Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (342)

Search Parameters:
Keywords = zinc homeostasis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1165 KiB  
Article
Simulation of the Adsorption Bed Process of Activated Carbon with Zinc Chloride from Spent Coffee Grounds for the Removal of Parabens in Treatment Plants
by Wagner Vedovatti Martins, Adriele Rodrigues Dos Santos, Gideã Taques Tractz, Lucas Bonfim-Rocha, Ana Paula Peron and Osvaldo Valarini Junior
Processes 2025, 13(8), 2481; https://doi.org/10.3390/pr13082481 - 6 Aug 2025
Abstract
Parabens—specifically methylparaben (MeP), ethylparaben (EtP), propylparaben (PrP), and butylparaben (BuP)—are widely used substances in everyday life, particularly as preservatives in pharmaceutical and food products. However, these compounds are not effectively removed by conventional water and wastewater treatment processes, potentially causing disruptions to human [...] Read more.
Parabens—specifically methylparaben (MeP), ethylparaben (EtP), propylparaben (PrP), and butylparaben (BuP)—are widely used substances in everyday life, particularly as preservatives in pharmaceutical and food products. However, these compounds are not effectively removed by conventional water and wastewater treatment processes, potentially causing disruptions to human homeostasis and the endocrine system. This study conducted a transport and dimensional analysis through simulation of the adsorption process for these parabens, using zinc chloride-activated carbon derived from spent coffee grounds (ACZnCl2) as the adsorbent, implemented via Aspen Properties® and Aspen Adsorption®. Simulations were performed for two inlet concentrations (50 mg/L and 100 mg/L) and two adsorption column heights (3 m and 4 m), considering a volumetric flow rate representative of a medium-sized city with approximately 100,000 inhabitants. The results showed that both density and surface tension of the parabens varied linearly with increasing temperature, and viscosity exhibited a marked reduction above 30 °C. Among the tested conditions, the configuration with 50 mg∙L−1 inlet concentration and a 4 m column height demonstrated the highest adsorption capacity and better performance under adsorption–desorption equilibrium. These findings indicate that the implementation of adsorption beds on an industrial scale in water and wastewater treatment systems is both environmentally and socially viable. Full article
Show Figures

Figure 1

22 pages, 5283 KiB  
Article
Transcriptome Analysis Reveals Candidate Pathways and Genes Involved in Wheat (Triticum aestivum L.) Response to Zinc Deficiency
by Shoujing Zhu, Shiqi Zhang, Wen Wang, Nengbing Hu and Wenjuan Shi
Biology 2025, 14(8), 985; https://doi.org/10.3390/biology14080985 (registering DOI) - 2 Aug 2025
Viewed by 333
Abstract
Zinc (Zn) deficiency poses a major global health challenge, and wheat grains generally contain low Zn concentrations. In this study, the wheat cultivar ‘Zhongmai 175’ was identified as zinc-efficient. Hydroponic experiments demonstrated that Zn deficiency induced the secretion of oxalic acid and malic [...] Read more.
Zinc (Zn) deficiency poses a major global health challenge, and wheat grains generally contain low Zn concentrations. In this study, the wheat cultivar ‘Zhongmai 175’ was identified as zinc-efficient. Hydroponic experiments demonstrated that Zn deficiency induced the secretion of oxalic acid and malic acid in root exudates and significantly increased total root length in ‘Zhongmai 175’. To elucidate the underlying regulatory mechanisms, transcriptome profiling via RNA sequencing was conducted under Zn-deficient conditions. A total of 2287 and 1935 differentially expressed genes (DEGs) were identified in roots and shoots, respectively. Gene Ontology enrichment analysis revealed that these DEGs were primarily associated with Zn ion transport, homeostasis, transmembrane transport, and hormone signaling. Key DEGs belonged to gene families including VIT, NAS, DMAS, ZIP, tDT, HMA, and NAAT. KEGG pathway analysis indicated that phenylpropanoid biosynthesis, particularly lignin synthesis genes, was significantly downregulated in Zn-deficient roots. In shoots, cysteine and methionine metabolism, along with plant hormone signal transduction, were the most enriched pathways. Notably, most DEGs in shoots were associated with the biosynthesis of phytosiderophores (MAs, NA) and ethylene. Overall, genes involved in Zn ion transport, phytosiderophore biosynthesis, dicarboxylate transport, and ethylene biosynthesis appear to play central roles in wheat’s adaptive response to Zn deficiency. These findings provide a valuable foundation for understanding the molecular basis of Zn efficiency in wheat and for breeding Zn-enriched varieties. Full article
Show Figures

