Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (50)

Search Parameters:
Keywords = zinc hydroxide carbonate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 1477 KiB  
Proceeding Paper
Preparation of Nanosized Mesoporous Metal Oxides
by Olena Korchuganova, Emiliia Tantsiura, Kamila Abuzarova and Alina M. Balu
Chem. Proc. 2025, 17(1), 7; https://doi.org/10.3390/chemproc2025017007 - 1 Aug 2025
Viewed by 3
Abstract
Nowadays, nanosized mesoporous oxides are of increasing interest to scientists. They can be used as components of heterogeneous catalysts, for photo- and electrocatalysis, as gas sensors, etc. For instance, the desired properties in catalysts include a nano size and homogeneity of the particles [...] Read more.
Nowadays, nanosized mesoporous oxides are of increasing interest to scientists. They can be used as components of heterogeneous catalysts, for photo- and electrocatalysis, as gas sensors, etc. For instance, the desired properties in catalysts include a nano size and homogeneity of the particles that form the catalyst. The particle sizes of oxides are set at the initial stage of their formation, as precursors of precipitation in the context of wet chemistry. The creation of optimal conditions is possible through the use of homogeneous precipitation, where the precipitant is formed within the solution itself as a result of a hydrolysis reaction. The resolution of this issue involved the utilization of urea in our experimental setup, obtaining the hydrolysis products of ammonia and carbon dioxide. Consequently, precipitation reactions can be utilized to obtain hydroxides, carbonates, or hydroxy carbonates of metals. The precursors were calcined, obtaining nanosized mesoporous oxides, which can have a wide range of applications. Nanosized 0.1–50 nm metal oxides were obtained, including those aluminum, iron, indium, zinc, nickel, and cobalt. Full article
Show Figures

Graphical abstract

11 pages, 8107 KiB  
Article
Recovery of Valuable Materials Based on Pb and Zn in the Hydrometallurgical Processing of Copper Shaft Furnace Dust
by Martina Laubertová, Martin Sisol, Jaroslav Briančin, Jarmila Trpčevská and Michaela Ružičková
Materials 2025, 18(9), 1935; https://doi.org/10.3390/ma18091935 - 24 Apr 2025
Viewed by 401
Abstract
Copper shaft furnace (CSF) dust containing valuable metals with a composition of 44.02% Zn and 14.57% Pb, in the form of oxides (PbO and ZnO), was used for leaching in 1 mol/L sodium hydroxide lixiviant at a temperature of 80 °C. The leaching [...] Read more.
Copper shaft furnace (CSF) dust containing valuable metals with a composition of 44.02% Zn and 14.57% Pb, in the form of oxides (PbO and ZnO), was used for leaching in 1 mol/L sodium hydroxide lixiviant at a temperature of 80 °C. The leaching efficiency for lead removal was 98%. The leaching of CSF dust in sodium hydroxide was thermodynamically studied using Pourbaix diagrams for the Pb/Zn/-Na–H2O system at temperatures of 25 °C and 80 °C. A suitable precipitating agent was 0.5 mol/L sulfuric acid at pH 3. The formation of lead sulfate as the final product was confirmed by SEM, EDX, and XRD analysis. Although increasing the temperature reduced the aging time required for the precipitation, it did not affect the amount of lead precipitated. The solution, after lead precipitation and containing zinc (Zn2+), was further treated with ammonium carbonate for zinc precipitation. Various analytical methods, including SEM, EDX, XRD, XRF, and AAS, were used to analyze the input samples and the final products obtained after alkali leaching of CSF dust and lead and zinc precipitation. Full article
(This article belongs to the Special Issue Advances in Process Metallurgy and Metal Recycling)
Show Figures

