Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (440)

Search Parameters:
Keywords = z-domain

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4107 KiB  
Article
Thermal Influence on Chirality-Driven Dynamics and Pinning of Transverse Domain Walls in Z-Junction Magnetic Nanowires
by Mohammed Al Bahri, Salim Al-Kamiyani, Mohammed M. Al Hinaai and Nisar Ali
Symmetry 2025, 17(8), 1184; https://doi.org/10.3390/sym17081184 - 24 Jul 2025
Viewed by 188
Abstract
Magnetic nanowires with domain walls (DWs) play a crucial role in the advancement of next-generation memory and spintronic devices. Understanding the thermal effects on domain wall behavior is essential for optimizing performance and stability. This study investigates the thermal chirality-dependent dynamics and pinning [...] Read more.
Magnetic nanowires with domain walls (DWs) play a crucial role in the advancement of next-generation memory and spintronic devices. Understanding the thermal effects on domain wall behavior is essential for optimizing performance and stability. This study investigates the thermal chirality-dependent dynamics and pinning of transverse domain walls (TDWs) in Z-junction nanowires using micromagnetic simulations. The analysis focuses on head-to-head (HHW) and tail-to-tail (TTW) domain walls with up and down chirality under varying thermal conditions. The results indicate that higher temperatures reduce the pinning strength and depinning current density, leading to enhanced domain wall velocity. At 200 K, the HHWdown domain wall depins at a critical current density of 1.2 × 1011 A/m2, while HHWup requires a higher depinning temperature, indicating stronger pinning effects. Similarly, the depinning temperature (Td) increases with Z-junction depth (d), reaching 300 K at d = 50 nm, while increasing Z-junction (λ) weakens pinning, reducing Td to 150 K at λ = 50 nm. Additionally, the influence of Z-junction geometry and magnetic properties, such as saturation magnetization (Ms) and anisotropy constant (Ku), is examined to determine their effects on thermal pinning and depinning. These findings highlight the critical role of chirality and thermal activation in domain wall motion, offering insights into the design of energy-efficient, high-speed nanowire-based memory devices. Full article
Show Figures

Figure 1

13 pages, 323 KiB  
Article
Application-Oriented Study of Next-Generation Alternant Codes over Gaussian Integers for Secure and Efficient Communication
by Muhammad Sajjad and Nawaf A. Alqwaifly
Mathematics 2025, 13(14), 2263; https://doi.org/10.3390/math13142263 - 13 Jul 2025
Viewed by 302
Abstract
This paper presents the construction and analysis of a novel class of alternant codes over Gaussian integers, aimed at enhancing error correction capabilities in high-reliability communication systems. These codes are constructed using parity-check matrices derived from finite commutative local rings with unity, specifically [...] Read more.
This paper presents the construction and analysis of a novel class of alternant codes over Gaussian integers, aimed at enhancing error correction capabilities in high-reliability communication systems. These codes are constructed using parity-check matrices derived from finite commutative local rings with unity, specifically Zn[i], where i2=1. A detailed algebraic investigation of the polynomial xn1 over these rings is conducted to facilitate the systematic construction of such codes. The proposed alternant codes extend the principles of classical BCH and Goppa codes to complex integer domains, enabling richer algebraic structures and greater error-correction potential. We evaluate the performance of these codes in terms of error correction capability, and redundancy. Numerical results show that the proposed codes outperform classical short-length codes in scenarios requiring moderate block lengths, such as those applicable in certain segments of 5G and IoT networks. Unlike conventional codes, these constructions allow enhanced structural flexibility that can be tuned for various application-specific parameters. While the potential relevance to quantum-safe communication is acknowledged, it is not the primary focus of this study. This work demonstrates how extending classical coding techniques into non-traditional algebraic domains opens up new directions for designing robust and efficient communication codes. Full article
(This article belongs to the Special Issue Mathematics for Algebraic Coding Theory and Cryptography)
13 pages, 3092 KiB  
Article
Carbon Dioxide Gas Sensor Based on Terahertz Metasurface with Asymmetric Cross-Shaped Holes Empowered by Quasi-Bound States in the Continuum
by Kai He and Tian Ma
Sensors 2025, 25(13), 4178; https://doi.org/10.3390/s25134178 - 4 Jul 2025
Viewed by 329
Abstract
In this paper, a novel type of polarization-insensitive terahertz metal metasurface with cross-shaped holes is presented, which is designed based on the theory of bound states in continuous media. The fundamental unit of the metasurface comprises a metal tungsten sheet with a cross-shaped [...] Read more.
In this paper, a novel type of polarization-insensitive terahertz metal metasurface with cross-shaped holes is presented, which is designed based on the theory of bound states in continuous media. The fundamental unit of the metasurface comprises a metal tungsten sheet with a cross-shaped hole structure. A thorough analysis of the optical properties and the quasi-BIC response is conducted using the finite element method. Utilizing the symmetry-breaking theory, the symmetry of the metal metasurface is broken, allowing the excitation of double quasi-BIC resonance modes with a high quality factor and high sensitivity to be achieved. Analysis of the multipole power distribution diagram and the spatial distribution of the electric field at the two quasi-BIC resonances verifies that the two quasi-BIC resonances of the metasurface are excited by electric dipoles and electric quadrupoles, respectively. Further simulation analysis demonstrates that the refractive index sensitivities of the two quasi-BIC modes of the metasurface reach 404.5 GHz/RIU and 578.6 GHz/RIU, respectively. Finally, the functional material PHMB is introduced into the metasurface to achieve highly sensitive sensing and detection of CO2 gas concentrations. The proposed metallic metasurface structure exhibits significant advantages, including high sensitivity, ease of preparation, and a high Q-value, which renders it highly promising for a broad range of applications in the domains of terahertz biosensing and highly sensitive gas sensing. Full article
(This article belongs to the Special Issue The Advanced Flexible Electronic Devices: 2nd Edition)
Show Figures