Figure 1

24 pages, 7547 KiB  
Article
Raising pH Reduces Manganese Toxicity in Citrus grandis (L.) Osbeck by Efficient Maintenance of Nutrient Homeostasis to Enhance Photosynthesis and Growth
by Rong-Yu Rao, Wei-Lin Huang, Hui Yang, Qian Shen, Wei-Tao Huang, Fei Lu, Xin Ye, Lin-Tong Yang, Zeng-Rong Huang and Li-Song Chen
Plants 2025, 14(15), 2390; https://doi.org/10.3390/plants14152390 - 2 Aug 2025
Viewed by 229
Abstract
Manganese (Mn) excess and low pH often coexist in some citrus orchard soils. Little information is known about the underlying mechanism by which raising pH reduces Mn toxicity in citrus plants. ‘Sour pummelo’ (Citrus grandis (L.) Osbeck) seedlings were treated with 2 [...] Read more.
Manganese (Mn) excess and low pH often coexist in some citrus orchard soils. Little information is known about the underlying mechanism by which raising pH reduces Mn toxicity in citrus plants. ‘Sour pummelo’ (Citrus grandis (L.) Osbeck) seedlings were treated with 2 (Mn2) or 500 (Mn500) μM Mn at a pH of 3 (P3) or 5 (P5) for 25 weeks. Raising pH mitigated Mn500-induced increases in Mn, iron, copper, and zinc concentrations in roots, stems, and leaves, as well as nitrogen, phosphorus, potassium, calcium, magnesium, sulfur, copper, iron, and zinc distributions in roots, but it mitigated Mn500-induced decreases in nitrogen, phosphorus, potassium, calcium, magnesium, sulfur, and boron concentrations in roots, stems, and leaves, as well as nutrient imbalance. Raising pH mitigated Mn500-induced necrotic spots on old leaves, yellowing of young leaves, decreases in seedling growth, leaf chlorophyll concentration, and CO2 assimilation (ACO2), increase in root dry weight (DW)/shoot DW, and alterations of leaf chlorophyll a fluorescence (OJIP) transients and related indexes. Further analysis indicated that raising pH ameliorated Mn500-induced impairment of nutrient homeostasis, leaf thylakoid structure by iron deficiency and competition of Mn with magnesium, and photosynthetic electron transport chain (PETC), thereby reducing Mn500-induced declines in ACO2 and subsequent seedling growth. These results validated the hypothesis that raising pH reduced Mn toxicity in ‘Sour pummelo’ seedlings by (a) reducing Mn uptake, (b) efficient maintenance of nutrient homeostasis under Mn stress, (c) reducing Mn excess-induced impairment of thylakoid structure and PEPC and inhibition of chlorophyll biosynthesis, and (d) increasing ACO2 and subsequent seedling growth under Mn excess. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

14 pages, 9617 KiB  
Article
Disruption of FW2.2-like Genes Enhances Metallic Micronutrient Accumulation in Brown Rice
by Qingsong Gao, Rumeng Sun, Jiayi Ding, Xingdang Xu, Xun Ma, Xi Liu and Hao Zhang
Agronomy 2025, 15(7), 1747; https://doi.org/10.3390/agronomy15071747 - 20 Jul 2025
Viewed by 314
Abstract
Micronutrient deficiencies adversely affect human health and pose a significant global threat. Enhancing the accumulation of micronutrients in the edible parts of crops through genetic breeding is a promising strategy to mitigate micronutrient deficiencies in humans. FW2.2-like (FWL) genes play [...] Read more.
Micronutrient deficiencies adversely affect human health and pose a significant global threat. Enhancing the accumulation of micronutrients in the edible parts of crops through genetic breeding is a promising strategy to mitigate micronutrient deficiencies in humans. FW2.2-like (FWL) genes play crucial roles in regulating heavy metal homeostasis in plants. We previously obtained two allelic mutants for each of the rice OsFWL1 (osfwl1a and osfwl1b) and OsFWL2 (osfwl2a and osfwl2b) genes. In this study, we showed that disruption of either OsFWL1 or OsFWL2 significantly enhanced the accumulation of metallic micronutrients in brown rice. Compared with that in the wild type, the iron (Fe) concentration in brown rice was higher in the osfwl1a (+166.7%), osfwl1b (+24.3%), and osfwl2a (+99.2%) mutants; the manganese (Mn) concentration was elevated in all four mutants (+25.1% to 35.6%); the copper (Cu) concentration increased in osfwl2a (+31.0%) and osfwl2b (+29.0%); and the zinc (Zn) concentration increased in osfwl2a (+10.2%). Additionally, disruption of OsFWL1 or OsFWL2 affected the homeostasis of metallic micronutrients in seedlings. Transcriptome analysis suggested that OsFWL1 and OsFWL2 might regulate cell wall polysaccharide metabolism and the expression of heavy metal transporter genes. Protein interaction analysis revealed that OsFWL1 interacted with OsFWL2 on the cell membrane. These findings suggest that OsFWL1 and OsFWL2 can serve as genetic biofortification tools to increase the concentrations of metallic micronutrients in rice grains. Full article
(This article belongs to the Special Issue Innovative Research on Rice Breeding and Genetics)
Show Figures