Figure 1

17 pages, 3734 KiB  
Article
Tailoring Two-Dimensional NiFeCo-Layered Double Hydroxide onto One-Dimensional N-Doped CNTs for High-Performance Bifunctional Air Electrodes in Flexible Zinc–Air Batteries
by Yeon-Woo Kim, Ayeon Lee and Sung Hoon Ahn
Batteries 2025, 11(4), 155; https://doi.org/10.3390/batteries11040155 - 15 Apr 2025
Viewed by 988
Abstract
The development of bifunctional air electrodes with high activity and durability is essential for advancing flexible zinc–air batteries. Herein, a hierarchical electrode structure is designed by growing N-doped carbon nanotubes (CNTs) on copper foam, where CNTs serve as highly active oxygen reduction reaction [...] Read more.
The development of bifunctional air electrodes with high activity and durability is essential for advancing flexible zinc–air batteries. Herein, a hierarchical electrode structure is designed by growing N-doped carbon nanotubes (CNTs) on copper foam, where CNTs serve as highly active oxygen reduction reaction (ORR) sites. The controlled deposition of NiFeCo-layered double hydroxide (LDH) nanosheets, optimized to maintain ORR activity while enhancing oxygen evolution reaction (OER) performance, enables a finely tuned bifunctional catalyst. This architecture achieves outstanding electrochemical properties, requiring only 0.897 V vs. RHE and 1.446 V vs. RHE to reach 10 mA cm−2 in 1 M KOH, thereby minimizing overpotentials. When implemented as an air electrode in a quasi-solid-state zinc–air battery, the system demonstrates remarkable cycling stability, sustaining performance for over 300 h. Furthermore, a 16 cm2 pouch-type zinc–air battery delivers a high discharge capacity of 0.62 Ah, highlighting the scalability of this design. This work presents a robust and scalable strategy for developing high-performance bifunctional air electrodes, offering a promising route for next-generation flexible energy storage systems. Full article
(This article belongs to the Special Issue Two-Dimensional Materials for Battery Applications)
Show Figures

Figure 1

18 pages, 4718 KiB  
Article
Recovering Zinc and Iron from Waste Tire-Derived Pyrolysis Carbon Black to Prepare Layered Metal Hydroxide Composites for Efficient Adsorption of Dye Methyl Orange
by Pei Chen, Wenli Liu, Yanzhi Sun, Yongmei Chen and Junqing Pan
Recycling 2025, 10(2), 76; https://doi.org/10.3390/recycling10020076 - 15 Apr 2025
Viewed by 649
Abstract
The pyrolysis carbon black (CBp) from waste tires contains zinc, iron, and other metal elements, which have high recycling value. This study proposes a simple method of recovering zinc and iron from waste tire-derived CBp to synthesize hydrotalcite-type adsorbents for the treatment of [...] Read more.
The pyrolysis carbon black (CBp) from waste tires contains zinc, iron, and other metal elements, which have high recycling value. This study proposes a simple method of recovering zinc and iron from waste tire-derived CBp to synthesize hydrotalcite-type adsorbents for the treatment of anodic dye wastewater. Firstly, zinc-aluminum hydrotalcite (LDH) and zinc-iron aluminum hydrotalcite (FeLDH) were obtained by leaching the zinc and iron ions from CBp with an acid solution. As compared with LDH, FeLDH shows increased laminate metal ion arrangement density and layer spacing. By calcining the LDH and FeLDH at 500 °C, zinc aluminum oxides (LDO) and zinc iron aluminum oxides (FeLDO) were then prepared and applied for the adsorption of dye methyl orange (MO). The results demonstrate that the maximum adsorption capacity of LDO and FeLDO are 304.9 and 609.8 mg g−1 at pH of 4.0, respectively. The adsorption processes of both LDO and FeLDO are consistent with the Langmuir adsorption isotherm and the proposed second-order kinetic model. The adsorption regeneration performance and adsorption mechanism of LDO and FeLDO were also investigated in detail. Regeneration experiments show that after three cycles, the removal rate of MO by LDO remains above 80%, while that of FeLDO only remains around 64% in the first cycle after regeneration. This work would provide a new pathway to realize the high-value metal recycling of waste tire-derived CBp and solve the contamination of dye wastewater. Full article
(This article belongs to the Special Issue Rubber Waste and Tyre Stewardship)
Show Figures