Figure 1

13 pages, 1519 KiB  
Article
ChatGPT Performance Deteriorated in Patients with Comorbidities When Providing Cardiological Therapeutic Consultations
by Wen-Rui Hao, Chun-Chao Chen, Kuan Chen, Long-Chen Li, Chun-Chih Chiu, Tsung-Yeh Yang, Hung-Chang Jong, Hsuan-Chia Yang, Chih-Wei Huang, Ju-Chi Liu and Yu-Chuan (Jack) Li
Healthcare 2025, 13(13), 1598; https://doi.org/10.3390/healthcare13131598 - 3 Jul 2025
Viewed by 339
Abstract
Background: Large language models (LLMs) like ChatGPT are increasingly being explored for medical applications. However, their reliability in providing medication advice for patients with complex clinical situations, particularly those with multiple comorbidities, remains uncertain and under-investigated. This study aimed to systematically evaluate [...] Read more.
Background: Large language models (LLMs) like ChatGPT are increasingly being explored for medical applications. However, their reliability in providing medication advice for patients with complex clinical situations, particularly those with multiple comorbidities, remains uncertain and under-investigated. This study aimed to systematically evaluate the performance, consistency, and safety of ChatGPT in generating medication recommendations for complex cardiovascular disease (CVD) scenarios. Methods: In this simulation-based study (21 January–1 February 2024), ChatGPT 3.5 and 4.0 were prompted 10 times for each of 25 scenarios, representing five common CVDs paired with five major comorbidities. A panel of five cardiologists independently classified each unique drug recommendation as “high priority” or “low priority”. Key metrics included physician approval rates, the proportion of high-priority recommendations, response consistency (Jaccard similarity index), and error pattern analysis. Statistical comparisons were made using Z-tests, chi-square tests, and Wilcoxon Signed-Rank tests. Results: The overall physician approval rate for GPT-4 (86.90%) was modestly but significantly higher than that for GPT-3.5 (85.06%; p = 0.0476) based on aggregated data. However, a more rigorous paired-scenario analysis of high-priority recommendations revealed no statistically significant difference between the models (p = 0.407), indicating the advantage is not systematic. A chi-square test confirmed significant differences in error patterns (p < 0.001); notably, GPT-4 more frequently recommended contraindicated drugs in high-risk scenarios. Inter-model consistency was low (mean Jaccard index = 0.42), showing the models often provide different advice. Conclusions: While demonstrating high overall physician approval rates, current LLMs exhibit inconsistent performance and pose significant safety risks when providing medication advice for complex CVD cases. Their reliability does not yet meet the standards for autonomous clinical application. Future work must focus on leveraging real-world data for validation and developing domain-specific, fine-tuned models to enhance safety and accuracy. Until then, vigilant professional oversight is indispensable. Full article
Show Figures