Figure 1

19 pages, 1030 KiB  
Review
Mineral Homeostasis and Depression: Implications for Prevention and Therapeutic Support—A Narrative Review
by Zuzanna Majewska and Karolina Orywal
Int. J. Mol. Sci. 2025, 26(14), 6637; https://doi.org/10.3390/ijms26146637 - 10 Jul 2025
Viewed by 408
Abstract
Depression affects approximately 280 million people worldwide and is becoming increasingly prevalent, particularly among young people. Despite numerous studies on the pathogenesis of this disorder, many factors remain unclear. New data in the literature suggest that proper concentrations of essential macro- and micronutrients [...] Read more.
Depression affects approximately 280 million people worldwide and is becoming increasingly prevalent, particularly among young people. Despite numerous studies on the pathogenesis of this disorder, many factors remain unclear. New data in the literature suggest that proper concentrations of essential macro- and micronutrients play an important role in maintaining mental health and that disturbances in the metabolism of mineral compounds may contribute to the development and progression of depressive disorders. Numerous clinical and epidemiological studies have shown that low concentrations of these elements are associated with impaired neurotransmitter activity, increased exposure to oxidative stress, and neuroinflammation, all of which may contribute to the onset or exacerbation of depression. Additionally, some macro- and micronutrients may contribute to metabolic and hormonal disorders, thereby exacerbating their impact on mood regulation. A comprehensive literature search of the PubMed database covering the period from 2020 to 2025 yielded relevant human studies on calcium, magnesium, iron, zinc, copper, selenium, and iodine in relation to depression, which were selected based on predefined inclusion and exclusion criteria. This review summarizes the effects of calcium, magnesium, iron, zinc, copper, selenium, and iodine on supporting prevention, slowing progression, and helping treatment of depression. Understanding the impact of proper nutrition, including ensuring optimal concentrations of minerals, can help develop dietary strategies or proper supplementation of macronutrients and micronutrients aimed at preventing and improving the functioning of patients with depression. Full article
(This article belongs to the Special Issue New Trends and Challenges in Chronic Diseases)
Show Figures

Figure 1

15 pages, 2410 KiB  
Article
Differences in Tissue Copper and Zinc Content Between Normal Livers and Those with Cirrhosis with or Without Hepatocellular Carcinoma
by Simona Parisse, Giulia Andreani, Monica Mischitelli, Alessandra Gianoncelli, Emil Malucelli, Michela Fratini, Flaminia Ferri, Maria Carlucci, Quirino Lai, Andrea Ascione, Gianluca Mennini, Massimo Rossi, Stefano Iotti, Gloria Isani and Stefano Ginanni Corradini
Int. J. Mol. Sci. 2025, 26(14), 6571; https://doi.org/10.3390/ijms26146571 - 8 Jul 2025
Viewed by 311
Abstract
This study aimed to compare the contents of copper (Cu), zinc (Zn), magnesium (Mg), and iron (Fe) in healthy liver tissue from deceased liver donors (DGs), in cirrhotic tissue from patients without (CIR) or with hepatocellular carcinoma (CIR-HCC) and in HCC tissue from [...] Read more.
This study aimed to compare the contents of copper (Cu), zinc (Zn), magnesium (Mg), and iron (Fe) in healthy liver tissue from deceased liver donors (DGs), in cirrhotic tissue from patients without (CIR) or with hepatocellular carcinoma (CIR-HCC) and in HCC tissue from the latter patients. Liver tissue samples were obtained from cirrhotic liver transplant recipients, with (n = 14) and without HCC (n = 14), and from DGs (n = 18). In patients with HCC, both cirrhotic and tumor tissue was collected. The tissue metal content was measured using atomic absorption spectrometry. The Cu content of DG tissue was significantly lower than that of CIR-HCC and HCC tissue but not CIR tissue. The tissue Zn and Mg contents were significantly higher in DG tissue than in CIR, CIR-HCC, and HCC tissues. No difference was observed for Fe. The Cu/Zn ratio progressively increased in DG, CIR, CIR-HCC, and HCC tissues. The increased Cu content in cirrhotic and tumor tissue of HCC patients and the fact that the latter had the highest value for the Cu/Zn ratio indirectly suggest the potential role of these metals in hepatocarcinogenesis. These findings support a pathophysiological basis for further experimental studies to investigate the potential therapeutic implications of pharmacological agents targeting metal homeostasis in this malignancy. Full article
(This article belongs to the Special Issue Cirrhosis: From Molecular Mechanisms to Therapeutic Strategies)
Show Figures