Graphical abstract

15 pages, 3548 KiB  
Article
Efficient Removal of Lead, Cadmium, and Zinc from Water and Soil by MgFe Layered Double Hydroxide: Adsorption Properties and Mechanisms
by Hua Deng, Shuyun Zhang, Qiuyan Li, Anyu Li, Weixing Gan and Lening Hu
Sustainability 2024, 16(24), 11037; https://doi.org/10.3390/su162411037 - 16 Dec 2024
Cited by 2 | Viewed by 2004
Abstract
Both biochar and layered double hydroxide (LDH) have drawbacks in regard to the removal of heavy metals. The combined application of biochar and LDH not only solved the problem of the easy agglomeration of LDH but also effectively improved the heavy metal adsorption [...] Read more.
Both biochar and layered double hydroxide (LDH) have drawbacks in regard to the removal of heavy metals. The combined application of biochar and LDH not only solved the problem of the easy agglomeration of LDH but also effectively improved the heavy metal adsorption capacity of biochar. In this work, a MgFe–LDH banana straw biochar composite (MgFe–LDH@BB), with a regular hydrotalcite structure, was synthesized by employing a simple hydrothermal method. The composite showed an ultra-high adsorption capacity for lead (Pb), cadmium (Cd), and zinc (Zn) in water. A series of experiments were conducted to investigate the adsorption characteristics of MgFe–LDH@BB. At pH = 6.0, MgFe–LDH@BB demonstrated the effective adsorption of Pb, Cd, and Zn. In addition, the results showed that the adsorption of Pb, Cd, and Zn by MgFe–LDH@BB was rapid and conformed to pseudo-second-order kinetic and Langmuir models, indicating single-layer chemical adsorption. The maximum adsorption capacity of MgFe–LDH@BB for Pb, Cd, and Zn was 1112.6, 869.6, and 414.9 mg·g−1, respectively. Moreover, the adsorption mechanisms of MgFe–LDH@BB mainly included metal hydroxide/carbonate precipitation, complex formation with hydroxyl groups, and ion exchange. Meanwhile, MgFe–LDH@BB had the ability to immobilize heavy metals in soil. The surface-rich functional groups and cation exchange promoted the transformation of active heavy metal ions into a more stable form. Full article
Show Figures

Figure 1

11 pages, 1031 KiB  
Article
Waste Zinc–Carbon Battery Recycling: Focus on Total Material Recovery
by Anatoliy Ranskiy, Olga Gordienko and Vitalii Ishchenko
Recycling 2024, 9(5), 83; https://doi.org/10.3390/recycling9050083 - 21 Sep 2024
Cited by 3 | Viewed by 3883
Abstract
Currently, less attention is paid to zinc–carbon batteries, although they are still widely used and are among the major types of batteries collected and recycled. The recycling technologies currently in use do not allow the complete recovery of resources, are not self-sufficient and [...] Read more.
Currently, less attention is paid to zinc–carbon batteries, although they are still widely used and are among the major types of batteries collected and recycled. The recycling technologies currently in use do not allow the complete recovery of resources, are not self-sufficient and require additional financing. Therefore, this paper aims to study the possibility of complete recycling of waste zinc–carbon batteries and to suggest the practical use of the final products generated in the recycling process. The possibility of complex processing of spent zinc–carbon batteries using mechanical separation and processing of the battery’s components (steel case, zinc electrode, graphite electrode, polypropylene and paper insulators) is justified. The separation of spent electrolytes from other components of batteries with hydrochloric acid was studied. It was shown that the extraction of Zn2+ and NH4+ cations takes place following the addition of an equivalent amount of Na3PO4 solution and water-insoluble NH4ZnPO4 salt sedimentation. Waste agglomerate (mixture of MnO2, MnO(OH), and graphite) was regenerated to its initial composition (MnO2, graphite) at a temperature of 300–325 °C; manganese (III) hydroxide was oxidized to manganese (IV) dioxide. Thermal destruction of polypropylene and paper insulators with additional introduction of polyethylene into the primary mixture produced pyrolysis liquid, pyrocarbon and pyrolysis gas as products. The practical use of the products obtained and compliance with the environmental requirements of the suggested method of waste batteries recycling were shown. Full article
Show Figures

