Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (542)

Search Parameters:
Keywords = yeast physiology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2657 KiB  
Article
Enrichment Cultures of Extreme Acidophiles with Biotechnological Potential
by Khussain Valiyev, Aliya Yskak, Elena Latyuk, Alena Artykova, Rakhimbayev Berik, Vadim Chashkov and Aleksandr Bulaev
Mining 2025, 5(3), 49; https://doi.org/10.3390/mining5030049 - 1 Aug 2025
Viewed by 101
Abstract
The purpose of this work was to obtain specialized enrichment cultures from an original extreme acidophilic consortium of extremely acidophilic microorganisms and to study their microbial community composition and biotechnological potential. At temperatures of 25, 35, 40 and 50 °C, distinct enrichments of [...] Read more.
The purpose of this work was to obtain specialized enrichment cultures from an original extreme acidophilic consortium of extremely acidophilic microorganisms and to study their microbial community composition and biotechnological potential. At temperatures of 25, 35, 40 and 50 °C, distinct enrichments of extremely acidophilic microorganisms used in the processes of bioleaching sulfide ores were obtained using nutrient media containing ferrous sulfate, elemental sulfur and a copper sulfide concentrate as nutrient inorganic substrates, with and without the addition of 0.02% yeast extract. The microbial community composition was studied using the sequencing of the V3–V4 hypervariable region of the 16S rRNA genes. The different growth conditions led to changes in the microbial composition and relative abundance of mesophilic and moderately thermophilic, strict autotrophic and mixotrophic microorganisms in members of the genera Acidithiobacillus, Sulfobacillus, Leptospirillum, Acidibacillus, Ferroplasma and Cuniculiplasma. The dynamics of the oxidation of ferrous iron, sulfur, and sulfide minerals (pyrite and chalcopyrite) by the enrichments was also studied in the temperature range of 25 to 50 °C. The study of enrichment cultures using the molecular biological method using the metabarcoding method of variable V3–24 V4 fragments of 16S rRNA genes showed that enrichment cultures obtained under different conditions differed in composition, which can be explained by differences in the physiological properties of the identified microorganisms. Regarding the dynamics of the oxidation of ferrous ions, sulfur, and sulfide minerals (pyrite and chalcopyrite), each enrichment culture was studied at a temperature range of 25 to 50 °C and indicated that all obtained enrichments were capable of oxidizing ferrous iron, sulfur and minerals at different rates. The obtained enrichment cultures may be used in further work to increase bioleaching by using the suitable inoculum for the temperature and process conditions. Full article
Show Figures

Figure 1

17 pages, 3272 KiB  
Review
Timing Is Everything: The Fungal Circadian Clock as a Master Regulator of Stress Response and Pathogenesis
by Victor Coca-Ruiz and Daniel Boy-Ruiz
Stresses 2025, 5(3), 47; https://doi.org/10.3390/stresses5030047 - 1 Aug 2025
Viewed by 119
Abstract
Fungi, from saprophytes to pathogens, face predictable daily fluctuations in light, temperature, humidity, and nutrient availability. To cope, they have evolved an internal circadian clock that confers a major adaptive advantage. This review critically synthesizes current knowledge on the molecular architecture and physiological [...] Read more.
Fungi, from saprophytes to pathogens, face predictable daily fluctuations in light, temperature, humidity, and nutrient availability. To cope, they have evolved an internal circadian clock that confers a major adaptive advantage. This review critically synthesizes current knowledge on the molecular architecture and physiological relevance of fungal circadian systems, moving beyond the canonical Neurospora crassa model to explore the broader phylogenetic diversity of timekeeping mechanisms. We examine the core transcription-translation feedback loop (TTFL) centered on the FREQUENCY/WHITE COLLAR (FRQ/WCC) system and contrast it with divergent and non-canonical oscillators, including the metabolic rhythms of yeasts and the universally conserved peroxiredoxin (PRX) oxidation cycles. A central theme is the clock’s role in gating cellular defenses against oxidative, osmotic, and nutritional stress, enabling fungi to anticipate and withstand environmental insults through proactive regulation. We provide a detailed analysis of chrono-pathogenesis, where the circadian control of virulence factors aligns fungal attacks with windows of host vulnerability, with a focus on experimental evidence from pathogens like Botrytis cinerea, Fusarium oxysporum, and Magnaporthe oryzae. The review explores the downstream pathways—including transcriptional cascades, post-translational modifications, and epigenetic regulation—that translate temporal signals into physiological outputs such as developmental rhythms in conidiation and hyphal branching. Finally, we highlight critical knowledge gaps, particularly in understudied phyla like Basidiomycota, and discuss future research directions. This includes the exploration of novel clock architectures and the emerging, though speculative, hypothesis of “chrono-therapeutics”—interventions designed to disrupt fungal clocks—as a forward-looking concept for managing fungal infections. Full article
(This article belongs to the Collection Feature Papers in Plant and Photoautotrophic Stresses)
Show Figures