Figure 1

17 pages, 3161 KiB  
Article
Genome-Wide Identification of the ABF/AREB/ABI5 Gene Family in Ziziphus jujuba cv. Dongzao and Analysis of Its Response to Drought Stress
by Zhikai Zhang, Xiaoming Liu, Yu Wang, Jun Zhou, Zhongwu Wan, Xin Zhang, Jing Wang, Binbin Si, Lan Luo and Wendi Xu
Genes 2025, 16(7), 785; https://doi.org/10.3390/genes16070785 - 30 Jun 2025
Viewed by 366
Abstract
Abscisic acid (ABA), a pivotal phytohormone regulating plant growth and stress adaptation, orchestrates abiotic stress responses through the ABA-responsive element-binding factors ABF/AREB/ABI5. Nevertheless, the functional characterization of ABF/AREB/ABI5 homologs in Z. jujuba cv. Dongzao remains unexplored. In this study, we identified seven ZjABF [...] Read more.
Abscisic acid (ABA), a pivotal phytohormone regulating plant growth and stress adaptation, orchestrates abiotic stress responses through the ABA-responsive element-binding factors ABF/AREB/ABI5. Nevertheless, the functional characterization of ABF/AREB/ABI5 homologs in Z. jujuba cv. Dongzao remains unexplored. In this study, we identified seven ZjABF genes distributed across five chromosomes. Domain analyses revealed high structural conservation, particularly within the basic leucine zipper (bZIP) DNA-binding domain. Subcellular localization confirmed nuclear targeting of all seven ZjABF proteins. Phylogenetic classification resolved these factors into three clades (A–C). Cis-regulatory element profiling implicated the involvement of the ZjABFs in hormone signaling, abiotic stress transduction, and photoregulatory pathways. Synteny analyses identified three segmental duplication events within the gene family. Tissue-specific expression patterns indicated critical roles for ZjABF2 and ZjABF3 in fruit maturation, and most of the ABF/AREB/ABI5 genes were highly expressed in the root. Under drought stress, four ZjABF genes exhibited differential expression, with ZjABF2 demonstrating pronounced sensitivity. These findings establish a molecular framework for understanding ZjABF-mediated abiotic stress responses in non-model woody perennials. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

13 pages, 291 KiB  
Article
Toeplitz Operators with Radial Symbols on Weighted Pluriharmonic Bergman Spaces over Reinhardt Domains
by Zhi-Ling Sun, Feng Qi and Wei-Shih Du
Axioms 2025, 14(6), 478; https://doi.org/10.3390/axioms14060478 - 19 Jun 2025
Viewed by 281
Abstract
In this paper, we design an operator A restricted to a weighted pluriharmonic Bergman space bμ2(Ω) over the Reinhardt domains, with an isometric isomorphism between bμ2(Ω) and the subset of  [...] Read more.
In this paper, we design an operator A restricted to a weighted pluriharmonic Bergman space bμ2(Ω) over the Reinhardt domains, with an isometric isomorphism between bμ2(Ω) and the subset of l2(Zn). Furthermore, we show that Toeplitz operators Ta with radial symbols are unitary to the multiplication operators γaI on sequence space l2 by using the operator A. The Wick function of a Toeplitz operator with a radial symbol provides some features to the operator, establishing its spectral decomposition. Finally, we specify the obtained results on the Reinhardt domains for the unit ball. Full article
(This article belongs to the Section Mathematical Analysis)
18 pages, 510 KiB  
Article
Cultural Identity and Virtual Consumption in the Mimetic Homeland: A Case Study of Chinese Generation Z Mobile Game Players
by Shiyi Zhang, Zengyu Li and Xuhua Chen
Soc. Sci. 2025, 14(6), 362; https://doi.org/10.3390/socsci14060362 - 9 Jun 2025
Viewed by 1076
Abstract
In the digital age, mobile games have become a new frontier for cultural identity and virtual consumption among Chinese Generation Z youth. With the development of the internet, users have gradually adapted to the coexistence of virtual and real identities, enriching the “small [...] Read more.
In the digital age, mobile games have become a new frontier for cultural identity and virtual consumption among Chinese Generation Z youth. With the development of the internet, users have gradually adapted to the coexistence of virtual and real identities, enriching the “small society” within games. However, virtual consumption and its underlying driving mechanisms have not received sufficient attention. Through interviews with 20 young people of Chinese Generation Z, this study argues that virtual consumption is not only about material consumption but also serves as a link between emotions and identity. In China’s increasingly atomised society, the idea of the “mimetic homeland” has become an essential interactive domain for Generation Z in the digital age. It offers individuals a dynamic space to engage with their cultural identity and sustain emotional resonance amid fragmented social conditions. In the “mimetic homeland”, game content, broadcaster charm, symbolic consumption, and player creation intertwine, allowing mobile games to create a diverse cultural identity mechanism. This mechanism rekindles players’ recognition of cultural identity and provides them with spiritual support. In mobile games, players continuously produce and consume cultural identity, using digital means to shape and spread spiritual consciousness symbols, ultimately achieving cultural identity commodification. Full article
(This article belongs to the Special Issue Digitally Connected: Youth, Digital Media and Social Inclusion)
Show Figures