Graphical abstract

19 pages, 3235 KiB  
Article
Boosting Flame Retardancy of Polypropylene/Calcium Carbonate Composites with Inorganic Flame Retardants
by Antonio Benjamim Mapossa, Erick Gabriel Ribeiro dos Anjos and Uttandaraman Sundararaj
Materials 2024, 17(18), 4553; https://doi.org/10.3390/ma17184553 - 16 Sep 2024
Cited by 5 | Viewed by 2025
Abstract
This study investigates the effects of inorganic flame retardants, zinc borate, and magnesium hydroxide, on the thermal, morphological, flame retardancy, and mechanical properties of polypropylene (PP)/calcium carbonate composites for potential construction industry applications. Polypropylene/calcium carbonate (50 wt.%) composites containing 5 and 10 wt.% [...] Read more.
This study investigates the effects of inorganic flame retardants, zinc borate, and magnesium hydroxide, on the thermal, morphological, flame retardancy, and mechanical properties of polypropylene (PP)/calcium carbonate composites for potential construction industry applications. Polypropylene/calcium carbonate (50 wt.%) composites containing 5 and 10 wt.% flame retardants were prepared using a batch mixer, followed by compression moulding. The results demonstrated enhanced thermal stability, with the highest char residue reaching 47.2% for polypropylene/calcium carbonate/zinc borate (10 wt.%)/magnesium hydroxide (10 wt.%) composite, a notably strong outcome. Additionally, the composite exhibited an elevated limited oxygen index (LOI) of 29.4%, indicating a synergistic effect between zinc borate and magnesium hydroxide. The proposed flame retardancy mechanism suggests that the flammability performance is driven by the interaction between the flame retardants within the polypropylene/calcium carbonate matrix. Magnesium hydroxide contributes to smoke suppression by releasing water, while zinc borate forms a protective glassy foam that covers the burning surface, promoting char formation and acting as a physical barrier to heat transmission and fire spread. Scanning electron microscopy confirmed good dispersion of the additives alongside calcium carbonate within the polymer matrix. Despite the addition of up to 10 wt.% flame retardants, the composites maintained high-notched impact strength. Full article
(This article belongs to the Special Issue Design and Development of Flame-Retardant Polymer Materials)
Show Figures

Figure 1

15 pages, 7467 KiB  
Article
Fabrication of ZnCo2O4-Zn(OH)2 Microspheres on Carbon Cloth for Photocatalytic Decomposition of Tetracycline
by Sin-Ei Juang, Ning-Chien Chin, Yu-Cheng Chang and Chia-Man Chou
Molecules 2024, 29(17), 4054; https://doi.org/10.3390/molecules29174054 - 27 Aug 2024
Cited by 5 | Viewed by 1401
Abstract
Zinc cobalt oxide-zinc hydroxide (ZnCo2O4-Zn(OH)2) microspheres were successfully fabricated on carbon cloth via a sample hydrothermal method. The surface morphology of these microspheres and their efficacy in degrading methyl violet were further modulated by varying the thermal [...] Read more.
Zinc cobalt oxide-zinc hydroxide (ZnCo2O4-Zn(OH)2) microspheres were successfully fabricated on carbon cloth via a sample hydrothermal method. The surface morphology of these microspheres and their efficacy in degrading methyl violet were further modulated by varying the thermal annealing temperatures. Adjusting the thermal annealing temperatures was crucial for controlling the porosity of the ZnCo₂O₄-Zn(OH)₂ microspheres, enhancing their photocatalytic performance. Various analytical techniques were utilized to evaluate the physical and chemical properties of the ZnCo2O4-Zn(OH)2 microspheres, including field-emission scanning electron microscopy, energy-dispersive spectroscopy, X-ray diffraction, field-emission transmission electron microscopy, X-ray photoelectron spectroscopy, and UV-vis spectroscopy. Compared to untreated ZnCo2O4-Zn(OH)2 microspheres, those subjected to thermal annealing exhibited increased specific surface area and light absorption capacity, rendering them highly effective photocatalysts under UVC light exposure. Subsequent studies have confirmed the superior performance of ZnCo2O4-Zn(OH)2 microspheres as a reusable photocatalyst for degrading methyl violet and tetracycline. Furthermore, trapping experiments during the photodegradation process using ZnCo₂O₄-Zn(OH)₂ microspheres identified hydroxyl radicals (·OH) and superoxide radicals (·O₂⁻) as the primary reactive species. Full article
(This article belongs to the Section Nanochemistry)
Show Figures