Figure 1

14 pages, 1948 KiB  
Article
Molecular Responses of Saccharomyces cerevisiae to Growth Under Conditions of Increasing Corn Syrup and Decreasing Molasses
by Binbin Chen, Yu Chyuan Heng, Sharifah Nora Ahmad Almunawar, Elvy Riani Wanjaya, Untzizu Elejalde and Sandra Kittelmann
Fermentation 2025, 11(8), 432; https://doi.org/10.3390/fermentation11080432 - 28 Jul 2025
Viewed by 256
Abstract
Molasses, a by-product of raw sugar production, is widely used as a cost-effective carbon and nutrient source for industrial fermentations, including the production of baker’s yeast (Saccharomyces cerevisiae). Due to the cost and limited availability of molasses, efforts have been made [...] Read more.
Molasses, a by-product of raw sugar production, is widely used as a cost-effective carbon and nutrient source for industrial fermentations, including the production of baker’s yeast (Saccharomyces cerevisiae). Due to the cost and limited availability of molasses, efforts have been made to replace molasses with cheaper and more readily available substrates such as corn syrup. However, the quality of dry yeast drops following the replacement of molasses with corn syrup, despite the same amount of total sugar being provided. Our understanding of how molasses replacement affects yeast physiology, especially during the dehydration step, is limited. Here, we examined changes in gene expression of a strain of baker’s yeast during fermentation with increasing corn syrup to molasses ratios at the transcriptomic level. Our findings revealed that the limited availability of the key metal ions copper, iron, and zinc, as well as sulfur from corn syrup (i) reduced their intracellular storage, (ii) impaired the synthesis of unsaturated fatty acids and ergosterol, as evidenced by the decreasing proportions of these important membrane components with higher proportions of corn syrup, and (iii) inactivated oxidative stress response enzymes. Taken together, the molecular and metabolic changes observed suggest a potential reduction in nutrient reserves for fermentation and a possible compromise in cell viability during the drying process, which may ultimately impact the quality of the final dry yeast product. These findings emphasize the importance of precise nutrient supplementation when substituting molasses with cheaper substrates. Full article
(This article belongs to the Section Yeast)
Show Figures