Figure 1

21 pages, 3858 KiB  
Article
Bitter Taste Receptor TAS2R43 Co-Regulates Mechanisms of Gastric Acid Secretion and Zinc Homeostasis
by H. Noreen Orth, Philip Pirkwieser, Julia Benthin, Melanie Koehler, Sonja Sterneder, Etkin Parlar, Erika Schaudy, Jory Lietard, Timm Michel, Valerie Boger, Andreas Dunkel, Mark M. Somoza and Veronika Somoza
Int. J. Mol. Sci. 2025, 26(13), 6017; https://doi.org/10.3390/ijms26136017 - 23 Jun 2025
Viewed by 623
Abstract
The essential micronutrient zinc is known to inhibit gastric acid secretion (GAS), where its homeostasis is strictly regulated. We hypothesized that the gastric bitter taste receptors, TAS2Rs, regulate the following: (i) zinc-modulated proton secretory activity (PSA) as a key mechanism of GAS and [...] Read more.
The essential micronutrient zinc is known to inhibit gastric acid secretion (GAS), where its homeostasis is strictly regulated. We hypothesized that the gastric bitter taste receptors, TAS2Rs, regulate the following: (i) zinc-modulated proton secretory activity (PSA) as a key mechanism of GAS and (ii) zinc homeostasis in immortalized parietal cells. To confirm this hypothesis, human gastric tumor cells (HGT-1) were exposed to 100–1000 µM of zinc salts for 30 min in order to quantitate their TAS2R-dependent PSA and intracellular zinc concentration using a fluorescence-based pH sensor and ICP-MS, respectively. Thereby, we identified TAS2R43 as a key player in parietal cell PSA and zinc homeostasis, with both conclusions being verified by a CRISPR-Cas9 knockout approach. Moreover, by regulating the zinc importer protein ZIP14, TAS2R43 proved to perform a protective role against excessive zinc accumulation in immortalized parietal cells. Full article
(This article belongs to the Special Issue Transport of Nutrients and Ions Relevant to Human Pathophysiology)
Show Figures

Figure 1

16 pages, 5674 KiB  
Article
Stage-Dependent Mineral Element Dynamics in ‘Junzao’ Jujube: Ionic Homeostasis and Selective Transport Under Graduated Saline-Alkali Stress
by Ze Yuan, Xiaofeng Zhou, Yuyang Zhang, Yan Wang, Haoyu Yan, Wu Sun, Min Yan and Cuiyun Wu
Horticulturae 2025, 11(7), 726; https://doi.org/10.3390/horticulturae11070726 - 22 Jun 2025
Viewed by 387
Abstract
Plants dynamically regulate ions in the tree to defend against abiotic stresses such as drought and saline-alkali, However, it is not clear how ‘Junzao’ jujube regulates ions to maintain a normal life cycle under saline-alkali stress. Therefore, in this study, the roots of [...] Read more.
Plants dynamically regulate ions in the tree to defend against abiotic stresses such as drought and saline-alkali, However, it is not clear how ‘Junzao’ jujube regulates ions to maintain a normal life cycle under saline-alkali stress. Therefore, in this study, the roots of 10-year old steer jujube trees were watered using a saline and alkaline gradient solution simulating the main salt (NaCl) and alkali (NaHCO3) of Aral with NaCl:NaHCO3 = 3:1 gradient of 0, 60, 180, and 300 mM, and three jujube trees with uniform growth were taken as samples in each treatment plot, and the ion contents of potassium (K), sodium (Na), calcium (Ca), magnesium (Mg), iron (Fe), manganese (Mn), zinc (Zn) and carbon (C) in each organ of the fruit at the dot red period (S1) and full-red period (S2) were determined, in order to elucidate the relationship between physiological adaptation mechanisms of saline-alkali tolerance and the characteristics of mineral nutrient uptake and utilisation in jujube fruit. The results showed that under saline-alkali stress, Na was stored in large quantities in the roots, Ca and Mg in the perennial branches at S1, Na and Fe in the leaves at S2, and K, Mg and Mn in the perennial branches. There was no significant difference in the distribution of C content in various organs of ‘Junzao’. Compared with CK (0 mM), under salinity stress, the K content in the leaves was significantly reduced at S1 and S2, and the K/Na ratios remained > 1.0. At S2, under medium and high concentrations of saline-alkali stress (180–300 mM), the K/Na is less than 1, and the ionic homeostasis was disrupted, and the leaves die and fall off, and the Na is excreted from the body. The selective transport coefficients SK/Na, SCa/Na and SMg/Na from root to leaf showed a downward trend at S1, but still maintained positive transport capacity. At S2, this stage is close to leaf fall, the nutrient transport coefficient is less than 1, and a large amount of nutrients are returned to the perennial branches and roots occurred. These results indicated that the mechanism of nutrient regulation and salt tolerance in jujube trees was different at different growth stages. Full article
(This article belongs to the Section Biotic and Abiotic Stress)
Show Figures