Figure 1

12 pages, 1530 KiB  
Article
Regeneration of Impregnated Activated Carbon after Aging
by Ido Nir, Vladislav Shepelev, Lilach Rosh, Amir Lybman, Liat Aviram, Tal Amitay-Rosen and Hadar Rotter
Environments 2023, 10(12), 214; https://doi.org/10.3390/environments10120214 - 4 Dec 2023
Cited by 1 | Viewed by 3038
Abstract
Impregnated activated carbon (IAC) is an efficient adsorbent for the filtration of hazardous gases from the air. However, it tends to lose its efficiency after exposure to high humidity, where it adsorbs water molecules. Water adsorption causes changes in metal impregnation, resulting in [...] Read more.
Impregnated activated carbon (IAC) is an efficient adsorbent for the filtration of hazardous gases from the air. However, it tends to lose its efficiency after exposure to high humidity, where it adsorbs water molecules. Water adsorption causes changes in metal impregnation, resulting in a loss of adsorption efficiency for certain toxic gases, particularly gases that are adsorbed via chemisorption. Here, an innovative method was developed for the regeneration and reactivation of aged IAC. The method is based on dripping a regeneration solution composed of ammonium hydroxide and ammonium carbonate onto the aged IAC. The developed regeneration method was applied to ASZMT, a common commercially used IAC, that had undergone accelerated aging for six months. After the regeneration process, the protection capacity of the IAC against cyanogen chloride (CK) and toluene was almost fully restored to its initial value. Elemental analysis by energy dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS) showed that after the regeneration procedure, the concentrations of zinc and copper on the external surface of the IAC were decreased. This provides evidence that they were partially incorporated back into the pores. It is reasonable to believe that the developed method can be applied to IACs other than ASZMT impregnated with different kinds of materials. The implementation of this method has economic and environmental consequences. In the future, it may allow the reuse of aged IAC and even the restoration of filters. Full article
Show Figures

