 1

Open AccessArticle
Water Use and Conservation on a Free-Stall Dairy Farm
Water 2017, 9(12), 977; doi:10.3390/w9120977 (registering DOI) -
Abstract
Livestock watering can represent as much as 20% of total agricultural water use in areas with intensive dairy farming. Due to an increased emphasis on water conservation for the agricultural sector, it is important to understand the current patterns of on-farm water use.
[...] Read more.
Livestock watering can represent as much as 20% of total agricultural water use in areas with intensive dairy farming. Due to an increased emphasis on water conservation for the agricultural sector, it is important to understand the current patterns of on-farm water use. This study utilized in situ water meters to measure the year-round on-farm pumped water (i.e., blue water) on a ~419 lactating cow confined dairy operation in Eastern Ontario, Canada. The average total water use for the farm was 90,253 ± 15,203 L day−1 and 33,032 m3 annually. Water use was divided into nutritional water (68%), parlour cleaning and operation (14%), milk pre-cooling (15%), barn cleaning, misters and other uses (3%). There was a positive correlation between total monthly water consumption (i.e., nutritional water) and average monthly temperature for lactating cows, heifers, and calves (R2 = 0.69, 0.84, and 0.85, respectively). The blue water footprint scaled by milk production was 6.19 L kg−1 milk or 6.41 L kg−1 fat-and-protein corrected milk (FPCM) including contributions from all animal groups and 5.34 L kg−1 milk (5.54 L kg−1 FPCM) when excluding the water consumption of non-lactating animals. By applying theoretical water conservation scenarios we show that a combination of strategies (air temperature reduction, complete recycling of milk-cooling water, and modified cow preparation protocol) could achieve a savings of 6229 m3 annually, a ~19% reduction in the total annual water use. Full article
Figures

Figure 1

Open AccessArticle
Constructing Sheet-On-Sheet Structured Graphitic Carbon Nitride/Reduced Graphene Oxide/Layered MnO2 Ternary Nanocomposite with Outstanding Catalytic Properties on Thermal Decomposition of Ammonium Perchlorate
Nanomaterials 2017, 7(12), 450; doi:10.3390/nano7120450 (registering DOI) -
Abstract
We unprecedentedly report that layered MnO2 nanosheets were in situ formed onto the surface of covalently bonded graphitic carbon nitride/reduced graphene oxide nanocomposite (g-C3N4/rGO), forming sheet-on-sheet structured two dimension (2D) graphitic carbon nitride/reduced graphene oxide/layered MnO2 ternary
[...] Read more.
We unprecedentedly report that layered MnO2 nanosheets were in situ formed onto the surface of covalently bonded graphitic carbon nitride/reduced graphene oxide nanocomposite (g-C3N4/rGO), forming sheet-on-sheet structured two dimension (2D) graphitic carbon nitride/reduced graphene oxide/layered MnO2 ternary nanocomposite (g-C3N4/rGO/MnO2) with outstanding catalytic properties on thermal decomposition of ammonium perchlorate (AP). The covalently bonded g-C3N4/rGO was firstly prepared by the calcination of graphene oxide-guanidine hydrochloride precursor (GO-GndCl), following by its dispersion into the KMnO4 aqueous solution to construct the g-C3N4/rGO/MnO2 ternary nanocomposite. FT-IR, XRD, Raman as well as the XPS results clearly demonstrated the chemical interaction between g-C3N4, rGO and MnO2. TEM and element mapping indicated that layered g-C3N4/rGO was covered with thin MnO2 nanosheets. Furthermore, the obtained g-C3N4/rGO/MnO2 nanocomposite exhibited promising catalytic capacity on thermal decomposition of AP. Upon addition of 2 wt % g-C3N4/rGO/MnO2 ternary nanocomposite as catalyst, the thermal decomposition temperature of AP was largely decreased up by 142.5 °C, which was higher than that of pure g-C3N4, g-C3N4/rGO and MnO2, respectively, demonstrating the synergistic catalysis of the as-prepared nanocomposite. Full article
Figures