Figure 1

16 pages, 2047 KiB  
Article
Caseinate–Carboxymethyl Chitosan Composite Edible Coating with Soybean Oil for Extending the Shelf Life of Blueberry Fruit
by Amal M. A. Mohamed and Hosahalli S. Ramaswamy
Foods 2025, 14(15), 2598; https://doi.org/10.3390/foods14152598 - 24 Jul 2025
Viewed by 373
Abstract
Utilizing edible films/coatings promises to extend the shelf life of fruits by controlling various physiological parameters (e.g., respiration and transpiration rates), maintaining firmness, and delaying fruit senescence. The influence of composite-based edible coatings made from sodium or calcium caseinate: carboxymethyl chitosan (75:25) on [...] Read more.
Utilizing edible films/coatings promises to extend the shelf life of fruits by controlling various physiological parameters (e.g., respiration and transpiration rates), maintaining firmness, and delaying fruit senescence. The influence of composite-based edible coatings made from sodium or calcium caseinate: carboxymethyl chitosan (75:25) on the postharvest quality of fresh blueberries was assessed over a 28-day storage period, on the basis of weight loss and changes in pH, firmness, color, titratable acidity, soluble solids content, mold and yeast count, and respiration rate. The pH of the blueberries increased over the period of storage, with significant differences observed between uncoated and coated (e.g., pH was 3.89, 3.17, and 3.62 at the end of the storage time for uncoated, Ca 75-1% SO, and Na 75-1% SO, respectively. Desirable lower pH values at the end of storage were obtained with the calcium caseinate formulations. Over the duration of storage, other quality parameters (e.g., firmness) were better retained in coated fruits compared to the uncoated (control) one. At the last storage day, the firmness of the uncoated sample was 0.67 N·mm−1 while the sodium and calcium caseinate was 0.63 and 0.81 N.mm−1, respectively. Moreover, the microbial growth was reduced in coated fruits, indicating the effectiveness of coatings in preserving fruit quality. The mold /yeast count was 1.4 and 2.3 log CFU/g for CaCa 75-1% SO and NaCa 75-1% SO compared with uncoated with 4.2 log CFU/g. Adding soybean oil to the caseinate–carboxymethyl chitosan composite edible coating has the potential to positively influence retention of various quality parameters of blueberries, thereby extending their shelf life and maintaining overall quality. Further research could explore the optimization of coating formulations and application methods to enhance their effectiveness in preserving fruit quality during storage. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Figure 1

20 pages, 2410 KiB  
Article
Soybean GmSNF4 Confers Salt–Alkali Stress Tolerance in Transgenic Plants
by Nan Ye, Jia-Shen Bian, Bai-Hui Zhou, Ling-Tao Yong, Ting Yang, Nan Wang, Yuan-Yuan Dong, Wei-Can Liu, Fa-Wei Wang, Hai-Yan Lv and Xiao-Wei Li
Plants 2025, 14(14), 2218; https://doi.org/10.3390/plants14142218 - 17 Jul 2025
Viewed by 306
Abstract
In order to mitigate the reduction in soybean yield caused by soil salinization, a soybean gene, GmSNF4, which promotes plant tolerance to salt–alkali stress, was identified in this study. The STRING database was used to predict the interaction between GmSNF4 and GmPKS4. [...] Read more.
In order to mitigate the reduction in soybean yield caused by soil salinization, a soybean gene, GmSNF4, which promotes plant tolerance to salt–alkali stress, was identified in this study. The STRING database was used to predict the interaction between GmSNF4 and GmPKS4. The GmPKS4 gene was experimentally shown to be involved in salt–alkali stress tolerance. Firstly, the yeast two-hybrid technique and bimolecular fluorescence complementation (BiFC) technique were used to confirm the interaction between GmSNF4 and GmPKS4: the AMPK-CBM-CBS1 conserved domain was thereby determined to be the region of the GmSNF4 protein involved in the interaction. Secondly, the GmSNF4 gene was induced by salt–alkali stress according to qRT-PCR analysis, and the GmSNF4 protein was localized in the nucleus and cytoplasm. Finally, analysis of GmSNF4’s role in resistance to salt–alkali stress in transgenic soybean plants showed that transgenic lines had better phenotypic, physiological, and stress-related gene expression than non-transgenic soybeans. Thus, GmSNF4 may play a significant role in plant salt–alkali stress tolerance. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