Figure 1

17 pages, 3214 KiB  
Article
SENP1 Senses Oxidative Stress to Regulate the SUMOylation Modification of ZIP8 and Maintain Zinc Transport Functions
by Tao Liu, Chang-Chun Song, Fu-Xuan Duan, Chong-Chao Zhong, Sheng-Zan Liu, Jia-Cheng Guo, An-Gen Yu and Zhi Luo
Antioxidants 2025, 14(6), 750; https://doi.org/10.3390/antiox14060750 - 18 Jun 2025
Viewed by 401
Abstract
Zinc (Zn) is a crucial trace element in vertebrates, fulfilling a range of physiological functions, whose metabolism and homeostasis are manipulated by Zn transporter proteins. SUMOylation, a reversible post-translational modification (PTM), extensively participates in various biological processes in the body, yet its underlying [...] Read more.
Zinc (Zn) is a crucial trace element in vertebrates, fulfilling a range of physiological functions, whose metabolism and homeostasis are manipulated by Zn transporter proteins. SUMOylation, a reversible post-translational modification (PTM), extensively participates in various biological processes in the body, yet its underlying mechanism in regulating Zn transporters remains unexplored. Our findings indicate that high dietary Zn substantially elevated intestinal Zn content and modulated the expression profiles of Zn transporter-related genes and proteins, including ZIP8 transporter. In addition, high Zn diet tended to inhibit the SUMOylation modification and upregulate deSUMOylation modification in the intestine and intestinal epithelial cells. Furthermore, we found that the ZIP8 protein undergoes SUMOylation modification; UBC9 upregulated but SENP1 and Zn downregulated the SUMOylation level of ZIP8, and the K24 and K222 positions are the primary SUMOylation modification sites of ZIP8 protein in yellow catfish. Mechanistically, SENP1 modulates the deSUMOylation modification of ZIP8 by sensing Zn-induced oxidative stress. In summary, for the first time, we have uncovered a unique regulatory mechanism of ZIP8 mediated by SUMOylation modification in vertebrates and demonstrate that SENP1 is capable of sensing oxidative stress to reduce the SUMOylation modification of ZIP8 at K24 and K222 sites. Full article
Show Figures

Figure 1

17 pages, 1722 KiB  
Article
Effect of Alpha-1 Antitrypsin Deficiency on Zinc Homeostasis Gene Regulation and Interaction with Endoplasmic Reticulum Stress Response-Associated Genes
by Juan P. Liuzzi, Samantha Gonzales, Manuel A. Barbieri, Rebecca Vidal and Changwon Yoo
Nutrients 2025, 17(11), 1913; https://doi.org/10.3390/nu17111913 - 2 Jun 2025
Viewed by 823
Abstract
Background: Alpha-1 antitrypsin deficiency (AATD) is a genetic disorder caused by mutations in the SERPINA1 gene, leading to reduced levels or impaired alpha-1 antitrypsin (AAT) function. This condition predominantly affects the lungs and liver. The Z allele, a specific mutation in the SERPINA1 [...] Read more.
Background: Alpha-1 antitrypsin deficiency (AATD) is a genetic disorder caused by mutations in the SERPINA1 gene, leading to reduced levels or impaired alpha-1 antitrypsin (AAT) function. This condition predominantly affects the lungs and liver. The Z allele, a specific mutation in the SERPINA1 gene, is the most severe form and results in the production of misfolded AAT proteins. The misfolded proteins accumulate in the endoplasmic reticulum (ER) of liver cells, triggering ER stress and activating the unfolded protein response (UPR), a cellular mechanism designed to restore ER homeostasis. Currently, there is limited knowledge regarding specific nutritional recommendations for patients with AATD. The liver is essential for the regulation of zinc homeostasis, with zinc widely recognized for its hepatoprotective properties. However, the effects of AATD on zinc metabolism remain poorly understood. Similarly, the potential benefits of zinc supplementation for individuals with AATD have not been thoroughly investigated. Objective: This study explored the relationship between AATD and zinc metabolism through a combination of in vitro experiments and computational analysis. Results: The expression of the mutant Z variant of ATT (ATZ) in cultured mouse hepatocytes was associated with decreased labile zinc levels in cells and dysregulation of zinc homeostasis genes. Analysis of two data series from the Gene Expression Omnibus (GEO) revealed that mice expressing ATZ (PiZ mice), a murine model of AATD, exhibited significant differences in mRNA levels related to zinc homeostasis and UPR when compared to wildtype mice. Bayesian network analysis of GEO data uncovered novel gene-to-gene interactions among zinc transporters, as well as between zinc homeostasis, UPR, and other associated genes. Conclusions: The findings provide valuable insights into the role of zinc homeostasis genes in UPR processes linked to AATD. Full article
(This article belongs to the Section Nutrigenetics and Nutrigenomics)
Show Figures