Open AccessShort Note
4-Phenethylthio-2-phenylpyrazolo[1,5-a][1,3,5]triazin-7(6H)-one
Molbank 2017, 2017(4), M970; doi:10.3390/M970 (registering DOI) -
Abstract
Exploring the pharmacologically important pyrazolo[1,5-a][1,3,5]triazin-7(6H)-one scaffold for the construction of new bioactive compounds, we developed a synthesis of 4-phenethylthio-2-phenylpyrazolo[1,5-a][1,3,5]triazin-7(6H)-one (4) via S-alkylation of 2-phenyl-4-thioxopyrazolo[1,5-a][1,3,5]triazine-7(6H)-one (3), prepared
[...] Read more.
Exploring the pharmacologically important pyrazolo[1,5-a][1,3,5]triazin-7(6H)-one scaffold for the construction of new bioactive compounds, we developed a synthesis of 4-phenethylthio-2-phenylpyrazolo[1,5-a][1,3,5]triazin-7(6H)-one (4) via S-alkylation of 2-phenyl-4-thioxopyrazolo[1,5-a][1,3,5]triazine-7(6H)-one (3), prepared by the double ring closure of pyrazole and triazine rings upon the treatment of 1-cyanoacetyl-4-benzoylthiosemicarbazide (2) with alkali. The antiproliferative activity of 4 against human lung cancer (A549) and human breast cancer (MDA-MB231) cell lines was investigated. Compound 4 was found to be more active against lung cancer cells than breast cancer cells. Full article
Figures

Figure 1

Open AccessInteresting Images
Functional Imaging with 18F-FDG PET/CT and Diffusion Weighted Imaging (DWI) in Early Response Evaluation of Combination Therapy of Elotuzumab, Lenalidomide, and Dexamethasone in a Relapsed Multiple Myeloma Patient
Diagnostics 2017, 7(4), 61; doi:10.3390/diagnostics7040061 (registering DOI) -
Abstract
Elotuzumab is the first monoclonal antibody approved for the treatment of relapsed-refractory multiple myeloma (MM) in combination with lenalidomide, an immunodulatory drug, and dexamethasone. We report on a multiply pre-treated MM patient with disease progression due to appearance of new focal lesions on
[...] Read more.
Elotuzumab is the first monoclonal antibody approved for the treatment of relapsed-refractory multiple myeloma (MM) in combination with lenalidomide, an immunodulatory drug, and dexamethasone. We report on a multiply pre-treated MM patient with disease progression due to appearance of new focal lesions on imaging modalities, who was started on a combination treatment of elotuzumab, lenalidomide, and dexamethasone. After completion of three cycles of the new therapy the patient responded very well with a major decline of serological myeloma activity parameters serum monoclonal protein, kappa light chains, free light chains (FLC) ratio. The patient was also monitored with the functional imaging modalities 18F-FDG PET/CT and diffusion weighted imaging (DWI), which exhibited a mismatch of almost complete metabolic remission on positron emission tomography/computed tomography (PET/CT) with 18F-fluoro-2-deoxy-d-glucose (18F-FDG) (consistent with the serological response), and signal elevation persistence on DWI. This case demonstrates the potentially superior performance of 18F-FDG PET/CT over DWI in early response evaluation of combined treatment with a monoclonal antibody, an immunomodulatory drug, and dexamethasone in MM. Full article
Figures

Figure 1

Open AccessCommunication
Synthesis and Biological Activity of 2′,3′-iso-Aryl-abscisic Acid Analogs
Molecules 2017, 22(12), 2229; doi:10.3390/molecules22122229 (registering DOI) -
Abstract
2′,3′-iso-Benzoabscisic acid (iso-PhABA), an excellent selective abscisic acid (ABA) analog, was developed in our previous work. In order to find its more structure-activity information, some structural modifications were completed in this paper, including the substitution of phenyl ring and
[...] Read more.
2′,3′-iso-Benzoabscisic acid (iso-PhABA), an excellent selective abscisic acid (ABA) analog, was developed in our previous work. In order to find its more structure-activity information, some structural modifications were completed in this paper, including the substitution of phenyl ring and replacing the ring with heterocycles. Thus, 16 novel analogs of iso-PhABA were synthesized and screened with three bioassays, Arabidopsis and lettuce seed germination and rice seedling elongation. Some of them, i.e., 2′,3′-iso-pyridoabscisic acid (iso-PyABA) and 2′,3′-iso-franoabscisic acid (iso-FrABA), displayed good bioactivities that closed to iso-PhABA and natural (+)-ABA. Some others, for instance, substituted-iso-PhABA, exhibited certain selectivity to different physiological process when compared to iso-PhABA or (+)-ABA. These analogs not only provided new candidates of ABA-like synthetic plant growth regulators (PGRs) for practical application, but also new potential selective agonist/antagonist for probing the specific function of ABA receptors. Full article
Figures