Figure 1

19 pages, 2578 KiB  
Article
An Interpretable Machine Learning Framework for Athlete Motor Profiling Using Multi-Domain Field Assessments: A Proof-of-Concept Study
by Bartosz Wilczyński, Maciej Biały and Katarzyna Zorena
Appl. Sci. 2025, 15(12), 6436; https://doi.org/10.3390/app15126436 - 7 Jun 2025
Cited by 1 | Viewed by 598
Abstract
Early detection of modifiable motor deficits is essential for safe, long-term athletic development, yet most field screens provide only binary risk scores. We therefore designed a practical and interpretable profiling system that classifies youth athletes into one of four functional categories—Functionally Weak, Strength-Deficient, [...] Read more.
Early detection of modifiable motor deficits is essential for safe, long-term athletic development, yet most field screens provide only binary risk scores. We therefore designed a practical and interpretable profiling system that classifies youth athletes into one of four functional categories—Functionally Weak, Strength-Deficient, Stability-Deficient, or No Clear Dysfunction—using three common assessments: Functional Movement Screen, hand-held dynamometry, and Y-Balance Test. A total of 46 youth athletes aged 11–16 years participated in the study, including 37 male soccer players (13.3 ± 1.6 y) in the development cohort and 9 handball players (5 male, 4 female; 12.8 ± 0.7 y) in the external validation group. Expert rules based on FMS quartiles and ≤−0.5 SD Z-scores for strength or balance generated the reference labels. The random forest model achieved 81% cross-validated accuracy (with balanced performance across classes) and 89% accuracy on the external handball group, exceeding the performance of the decision tree model. SHAP analysis confirmed that model predictions were driven by domain relevant variables rather than demographics. An accompanying web-based application automatically generates personalized reports, visualizations, and targeted training recommendations, making the system directly usable by coaches and clinicians. Rather than merely predicting injury, this field-ready framework delivers actionable, profile-based guidance to support informed decision making in athlete development. Further validation in larger, sport-diverse cohorts is needed to assess its generalizability and long-term value in practice. Full article
Show Figures

Figure 1

11 pages, 346 KiB  
Article
The Effects of High-Dose Probiotic Supplementation on Immune Activation and Neurocognitive Disorders in People Living with HIV Undergoing Successful Antiretroviral Treatment: The Procog Study
by Matteo Vassallo, Margaux Zerlini, Roxane Fabre, Heloise Joly, Jacques Durant, Alain Makinson, Amandine Mauries, Jacqueline Capeau, Soraya Fellahi, Jean-Philippe Bastard, Christian Pradier and Christine Lebrun-Frenay
Pathogens 2025, 14(6), 568; https://doi.org/10.3390/pathogens14060568 - 6 Jun 2025
Viewed by 883
Abstract
Background: The prevalence of HIV-associated neurocognitive disorders (HAND) remains high despite antiretroviral treatment (ART). Changes in gut microbiota and persistent immune activation have been suggested as possible causes, while the role of probiotic supplementation remains controversial. Methods: We included subjects with mild HAND [...] Read more.
Background: The prevalence of HIV-associated neurocognitive disorders (HAND) remains high despite antiretroviral treatment (ART). Changes in gut microbiota and persistent immune activation have been suggested as possible causes, while the role of probiotic supplementation remains controversial. Methods: We included subjects with mild HAND and successful ART. They were randomized to receive either 6 months of high-dose probiotic supplementation or to continue with only ART. Immune activation markers and neuropsychological testing were performed at baseline and the end of follow-up. Neuropsychological testing assessed learning, episodic memory, attention/concentration, executive functions, language, information processing speed, and motor skills. Z- and T-scores were calculated for all domains but motor skills, allowing the measurement of the global deficit score (GDS). The trajectories of neuropsychological performances and immune activation markers were compared between groups. Results: From September 2020 to July 2021, 31 PWHs were included (median age 62, 73% men, CD4 744 cc/mm3), and 28 completed the 6-month follow-up. The characteristics of the subjects and their neuropsychological performance at baseline in the two groups were similar. At the end of follow-up, probiotics did not have any impact on immune activation markers, while they were associated with better improvement in GDS (T-score 0.0 in controls vs. −0.3 in probiotics, p = 0.048) and the attention/concentration test (Z-score 0.4 in controls vs. 1.2 in probiotics, p = 0.035). Conclusions: Oral supplementation with high-dose probiotics for 6 months did not affect systemic immune activation but was associated with improved neurocognitive performance, suggesting benefits from probiotic supplementation for mild HAND. Full article
Show Figures