16 pages, 1945 KiB  
Article
Debaryomyces hansenii Enhances Growth, Nutrient Uptake, and Yield in Rice Plants (Oryza sativa L.) Cultivated in Calcareous Soil
by Jorge Núñez-Cano, Francisco J. Ruiz-Castilla, José Ramos, Francisco J. Romera and Carlos Lucena
Agronomy 2025, 15(7), 1696; https://doi.org/10.3390/agronomy15071696 - 14 Jul 2025
Viewed by 485
Abstract
Calcareous soils, characterized by high pH and calcium carbonate content, often limit the availability of essential nutrients for crops such as rice (Oryza sativa L.), reducing yield and nutritional quality. In this study, we evaluated the effect of the halotolerant yeast Debaryomyces [...] Read more.
Calcareous soils, characterized by high pH and calcium carbonate content, often limit the availability of essential nutrients for crops such as rice (Oryza sativa L.), reducing yield and nutritional quality. In this study, we evaluated the effect of the halotolerant yeast Debaryomyces hansenii on the growth, nutrient uptake, and phosphorus acquisition mechanisms of rice plants cultivated in calcareous soil under controlled greenhouse conditions. Plants inoculated with D. hansenii, particularly via root immersion, exhibited significantly higher SPAD chlorophyll index, plant height, and grain yield compared to controls. A modest increase (~4%) in dry matter content was also observed under sterilized soil conditions. Foliar concentrations of Fe, Zn, and Mn significantly increased in plants inoculated with D. hansenii via root immersion in non-sterilized calcareous soil, indicating improved micronutrient acquisition under these specific conditions. Although leaf phosphorus levels were not significantly increased, D. hansenii stimulated acid phosphatase activity, as visually observed through BCIP staining, and upregulated genes involved in phosphorus acquisition under both P-sufficient and P-deficient conditions. At the molecular level, D. hansenii upregulated the expression of acid phosphatase genes (OsPAP3, OsPAP9) and a phosphate transporter gene (OsPTH1;6), confirming its influence on P-related physiological responses. These findings demonstrate that D. hansenii functions as a plant growth-promoting yeast (PGPY) and may serve as a promising biofertilizer for improving rice productivity and nutrient efficiency in calcareous soils, contributing to sustainable agricultural practices in calcareous soils and other nutrient-limiting environments. Full article
Show Figures

Figure 1

23 pages, 990 KiB  
Review
Toward Sustainable Broiler Production: Evaluating Microbial Protein as Supplementation for Conventional Feed Proteins
by Daniela-Mihaela Grigore, Maria-Luiza Mircea and Elena Narcisa Pogurschi
Agriculture 2025, 15(14), 1486; https://doi.org/10.3390/agriculture15141486 - 10 Jul 2025
Viewed by 417
Abstract
The increasing demand for sustainable poultry production has urged the exploration of alternative feed strategies supporting animal performance and environmental goals. The first section outlines the protein requirements in broiler nutrition (19–25% crude protein) and the physiological importance of balanced amino acid profiles. [...] Read more.
The increasing demand for sustainable poultry production has urged the exploration of alternative feed strategies supporting animal performance and environmental goals. The first section outlines the protein requirements in broiler nutrition (19–25% crude protein) and the physiological importance of balanced amino acid profiles. Vegetal conventional protein sources are discussed in terms of their nutritional value (12.7–20.1 MJ/kg), limitations (antinutritional factors), and availability. Emerging trends in broiler nutrition highlight the integration of supplements and the need for innovative feed solutions as support for the improvement in broiler body weight and feed efficiency increase. Microbial protein sources: yeast biomass (41–60% of 100 g dry weight), microbial mixed cultures (32–76% of 100 g dry weight), and beer by-products, such as brewer’s spent yeast (43–52% of 100 g dry weight), offer promising nutritional profiles, rich in bioactive compounds (vitamin B complex, minerals, enzymes, and antioxidants), and may contribute to improved gut health, immunity, and feed efficiency when used as dietary supplements. The review also addresses the regulatory and safety considerations associated with the use of microbial protein in animal feed, emphasizing EU legislation and standards. Finally, recent findings on the impact of microbial protein supplementation on broiler growth performance, carcass traits, and overall health status are discussed. This review supports the inclusion of microbial protein sources as valuable co-nutrients that complement conventional feed proteins, contributing to more resilient and sustainable broiler production and broiler meat products. Full article
Show Figures

