Women’s Special Issue Series: Fermentation

A special issue of Fermentation (ISSN 2311-5637).

Deadline for manuscript submissions: 31 December 2025 | Viewed by 1806

Special Issue Editors


E-Mail Website
Guest Editor
Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
Interests: gene expression; cloning; metagenomics; lactic acid fermentation; heterologous expression; glycoside hydrolase enzymes
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue, entitled "Women’s Special Issue Series: Fermentation”, is intended to celebrate and highlight the significant scientific achievements of women scientists that have been leaders within the field of fermentation research. Topics of interest for this Special Issue include, but are not limited to, industrial fermentation, fermentation processes and product development, strain improvement, fermentation food and beverages, microbial physiology and metabolism, and bioinformatics.

In particular, we encourage the submission of articles where the lead authors are women or that are completely authored by women. Nevertheless, we welcome submissions from all authors, irrespective of gender. We warmly invite you to contribute original research papers or comprehensive review articles for peer review and possible publication in this Special Issue.

Prof. Dr. Penka Petrova
Dr. Alice Vilela
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Fermentation is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2100 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • microbial metabolism
  • fermentation process
  • strain improvement
  • bioprocesses
  • bioreactor design
  • scale-up
  • beverages
  • fermented food
  • bioconversion
  • biofuels
  • commodity chemicals
  • pharmaceuticals
  • bioproducts
  • probiotics
  • gut microbiota

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 555 KB  
Article
Techno-Nutritional Improvement of Gluten-Free Breads Using Spontaneous Sourdough of Quinoa and Buckwheat Flours
by María Soledad López, Emiliano Jesús Salvucci, María Verónica Baroni, Romina Di Paola, Gabriela Teresa Pérez and Lorena Susana Sciarini
Fermentation 2025, 11(12), 657; https://doi.org/10.3390/fermentation11120657 - 23 Nov 2025
Viewed by 468
Abstract
The aim of this study was to evaluate the effect of spontaneous sourdoughs on the quality of gluten-free breads formulated with quinoa (Q) and buckwheat (BW) flours in order to improve their nutritional, technological, and sensory attributes. The microbiota of the sourdoughs was [...] Read more.
The aim of this study was to evaluate the effect of spontaneous sourdoughs on the quality of gluten-free breads formulated with quinoa (Q) and buckwheat (BW) flours in order to improve their nutritional, technological, and sensory attributes. The microbiota of the sourdoughs was dominated by Pediococcus pentosaceus and P. acidilactici. Total polyphenols, antioxidant capacity, phytic acid, and free amino acids were determined in sourdoughs (before and after fermentation) and breads. Breads were prepared with three levels of sourdough: 10%, 15%, and 20%. Bread specific volume, crumb firmness, staling rate, crumb structure, and consumer acceptability were evaluated. Sourdoughs showed higher phenolic compound contents compared to the unfermented control, and on average, breads with sourdough contained 67% more phenolics than control breads. Antioxidant activity also increased, particularly in BW sourdough samples. Phytic acid decreased in both sourdoughs and breads, while free amino acids increased. Breads with Q and BW sourdoughs exhibited a specific volume 40% and 25% higher, respectively, than the control, along with lower firmness and slower staling. BW sourdough breads reached the highest overall consumer acceptance. Incorporation of Q and BW spontaneous sourdoughs, especially at 20% substitution, significantly improved the nutritional, technological, and sensory quality of gluten-free breads. Full article
(This article belongs to the Special Issue Women’s Special Issue Series: Fermentation)
Show Figures

Figure 1

14 pages, 1475 KB  
Article
Hydrogen Production Through Anaerobic Co-Digestion of Different Agroindustrial Waste and Food Waste at Mesophilic Conditions
by Angeliki Maragkaki, Napoleon Christoforos Stratigakis, Tahereh Jafarpour Checkab, Lisa De Toni, Ioannis Choinopoulos, Andreas Kaliakatsos, Iosifina Gounaki, Danae Venieri, Thrassyvoulos Manios and Kelly Velonia
Fermentation 2025, 11(11), 644; https://doi.org/10.3390/fermentation11110644 - 14 Nov 2025
Viewed by 619
Abstract
Mesophilic anaerobic co-digestion of eight distinct substrate mixtures of agroindustrial and food wastes was assessed to determine the most efficient waste mixture for maximizing hydrogen production. To evaluate the impact of adding various mixtures on dark fermentation (DF), batch tests were conducted for [...] Read more.
Mesophilic anaerobic co-digestion of eight distinct substrate mixtures of agroindustrial and food wastes was assessed to determine the most efficient waste mixture for maximizing hydrogen production. To evaluate the impact of adding various mixtures on dark fermentation (DF), batch tests were conducted for 250 h at 37 °C and a pH range between 5.0 and 5.9. Ethanol, butyric, propionic, acetic, and isobutyric acids were identified as the principal fermentation end products. The hydrogen production rate reached in a decreasing order from a mixture comprising 55% Olive Mill Wastewater (OMW), 40% Cheese Whey (CW), and 5% Sewage Sludge (SS) or Liquid Pig Manure (LPM) (38 NmL/gVS) to 55% OMW, 40% CW and 5% diluted Food Waste (FWdil) (30 NmL/gVS), 60% CW and 40% Grape Residues (GR) (27 NmL/gVS), 80% CW and 20% LPM (13 NmL/gVS), 60% OMW and 40% FWdil. (10 NmL/gVS), 60% CW and 40% FWdil, (8 NmL/gVS) and 70% OMW and 30% SS (5 NmL/gVS). These results indicated that H2 was generated through mixed fermentation pathways, while the addition of OMW > 55% inhibited microbial activity and reduced hydrogen production. The highest hydrogen yield (38 NmL/gVS), accompanied by 27.6%, Volatile Solids (VS) reduction and the highest Volatile Fatty Acids (VFAs) concentration (6.1 g/L). The same substrate mixture resulted in the highest accumulation of acetic and butyric acid in the acidified effluent, indicating the dominance of hydrogen-producing metabolic routes. The data suggest that co-fermentation of the selected residues not only enhances hydrogen production but also creates more stable operational conditions -including improved pH regulation, increased carbohydrate conversion, and greater VFAs accumulation- making the process more robust and viable for practical application. Full article
(This article belongs to the Special Issue Women’s Special Issue Series: Fermentation)
Show Figures

Figure 1

Back to TopTop