Figure 1

24 pages, 360 KiB  
Article
Sharp Coefficient Bounds for Analytic Functions Related to Bounded Turning Functions
by Sudhansu Palei, Madan Mohan Soren, Luminiţa-Ioana Cotîrlǎ and Daniel Breaz
Mathematics 2025, 13(11), 1845; https://doi.org/10.3390/math13111845 - 1 Jun 2025
Viewed by 385
Abstract
Let B denote the class of bounded turning functions F analytic in the open unit disk, where the image of F(z) is contained in the domain [...] Read more.
Let B denote the class of bounded turning functions F analytic in the open unit disk, where the image of F(z) is contained in the domain Ω(z)=coshz+2z2z2. This article determines sharp coefficient bounds, a Fekete–Szegö-type inequality, and second- and third-order Hankel determinants for functions in the class B. Additionally, we obtain sharp Krushkal and Zalcman functional-type inequalities related to the logarithmic coefficient for functions belonging to B. Full article
Show Figures

Figure 1

17 pages, 4450 KiB  
Article
Location and Dynamics of Nymphaeol A in a Complex Membrane
by José Villalaín
Membranes 2025, 15(6), 163; https://doi.org/10.3390/membranes15060163 - 28 May 2025
Viewed by 1292
Abstract
Nymphaeol A (NYA) is a tetrahydroxyflavanone anchored to a hydrophobic geranyl group, isolated from different sources and a component of propolis, a complex mixture produced by honeybees and used since ancient times as a healthy drug. This complex exhibits significant antioxidant, antifungal, antibacterial, [...] Read more.
Nymphaeol A (NYA) is a tetrahydroxyflavanone anchored to a hydrophobic geranyl group, isolated from different sources and a component of propolis, a complex mixture produced by honeybees and used since ancient times as a healthy drug. This complex exhibits significant antioxidant, antifungal, antibacterial, antiviral, anticancer and antimicrobial properties and NYA is one of its main components. NYA is a lipophilic molecule with two domains, one polar and one hydrophobic. NYA can be inserted into membranes, and its membrane properties depend not only on its location but also on the membrane’s lipid composition. This work uses molecular dynamics to obtain the dynamics, orientation, location and interactions of NYA in a complex biomembrane. This work shows that in an aqueous solution, NYA forms high-order aggregates where the molecules are joined together by the hydrophobic chain. In the presence of a membrane but initially located in the aqueous media, NYA is capable of inserting itself spontaneously into the membrane. Inside the membrane, NYA can be found in the monomeric form, as well as forming aggregates, tending to remain in its most extended conformation. NYA moves along the x-, y- and z-axes, with the movement along the z-axis larger than that of the membrane’s lipids. NYA forms an approximate angle of 35° perpendicular with respect to the membrane and is inserted between the phospholipid hydrocarbon chains, slightly increasing membrane fluidity. Furthermore, NYA prefers POPC and PSM but not POPE or CHOL. NYA’s location and movement within the membrane should be well-suited for its potent bioactivity. Full article
Show Figures