Graphical abstract

16 pages, 4798 KiB  
Article
Calcium Hydroxyapatite Coatings: Low-Temperature Synthesis and Investigation of Antibacterial Properties
by Laura Lukaviciute, Justina Karciauskaite, Inga Grigoraviciute, Dovile Vasiliauskiene, Denis Sokol and Aivaras Kareiva
Coatings 2023, 13(12), 1991; https://doi.org/10.3390/coatings13121991 - 23 Nov 2023
Cited by 5 | Viewed by 2247
Abstract
In the present work, the low-temperature synthesis of substituted calcium hydroxyapatite (Ca10(PO4)6(OH)2, HAP) with copper and zinc ions on titanium substrates was performed. Initially, CaCO3 coatings were synthesised on titanium substrate using the sol-gel [...] Read more.
In the present work, the low-temperature synthesis of substituted calcium hydroxyapatite (Ca10(PO4)6(OH)2, HAP) with copper and zinc ions on titanium substrates was performed. Initially, CaCO3 coatings were synthesised on titanium substrate using the sol-gel method at 550 °C in a CO2 atmosphere. Crystalline calcium hydroxyapatite was then synthesised from these CaCO3 coatings through the dissolution-precipitation method at low temperature (80 °C). X-ray diffraction (XRD) analysis, FTIR and Raman spectroscopies, and scanning electron microscopy (SEM) were employed to evaluate the phase composition, surface functional groups, crystallinity, and morphology of the coatings. The results showed the formation of hexagonal HAP particles with a size of 20 nm at low temperature, exhibiting high homogeneity in particle size distribution. In the calcium hydroxyapatite, some of the Ca2+ ions were replaced by Cu2+ ions. Heating the mixture of Ca(NO3)2 and Cu(NO3)2 solutions at 550 °C in a CO2 atmosphere led to the formation of copper hydroxide carbonate (malachite, Cu2(OH)2CO3) along with CaCO3. The reaction between the sol-gel precursor obtained and Na2HPO4 resulted in the formation of copper-substituted hydroxyapatite (Cu-HAP). Different synthesis methods were tested with Zn2+ ions, and on the surface of the coating, Zn(OH)(NO3)(H2O), Zn3(OH)4(NO3)2, and unreacted CaCO3 were formed. Antibacterial properties of the coatings were tested using the inhibition zone method. No inhibition zones were observed for HAP. However, in the Cu and Zn containing coatings, inhibition zones were observed in the presence of a colony of B. subtilis bacteria. However, no inhibition zones were detected in the presence of E. coli bacteria. Full article
Show Figures

Figure 1

14 pages, 3827 KiB  
Article
A Nanocomposite Paste Electrode Sensor for Simultaneous Detection of Uric Acid and Bisphenol A Using Zinc Hydroxide Nitrate-Sodium Dodecylsulfate Bispyribac
by Yulkifli Yulkifli, Widya Putri Yandes, Illyas Md Isa, Norhayati Hashim, Alizar Ulianas, Sharifah Norain Mohd Sharif, Mohamad Idris Saidin, Mohamad Syahrizal Ahmad, Siti Nur Akmar Mohd Yazid, Suyanta Suyanta, Ratno Nuryadi and Nurashikin Abd Azis
Sensors 2023, 23(20), 8366; https://doi.org/10.3390/s23208366 - 10 Oct 2023
Cited by 2 | Viewed by 1960
Abstract
The fabrication of a zinc hydroxide nitrate-sodium dodecylsulfate bispyribac modified with multi-walled carbon nanotube (ZHN-SDS-BP/MWCNT) paste electrode for uric acid and bisphenol A detection was presented in this study. Electrochemical impedance spectroscopy, chronocoulometry, square-wave voltammetry, and cyclic voltammetry were all used to examine [...] Read more.
The fabrication of a zinc hydroxide nitrate-sodium dodecylsulfate bispyribac modified with multi-walled carbon nanotube (ZHN-SDS-BP/MWCNT) paste electrode for uric acid and bisphenol A detection was presented in this study. Electrochemical impedance spectroscopy, chronocoulometry, square-wave voltammetry, and cyclic voltammetry were all used to examine the electrocatalytic activities of modified paste electrodes. The modified electrode’s sensitivity and selectivity have been considered in terms of the composition of the modifier in percentages, the types of supporting electrolytes used, the pH of the electrolyte, and square-wave voltammetry parameters like frequency, pulse size, and step increment. Square-wave voltammetry is performed by applying a small amplitude square-wave voltage to a scanning potential from −0.3 V to +1.0 V, demonstrating a quick response time and high sensitivity. The ZHN-SDS-BP/MWCNT sensor demonstrated a linear range for uric acid and bisphenol A from 5.0 µM to 0.7 mM, with a limit of detection of 0.4 µM and 0.8 µM, respectively, with good reproducibility, repeatability, and stability as well. The modified paste electrode was successfully used in the determination of uric acid and bisphenol A in samples of human urine and lake water. Full article
(This article belongs to the Special Issue Thin Film Sensors and Transducers)
Show Figures