Figure 1

18 pages, 2156 KiB  
Article
The TOR Regulatory Mechanism Controls the Metabolism of Nitrate and the Fermentation Activity in the Yeast Dekkera bruxellensis GDB 248
by Karolini Miranda, Beatriz Câmara de Melo, Gilberto Henriques Teles, Irina Charlot Peña-Moreno, Rafael Barros de Souza and Marcos Antonio de Morais
Microbiol. Res. 2025, 16(7), 143; https://doi.org/10.3390/microbiolres16070143 - 1 Jul 2025
Viewed by 362
Abstract
Dekkera bruxellensis is already known for its great biotechnological potential, part of this due to the ability to assimilate nitrate during fermentation. Despite the previous works on nitrogen metabolism in this yeast, especially regarding nitrate assimilation, the relation between this metabolism and the [...] Read more.
Dekkera bruxellensis is already known for its great biotechnological potential, part of this due to the ability to assimilate nitrate during fermentation. Despite the previous works on nitrogen metabolism in this yeast, especially regarding nitrate assimilation, the relation between this metabolism and the TOR (Target of Rapamycin) regulatory mechanism remains unexplored. This connection may reveal key regulatory mechanisms to maximize its fermentative performance and biotechnological use. Herein, we evaluated the physiological, metabolic, and gene expression profile of D. bruxellensis GDB 248 cultivated in ammonium and nitrate as nitrogen sources in the presence of TOR complex 1 (TORC1) inhibitor rapamycin. Our results showed that inhibition of the TORC1 significantly reduces cell growth and fermentative capacity, especially in nitrate media. Gene expression analysis revealed that TORC1 plays a central role in regulating genes involved in nitrate assimilation and the adaptive performance of D. bruxellensis in fermentative environments. Therefore, the regulation of nitrate assimilatory genes YNTI, YNRI, and YNI1 responds to a nitrate-dependent mechanism as well as to a TOR-dependent mechanism. These findings expand the understanding of the regulation of nitrogen metabolism in D. bruxellensis, providing valuable information that may aid in the development of future strategies for its use as an industrial yeast. Full article
Show Figures

Graphical abstract

20 pages, 5010 KiB  
Article
Antimicrobial, Oxidant, Cytotoxic, and Eco-Safety Properties of Sol–Gel-Prepared Silica–Copper Nanocomposite Materials
by Lilia Yordanova, Lora Simeonova, Miroslav Metodiev, Albena Bachvarova-Nedelcheva, Yoanna Kostova, Stela Atanasova-Vladimirova, Elena Nenova, Iliana Ivanova, Lyubomira Yocheva and Elitsa Pavlova
Pharmaceuticals 2025, 18(7), 976; https://doi.org/10.3390/ph18070976 - 28 Jun 2025
Viewed by 491
Abstract
Background: The present work is devoted to the biological effects of sol–gel-derived silica (Si)–copper (Cu) nanomaterials. Methods and Results: Tetraethyl orthosilane (TEOS) was used as a silica precursor; copper was introduced as a solution in ethanol with Cu(OH)2. The obtained samples [...] Read more.
Background: The present work is devoted to the biological effects of sol–gel-derived silica (Si)–copper (Cu) nanomaterials. Methods and Results: Tetraethyl orthosilane (TEOS) was used as a silica precursor; copper was introduced as a solution in ethanol with Cu(OH)2. The obtained samples were denoted as Si/Cu (gel) and Si/Cu/500 (500 °C heat-treated). Their phase formation and morphology were studied by XRD and SEM. The antibacterial activity was tested by two Gram-positive bacteria, three Gram-negative bacteria, and two types of eukaryotic species. Most bacteria were more sensitive to Si/Cu/500 materials than to Si/Cu (gel). The yeasts were more sensitive to Si/Cu (gel). The new nanomaterials were tested for oxidant activity at pH 7.4 (physiological) and pH 8.5 (optimal) in three model systems by the chemiluminescent method. They significantly inhibited the generation of free radicals and ROS. This result underlines their potential as regulators of the free radical processes in living systems. The epithelial tumor cell lines appeared more sensitive than the non-transformed fibroblasts, likely due to their metabolic activity and proliferation rates, leading to greater accumulation of the substances. Using Daphnia magna, the ecotoxicity study showed that the LC50 was reached at 1 mg/L of Si/Cu/500. Si/Cu (gel) was more toxic. Conclusions: Our results reveal the potential of these nanohybrids to be applied in living, eukaryotic systems. The cytotoxicity evaluation showed higher tolerance of normal, non-transformed cells, in concurrence with the oxidation tests. Full article
(This article belongs to the Special Issue Nanotechnology in Biomedical Applications)
Show Figures