Figure 1

19 pages, 1619 KiB  
Article
A Structured Method to Generate Self-Test Libraries for Tensor Cores
by Robert Limas Sierra, Juan David Guerrero Balaguera, Josie E. Rodriguez Condia and Matteo Sonza Reorda
Electronics 2025, 14(11), 2148; https://doi.org/10.3390/electronics14112148 - 25 May 2025
Viewed by 513
Abstract
Modern computing systems increasingly rely on specialized hardware accelerators, such as Graphics Processing Units (GPUs), to meet growing computational demands. GPUs are essential for accelerating a wide range of applications, from machine learning and scientific computing to safety-critical domains like autonomous systems and [...] Read more.
Modern computing systems increasingly rely on specialized hardware accelerators, such as Graphics Processing Units (GPUs), to meet growing computational demands. GPUs are essential for accelerating a wide range of applications, from machine learning and scientific computing to safety-critical domains like autonomous systems and aerospace. To enhance performance, modern GPUs integrate dedicated in-chip units, such as Tensor Cores(TCs), which are designed for efficient mixed-precision matrix operations. However, as semiconductor technologies scale down, reliability challenges emerge. Permanent hardware faults caused by aging, process variations, or environmental stress can lead to Silent Data Corruptions, which silently compromise computation results. In order to detect such faults, self-test libraries (STLs) are widely used, corresponding to suitably crafted pieces of code, able to activate faults and propagate their effects to visible points (e.g., the memory) and possibly signal their occurrence. This work introduces a structured method for generating STLs to detect permanent hardware faults that may arise in TCs. By leveraging the parallelism and regular structure of TCs, the method facilitates the creation of effective STLs for in-field fault detection without hardware modifications and with minimal requirements in terms of test time and memory. The proposed approach was validated on an NVIDIA GeForce RTX 3060 Ti GPU, installed in a Hewlett-Packard Z2 G5 workstation with an Intel Core i9-10800 CPU and 32 GB RAM, available at the Department of Control and Computer Engineering (DAUIN), Politecnico di Torino, Turin, Italy.This setup was used to address stuck-at faults in the arithmetic units of TCs. The results demonstrate that the methodology offers a practical, scalable, and non-intrusive solution for enhancing GPU reliability, applicable in both high-performance and safety-critical environments. Full article
Show Figures

Figure 1

11 pages, 411 KiB  
Article
HD-OCT Angiography and SD-OCT in Patients with Mild or No Clinically Apparent Diabetic Retinopathy
by Maja Vinković, Andrijana Kopić, Tvrtka Benašić, Dubravka Biuk, Ivanka Maduna and Stela Vujosevic
Biomedicines 2025, 13(5), 1251; https://doi.org/10.3390/biomedicines13051251 - 20 May 2025
Cited by 1 | Viewed by 446
Abstract
Purpose: To analyze the retinal and choriocapillaris changes in diabetic patients with no or with early signs of diabetic retinopathy using high-definition (HD) angio optical coherence tomography angiography (OCTA) software and spectral-domain (SD) OCT. Methods: A total of 112 eyes (54 eyes from [...] Read more.
Purpose: To analyze the retinal and choriocapillaris changes in diabetic patients with no or with early signs of diabetic retinopathy using high-definition (HD) angio optical coherence tomography angiography (OCTA) software and spectral-domain (SD) OCT. Methods: A total of 112 eyes (54 eyes from 27 diabetic patients and 58 eyes from 29 control subjects) were included in this retrospective cross-sectional study of healthy and diabetic adults. Retinal microvascular changes were assessed by using HD-OCTA software to calculate vascular density (VD) and foveal avascular zone (FAZ). SD-OCT was used to assess retinal thickness and volume in parafovea as well as ganglion cell complex (GCC) parameters. Results: The VD-whole image was significantly higher in the healthy control group (MW z = 1109.5, p = 0.012; t = 2.611, p = 0.010). Also, VD-parafovea was significantly higher in the healthy subjects (MW z = 1053.5, p = 0.004; t = 3.207, p = 0.002). GCC focal loss volume (FLV) was significantly decreased in diabetic patients (p = 0.051). Non-flow FAZ did not show a statistically significant difference between groups, although the FAZ was larger in the diabetic patients. Conclusions: Diabetic patients with no or early signs of diabetic retinopathy have decreased VD compared to healthy individuals. They also present retinal changes at the GCC that are correlated with initial neurodegeneration. HD-OCTA and SD-OCT can detect vascular changes and structural signs of retinal neurodegeneration before clinically apparent diabetic retinopathy. Potentially, these methods may offer new biomarkers for monitoring disease progression and visual prognosis. Full article
(This article belongs to the Special Issue Emerging Issues in Retinal Degeneration)
Show Figures