Figure 1

14 pages, 4598 KiB  
Article
In Situ Synthesis of NiFeLDH/A–CBp from Pyrolytic Carbon as High-Performance Oxygen Evolution Reaction Catalyst for Water Splitting and Zinc Hydrometallurgy
by Kai Che, Man Zhao, Yanzhi Sun and Junqing Pan
Materials 2023, 16(11), 3997; https://doi.org/10.3390/ma16113997 - 26 May 2023
Cited by 3 | Viewed by 2409
Abstract
Nickel–iron-layered double hydroxide (NiFeLDH) is one of the promising catalysts for the oxygen evolution reaction (OER) in alkaline electrolytes, but its conductivity limits its large-scale application. The focus of current work is to explore low-cost, conductive substrates for large-scale production and combine them [...] Read more.
Nickel–iron-layered double hydroxide (NiFeLDH) is one of the promising catalysts for the oxygen evolution reaction (OER) in alkaline electrolytes, but its conductivity limits its large-scale application. The focus of current work is to explore low-cost, conductive substrates for large-scale production and combine them with NiFeLDH to improve its conductivity. In this work, purified and activated pyrolytic carbon black (CBp) is combined with NiFeLDH to form an NiFeLDH/A–CBp catalyst for OER. CBp not only improves the conductivity of the catalyst but also greatly reduces the size of NiFeLDH nanosheets to increase the activated surface area. In addition, ascorbic acid (AA) is introduced to enhance the coupling between NiFeLDH and A–CBp, which can be evidenced by the increase of Fe-O-Ni peak intensity in FTIR measurement. Thus, a lower overvoltage of 227 mV and larger active surface area of 43.26 mF·cm−2 are achieved in 1 M KOH solution for NiFeLDH/A–CBp. In addition, NiFeLDH/A–CBp shows good catalytic performance and stability as the anode catalyst for water splitting and Zn electrowinning in alkaline electrolytes. In Zn electrowinning with NiFeLDH/A–CBp, the low cell voltage of 2.08 V at 1000 A·m−2 results in lower energy consumption of 1.78 kW h/KgZn, which is nearly half of the 3.40 kW h/KgZn of industrial electrowinning. This work demonstrates the new application of high-value-added CBp in hydrogen production from electrolytic water and zinc hydrometallurgy to realize the recycling of waste carbon resources and reduce the consumption of fossil resources. Full article
(This article belongs to the Special Issue Hydrogen Storage in Metal Hydrides and Related Materials)
Show Figures

Figure 1

13 pages, 1768 KiB  
Article
Microreactor Based on Trimetallic Nano-Oxides Obtained by In Situ Growth from German Silver
by Ana P. Cabello, Mayra A. Franco Murcia, María A. Ulla and Juan M. Zamaro
Catalysts 2023, 13(6), 932; https://doi.org/10.3390/catal13060932 - 25 May 2023
Viewed by 1496
Abstract
Nanostructured films of copper, zinc, and nickel oxides were obtained from a controlled oxidation of the ternary nickel silver (Cu-Zn-Ni) substrates through a one-pot, green, and low temperature vapor-based treatment. Brief contact of the alloy with ammonia and hydrogen peroxide vapors at room [...] Read more.
Nanostructured films of copper, zinc, and nickel oxides were obtained from a controlled oxidation of the ternary nickel silver (Cu-Zn-Ni) substrates through a one-pot, green, and low temperature vapor-based treatment. Brief contact of the alloy with ammonia and hydrogen peroxide vapors at room temperature originates a mixture of nanometric copper, zinc, and nickel oxides at its surface. The growths evolve with time and temperature, generating a layered film with highly dispersed copper nano-oxides/hydroxides on a base of zinc and nickel oxides. The composition, configuration, and way of obtaining these films make them green catalysts, which are highly active and stable for a carbon monoxide oxidation reaction. Full article
Show Figures