Figure 1

13 pages, 5518 KiB  
Article
Overexpression of NTPCS1 Enhances Zn Tolerance in Tobacco
by Chanjuan Wu and Jie Zhang
Plants 2025, 14(11), 1688; https://doi.org/10.3390/plants14111688 - 31 May 2025
Viewed by 414
Abstract
Phytochelatins (PCs) are well-characterized for their role in detoxifying non-essential metals like cadmium (Cd), but their role in zinc (Zn) homeostasis remains underexplored. In this study, we investigated the role of the Nicotiana tabacum phytochelatin synthase 1 (NtPCS1) in counteracting Zn [...] Read more.
Phytochelatins (PCs) are well-characterized for their role in detoxifying non-essential metals like cadmium (Cd), but their role in zinc (Zn) homeostasis remains underexplored. In this study, we investigated the role of the Nicotiana tabacum phytochelatin synthase 1 (NtPCS1) in counteracting Zn toxicity in plants. qRT-PCR data showed that the transcript level of the NtPCS1 gene was upregulated by ZnSO4, leading to increased PC production in the wild-type tobacco plants. Functional complementation assays in Arabidopsis thaliana revealed that overexpression of NtPCS1 rescued the Zn hypersensitivity of the Atpcs1 mutant, with the N-terminal region being indispensable for Zn tolerance. In addition, transgenic tobacco plants overexpressing NtPCS1 (PCS1 lines) exhibited superior root elongation under ZnSO4 stress compared to the wild-type plants, particularly when supplemented with glutathione (GSH). The observed phenotypic advantage is attributed to NtPCS1-mediated overproduction of PCs, which facilitated Zn chelation and enabled cellular detoxification. These findings highlight the important role of NtPCS1 in Zn tolerance via GSH-linked PCs synthesis, offering insights into PCS-mediated Zn detoxification and a genetic strategy for developing Zn-resistant plants. Full article
Show Figures