Open AccessBrief Report
Two-Dimensional Fluorescence Difference Spectroscopy of ZnO and Mg Composites in the Detection of Physiological Protein and RNA Interactions
Materials 2017, 10(12), 1430; doi:10.3390/ma10121430 (registering DOI) -
Abstract
Two-dimensional fluorescence difference spectroscopy (2-D FDS) was used to determine the unique spectral signatures of zinc oxide (ZnO), magnesium oxide (MgO), and 5% magnesium zinc oxide nanocomposite (5% Mg/ZnO) and was then used to demonstrate the change in spectral signature that occurs when
[...] Read more.
Two-dimensional fluorescence difference spectroscopy (2-D FDS) was used to determine the unique spectral signatures of zinc oxide (ZnO), magnesium oxide (MgO), and 5% magnesium zinc oxide nanocomposite (5% Mg/ZnO) and was then used to demonstrate the change in spectral signature that occurs when physiologically important proteins, such as angiotensin-converting enzyme (ACE) and ribonuclease A (RNase A), interact with ZnO nanoparticles (NPs). When RNase A is bound to 5% Mg/ZnO, the intensity is quenched, while the intensity is magnified and a significant shift is seen when torula yeast RNA (TYRNA) is bound to RNase A and 5% Mg/ZnO. The intensity of 5% Mg/ZnO is quenched also when thrombin and thrombin aptamer are bound to the nanocomposite. These data indicate that RNA–protein interaction can occur unimpeded on the surface of NPs, which was confirmed by gel electrophoresis, and importantly that the change in fluorescence excitation, emission, and intensity shown by 2-D FDS may indicate specificity of biomolecular interactions. Full article
Figures

Figure 1

Open AccessArticle
Mechanical and Thermal Properties of Epoxy Composites Containing Zirconium Oxide Impregnated Halloysite Nanotubes
Coatings 2017, 7(12), 231; doi:10.3390/coatings7120231 (registering DOI) -
Abstract
Liquid epoxy resins have received much attention from both academia and the chemical industry as eco-friendly volatile organic compound (VOC)-free alternatives for applications in coatings and adhesives, especially in those used in households. Epoxy resins show high chemical resistance and high creep resistance.
[...] Read more.
Liquid epoxy resins have received much attention from both academia and the chemical industry as eco-friendly volatile organic compound (VOC)-free alternatives for applications in coatings and adhesives, especially in those used in households. Epoxy resins show high chemical resistance and high creep resistance. However, due to their brittleness and lack of thermal stability, additional fillers are needed for improving the mechanical and thermal properties. Halloysite nanotubes (HNTs) are naturally abundant, inexpensive, and eco-friendly clay minerals that are known to improve the mechanical and thermal properties of epoxy composites after suitable surface modification. Zirconium is well known for its high resistance to heat and wear. In this work, zirconium oxide-impregnated HNTs (Zr/HNTs) were added to epoxy resins to obtain epoxy composites with improved mechanical and thermal properties. Zr/HNTs were characterized by field-emission transmission electron microscopy, transmission electron microscopy with energy-dispersive X-ray spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. Changes in the thermal properties of the epoxy composites were characterized by thermo mechanical analysis and differential scanning calorimetry. Furthermore, flexural properties of the composites were analyzed using a universal testing machine. Full article
Figures

Institutional Open Access Program (IOAP)

IOAP participants benefit from discounts and convenient payment options.

Feedback

We are keen to hear what you think about MDPI. To leave us your feedback, suggestions or questions please click here.

See what our authors and guest editors say about us.

About MDPI

MDPI.com is a platform for peer-reviewed, scientific open-access journals operated by MDPI AG, based in Basel, Switzerland. Additional offices are located in Beijing and Wuhan (China) as well as in Barcelona (Spain).

Back to Top