Figure 1

16 pages, 2467 KiB  
Article
Hydrochemical Anomalies in the Vicinity of the Abandoned Molybdenum Ores Processing Tailings in a Permafrost Region (Shahtama, Transbaikal Region)
by Nataliya Yurkevich, Vladimir Olenchenko, Andrei Kartoziia, Tatyana Korneeva, Svetlana Bortnikova, Olga Saeva, Kristina Tulisova and Natalya Abrosimova
Water 2023, 15(8), 1476; https://doi.org/10.3390/w15081476 - 10 Apr 2023
Cited by 3 | Viewed by 2013
Abstract
The mobility of chemical elements during the transition from molybdenum ore processing waste to aqueous solutions and the hydrochemical anomalies of a number of elements in surface and underground waters in the vicinity of an abandoned tailings dump were investigated. It is shown [...] Read more.
The mobility of chemical elements during the transition from molybdenum ore processing waste to aqueous solutions and the hydrochemical anomalies of a number of elements in surface and underground waters in the vicinity of an abandoned tailings dump were investigated. It is shown that alkaline and alkaline earth metals have high mobility—the main rock-forming components (sodium, lithium, magnesium, strontium), which are released into solution due to leaching from the minerals of the host rocks, as well as metals with zinc, cadmium, manganese, and nickel, which are released into solution due to the dissolution of ore sulfides. Elements with high mobility include Sb, Co, Cu, Be, Se, and Tl. Medium mobility has As, an element of the first hazard class, as well as Mo, Fe, and Pb. Hydrochemical anomalies of cadmium, arsenic, molybdenum, and lead have been determined. The nature of the arsenic and molybdenum anomalies is most likely related to the regional background, while the source of cadmium and lead is most likely the waste studied. The main chemical forms of the presence of elements in the solution of ponds on the surface of tailings ponds are free-ion and sulfate complexes. For example, in the samples of the Shakhtama River and groundwater, we found carbonate, bicarbonate, and hydroxide complexes. The information obtained should be taken into account when planning measures for the purification of surface and groundwater from metals. Additional studies should consider using groundwater in the vicinity of the tailings for drinking water supply. Full article
(This article belongs to the Special Issue Water Environment Governance and Restoration)
Show Figures

Figure 1

15 pages, 8075 KiB  
Article
Nickel-Doped ZnO Porous Sea Urchin Nanostructures with Various Amounts of Oxygen Defects for Volatile Organic Compound Detection
by Haibo Ren, Huaipeng Weng, Xumeng Dong, Jiarui Huang and Sang Woo Joo
Chemosensors 2023, 11(4), 223; https://doi.org/10.3390/chemosensors11040223 - 4 Apr 2023
Cited by 2 | Viewed by 1980
Abstract
Porous sea urchin-like nickel-doped ZnO with various nickel contents and high specific surface area were synthesized using a solution method followed by calcination. The nickel-doped ZnO products consisted of numerous porous nanoleaves. The Ni content in these products ranged from 5% to 20%. [...] Read more.
Porous sea urchin-like nickel-doped ZnO with various nickel contents and high specific surface area were synthesized using a solution method followed by calcination. The nickel-doped ZnO products consisted of numerous porous nanoleaves. The Ni content in these products ranged from 5% to 20%. The Ni dopants in the ZnO lattice were verified by X-ray diffraction and X-ray photoelectron spectroscopy. The sensors based on nickel-doped ZnO sea urchins showed superior sensing performance for some volatile organic compounds (VOCs). ZnO sea urchins with 10% nickel doping exhibited the best gas-sensing performance, including a low working temperature, short response/recovery time, and high sensor response. In particular, the 10% Ni-doped ZnO sea urchin sensor exhibited a response of 84.4 with response/recovery times of 17/20 s towards 100 ppm formaldehyde vapor. These superior sensing behaviors were attributed mainly to a suitable Ni content with high content of oxygen defects, small nanocrystals, and a porous hierarchical structure with a high specific surface area. Full article
(This article belongs to the Special Issue Chemical Sensors for Volatile Organic Compound Detection)
Show Figures

Figure 1

Back to TopTop