Figure 1

22 pages, 2379 KiB  
Review
Actual Data on Essential Trace Elements in Parkinson’s Disease
by Cristina Popescu, Constantin Munteanu, Aura Spînu, Ioana Andone, Roxana Bistriceanu, Ruxandra Postoiu, Andreea Suciu, Sebastian Giuvara, Andreea-Iulia Vlădulescu-Trandafir, Sorina Maria Aurelian, Nadina Liana Pop, Vlad Ciobanu and Gelu Onose
Nutrients 2025, 17(11), 1852; https://doi.org/10.3390/nu17111852 - 29 May 2025
Viewed by 1075
Abstract
Sola dosis facit venenum” (Paracelsus). Essential trace elements, crucial for maintaining neuronal function, have their dysregulation increasingly correlated with neurodegenerative disorders, particularly Parkinson’s disease (PD). This systematic review aims to synthesize recent high-quality evidence regarding the involvement of essential trace elements, [...] Read more.
Sola dosis facit venenum” (Paracelsus). Essential trace elements, crucial for maintaining neuronal function, have their dysregulation increasingly correlated with neurodegenerative disorders, particularly Parkinson’s disease (PD). This systematic review aims to synthesize recent high-quality evidence regarding the involvement of essential trace elements, such as iron, zinc, copper, manganese, and selenium, in the pathogenesis and, consequently, as potential therapeutic targets of PD. A comprehensive literature search was conducted for articles published between 1 January 2023 and 31 December 2024. Out of an initial pool of 1231 identified studies, 63 met the methodological eligibility criteria according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. All potentially eligible interventional and observational studies were initially assessed using the Physiotherapy Evidence Database (PEDro) scale, which is commonly employed for evaluating the internal validity and statistical interpretability of clinical trials and rehabilitation-focused studies. Following the qualitative assessment using the PEDro scale, 18 studies were ultimately selected based on their scientific relevance and methodological rigor. To supplement the PEDro scoring, which is designed primarily for individual trials, we applied the AMSTAR-2 (A MeaSurement Tool to Assess Systematic Reviews) checklist for the evaluation of the included systematic reviews or meta-analyses. The included studies employed a variety of clinical, postmortem, and experimental models to investigate trace-element concentrations and their mechanistic roles in PD. The findings revealed consistent patterns of iron accumulation in the substantia nigra, zinc’s bidirectional effects on oxidative stress and autophagy, copper-induced α-synuclein aggregation, and the neuroprotective role of selenium via antioxidant pathways. Manganese was associated with mitochondrial dysfunction and neuroinflammation. Essential trace-element disturbances contribute to PD pathology through interconnected mechanisms involving redox imbalance, protein misfolding, and impaired cellular homeostasis. These elements may serve as both biomarkers and potential therapeutic tools, warranting further investigation into personalized metal-based interventions for PD. Full article
(This article belongs to the Special Issue Trace Minerals in Human Health: Hot Topics and Information Update)
Show Figures

Figure 1

18 pages, 2538 KiB  
Article
Insulin-Degrading Enzyme Regulates mRNA Processing and May Interact with the CCR4-NOT Complex
by Barbara Bertocci, Ayse Yilmaz, Emmanuelle Waeckel-Énée, Chiara Guerrera, Kevin Roger, Lamine Touré and Peter M. van Endert
Cells 2025, 14(11), 792; https://doi.org/10.3390/cells14110792 - 28 May 2025
Viewed by 608
Abstract
Insulin-degrading enzyme is a zinc metalloprotease that degrades low-molecular-weight substrates, including insulin. Ubiquitous expression, high evolutionary conservation, upregulation of Ide in stress situations, and literature findings suggest a broader function of Ide in cell physiology and protein homeostasis that remains to be elucidated. [...] Read more.
Insulin-degrading enzyme is a zinc metalloprotease that degrades low-molecular-weight substrates, including insulin. Ubiquitous expression, high evolutionary conservation, upregulation of Ide in stress situations, and literature findings suggest a broader function of Ide in cell physiology and protein homeostasis that remains to be elucidated. We used proteomics and transcriptomics approaches to search for leads related to a broader role of Ide in protein homeostasis. We combined an analysis of the proteome and single-cell transcriptome of Ide+/+ and Ide−/− pancreatic islet cells with an examination of the interactome of human cytosolic Ide using proximity biotinylation. We observe an upregulation of pathways related to RNA processing, translation and splicing in Ide+/+ relative to Ide−/− islet cells. Corroborating these results and providing a potential mechanistic explanation, proximity biotinylation reveals interaction of Ide with several subunits of CCR4-NOT, a key mRNA deadenylase regulating gene expression “from birth to death”. We propose a speculative model in which human and murine Ide cooperate with CCR4-NOT to control protein expression in proteotoxic and metabolic stress situations through cooperation between their deadenylase and protease functions. Full article
(This article belongs to the Section Cell Proliferation and Division)
Show Figures