Figure 1

31 pages, 2268 KiB  
Article
Early Optical Follow-Up Observations of Einstein Probe X-Ray Transients During the First Year
by Siyu Wu, Ignacio Pérez-García, Alberto J. Castro-Tirado, Youdong Hu, Maria Gritsevich, María D. Caballero-García, Rubén Sánchez-Ramírez, Sergiy Guziy, Emilio J. Fernández-García, Guillermo García Segura, Carlos Pérez-del-Pulgar, Dingrong Xiong and Bin-Bin Zhang
Galaxies 2025, 13(3), 62; https://doi.org/10.3390/galaxies13030062 - 19 May 2025
Viewed by 1116
Abstract
We present early follow-up observations of Einstein Probe (EP) X-ray transients, following its first year of operation. EP is a dedicated wide-field X-ray observatory that is transforming our understanding of the dynamic X-ray universe. During its first year, EP successfully detected [...] Read more.
We present early follow-up observations of Einstein Probe (EP) X-ray transients, following its first year of operation. EP is a dedicated wide-field X-ray observatory that is transforming our understanding of the dynamic X-ray universe. During its first year, EP successfully detected a diverse range of high-energy transients—including gamma-ray bursts (GRBs), tidal disruption events (TDEs), and fast X-ray transients (FXTs), besides many stellar flares, disseminating 128 alerts in the aggregate. Ground-based optical follow-up observations, particularly those performed by our BOOTES telescope network, have played a crucial role in multi-wavelength campaigns carried out so far. Out of the 128 events, the BOOTES Network has been able to follow up 58 events, detecting 6 optical counterparts at early times. These complementary optical measurements have enabled rapid identification of counterparts, precise redshift determinations (such as EP250215a at z=4.61), and detailed characterization of the transient phenomena. The synergy between EP’s cutting-edge X-ray monitoring and the essential optical follow-up provided by facilities, such as the above-mentioned BOOTES Global Network or other Spanish ground-based facilities we have access to, underscores the importance and necessity of coordinated observations in the era of time-domain and multi-messenger astrophysics. Full article
Show Figures

Figure 1

16 pages, 3480 KiB  
Article
Identification of a Papain-like Cysteine Protease Functioning as an Avirulence Factor in Striga–Cowpea Interactions
by Danhua Zhang and Michael P. Timko
Plants 2025, 14(10), 1427; https://doi.org/10.3390/plants14101427 - 9 May 2025
Viewed by 408
Abstract
While most cowpea cultivars are susceptible to parasitism by the root parasitic weed Striga gesnerioides (Willd.) Vatke, cultivar B301 is resistant to all Striga races except for SG4z. Resistance to Striga parasitism is manifested by the elicitation of a hypersensitive response (HR) at [...] Read more.
While most cowpea cultivars are susceptible to parasitism by the root parasitic weed Striga gesnerioides (Willd.) Vatke, cultivar B301 is resistant to all Striga races except for SG4z. Resistance to Striga parasitism is manifested by the elicitation of a hypersensitive response (HR) at the site of parasite attachment on the host root followed by rapid death of the attached parasite. We isolated a papain-like cysteine protease (PLCP) designated SGCP1 that is highly expressed in the haustoria of S. gesnerioides race SG3 at the time of parasite attachment to the host root. SGCP1 contains an apoplast-targeting signal peptide, a Cathepsin pro-peptide inhibitory domain, a papain family cysteine protease domain, and a granulin domain. Full-length SGCP1 and a variant lacking the signal peptide (SGCP∆SP) were expressed in the roots of composite B301 plants. Expression of SGCP1 and SGCP∆SP resulted in activation of host innate immune responses exemplified by increased frequency of HR and decreased levels of parasite cotyledon expansion (CE), indicative of successful host parasitism, in transgenic compared to wild-type B301 roots parasitized by SG4z. These data indicate that SGCP1 functions as an avirulence factor capable of activating host innate immunity and furthers our understanding of how compatible and incompatible host–parasite interactions are controlled. Full article
(This article belongs to the Special Issue Molecular Biology and Genomics of Plant-Pathogen Interactions)
Show Figures

Figure 1

Back to TopTop