Figure 1

16 pages, 2816 KiB  
Article
Zinc-Enriched Bifidobacterium longum subsp. longum CCFM1195 Alleviates Cutibacterium acnes-Induced Skin Lesions in Mice by Mitigating Inflammatory Responses and Oxidative Stress
by Xiangyue Gu, Botao Wang, Tianmeng Zhang, Qiuxiang Zhang, Bingyong Mao, Xin Tang, Jianxin Zhao and Shumao Cui
Nutrients 2025, 17(11), 1803; https://doi.org/10.3390/nu17111803 - 26 May 2025
Viewed by 842
Abstract
Background: Acne vulgaris, a prevalent inflammatory skin disorder, stems from factors like Cutibacterium acnes overgrowth, inflammation dysregulation, and immune dysfunction. Clinically, acne severity inversely correlates with serum zinc (Zn) levels, and oral Zn supplementation shows efficacy. Lactic acid bacteria are capable of converting [...] Read more.
Background: Acne vulgaris, a prevalent inflammatory skin disorder, stems from factors like Cutibacterium acnes overgrowth, inflammation dysregulation, and immune dysfunction. Clinically, acne severity inversely correlates with serum zinc (Zn) levels, and oral Zn supplementation shows efficacy. Lactic acid bacteria are capable of converting inorganic Zn into organic forms via biological transformation, potentially generating Zn-enriched bacteria as superior Zn delivery vehicles. Methods: In this study, a Zn-deficient acne mouse model was established through dietary Zn restriction combined with intradermal C. acnes injection. The therapeutic effects of orally administered Zn-containing supplements, including Zn-enriched Bifidobacterium longum subsp. longum CCFM1195 (Zn-CCFM1195), were systematically evaluated through multiple parameters: histopathological evaluation of skin lesions, cutaneous inflammatory and oxidative stress markers, serum Zn concentration, and gene expression levels of pathway-associated proteins. Results: Induction of C. acnes led to decreased serum Zn levels (14.98 μmol/L in Control vs. 9.71 μmol/L in Model) and skin metallothionein content, causing Zn imbalance. Zn deficiency caused increased levels of lesion elevation (9.23 in Model vs. 10.53 in Zn-deficient Model), IL-17A, TNF-α, and MMP9 in skin, thereby exacerbating the inflammatory response in C. acnes-induced mice. Zn supplementation alleviated inflammatory responses and oxidative stress in Zn-deficient acne-like mice. Notably, inactivated Zn-CCFM1195 exhibited superior efficacy to ZnSO4, significantly reducing lesion diameter and decreasing cutaneous levels of IL-1β, IL-17A, and MDA while enhancing GSH-Px activity. Similarly, viable Zn-CCFM1195 treatment significantly decreased IL-17A and enhanced GSH-Px activity compared with ZnSO4 treatment. Furthermore, Zn supplementation downregulated the expression of TLR2, IκBα, and IKKβ, which may exert its anti-acne effect by regulating related pathways. Conclusions: Zn deficiency exacerbates skin inflammation, whereas Zn supplementation, particularly with Zn-CCFM1195, alleviates acne vulgaris through anti-inflammatory and antioxidant effects. Full article
Show Figures

Figure 1

14 pages, 7546 KiB  
Article
Role of Zinc Homeostasis in the Pathogenesis of Diabetic Osteoporosis in Mice
by Yoshinori Mizuno, Fuka Takeuchi, Marina Morimoto and Yukinori Tamura
Diabetology 2025, 6(5), 36; https://doi.org/10.3390/diabetology6050036 - 2 May 2025
Viewed by 594
Abstract
Background: Diabetes induces osteoporosis primarily by impairing osteoblast function. Intracellular zinc homeostasis, which is controlled by zinc transporters, plays a significant role in osteoblast differentiation. In the present study, we aimed to explore the role of zinc homeostasis in the pathogenesis of diabetic [...] Read more.
Background: Diabetes induces osteoporosis primarily by impairing osteoblast function. Intracellular zinc homeostasis, which is controlled by zinc transporters, plays a significant role in osteoblast differentiation. In the present study, we aimed to explore the role of zinc homeostasis in the pathogenesis of diabetic bone loss using a diabetic mouse model. Methods: Streptozotocin (STZ)-induced diabetic female mice were used for in vivo experiments. In vitro, the effects of zinc transporter knockdown using small interfering RNA was investigated in MC3T3E1 pre-osteoblastic cells. Results: STZ-induced diabetic mice exhibited severe bone loss and decreased expression of osteogenic genes, as well as a decrease in zinc content and the expression of several zinc transporters localized in the cellular membrane, including Zip6, Zip9, and Zip10 in the tibia. Moreover, the messenger RNA (mRNA) levels of Zip6, Zip9, and Zip10 were positively correlated with trabecular bone mineral density in the tibiae of diabetic mice. This in vitro study, using MC3T3E1 pre-osteoblastic cells, revealed that knockdown of Zip6 reduced the expression of osteogenic genes in pre-osteoblastic cells. Additionally, Zip6 knockdown downregulated protein levels of phosphorylated p38 mitogen-activated protein kinase (p38MAPK) in pre-osteoblastic cells, and this change was observed in the tibiae of diabetic mice. Conclusions: Our data suggest that the downregulation of zinc transporters localized in the cellular membrane, such as Zip6, may be involved in the impairment of osteoblastic differentiation through the inhibition of p38 MAPK signaling, leading to osteoporosis under diabetic conditions. Maintaining zinc homeostasis in bone tissues may be vital for preventing and treating diabetic bone loss, and zinc transporters may serve as novel therapeutic targets for diabetic osteoporosis. Full article
Show Figures

Figure 1

Back to TopTop