Figure 1

16 pages, 1835 KiB  
Article
Stress Tolerance and Contribution to Aroma Profile of Pichia kudriavzevii GAAS-JG-1 Isolated from Apricot Fermentation in Co-Fermentation of Sea Buckthorn Wine
by Yuwen Mu, Yu’an Wang and Chaozhen Zeng
Microorganisms 2025, 13(7), 1491; https://doi.org/10.3390/microorganisms13071491 - 26 Jun 2025
Viewed by 344
Abstract
High-acidity fruit wines, such as sea buckthorn wine, are valued for their nutritional benefits but often suffer from excessive tartness and limited aroma complexity, which restrict their consumer acceptance. The application of non-Saccharomyces yeasts with acid tolerance and flavor-enhancing potential offers a promising [...] Read more.
High-acidity fruit wines, such as sea buckthorn wine, are valued for their nutritional benefits but often suffer from excessive tartness and limited aroma complexity, which restrict their consumer acceptance. The application of non-Saccharomyces yeasts with acid tolerance and flavor-enhancing potential offers a promising strategy to address these challenges. In this study, a highly acid-tolerant yeast strain, Pichia kudriavzevii GAAS-JG-1, was isolated from a naturally fermented apricot system and systematically characterized in terms of its taxonomy, physiological properties, and fermentation potential. The experimental results demonstrated that Pichia kudriavzevii GAAS-JG-1 maintained robust growth activity (OD600 = 1.18 ± 0.09) even under extremely acidic conditions (pH 2.0). Furthermore, the strain exhibited a strong tolerance to high ethanol concentrations (16%), elevated sugar levels (350 g/L), and substantial sulfur dioxide exposure (500 mg/L). Optimal growth was observed at 35 °C (OD600 = 2.21 ± 0.02). When co-fermented with Saccharomyces cerevisiae in sea buckthorn wine, the ethyl acetate content increased significantly from 303.71 μg/L to 4453.12 μg/L, while the ethyl propionate levels rose from 5.18 μg/L to 87.75 μg/L. Notably, Pichia kudriavzevii GAAS-JG-1 also produced novel flavor compounds such as methyl acetate and ethyl 3-methylthiopropionate, which were absent in the single-strain fermentation. These findings highlight the potential of Pichia kudriavzevii GAAS-JG-1 as a valuable non-Saccharomyces yeast resource with promising applications in the fermentation of high-acidity specialty fruit wines. Full article
(This article belongs to the Special Issue Beneficial Microbes: Food, Mood and Beyond—Third Edition)
Show Figures

Figure 1

19 pages, 3097 KiB  
Article
BLH3 Regulates the ABA Pathway and Lignin Synthesis Under Salt Stress in Lilium pumilum
by Wenhao Wan, Lingshu Zhang, Xingyu Liu, Huitao Cui, Miaoxin Shi, Hao Sun, Wei Yang, Xinran Wang, Fengshan Yang and Shumei Jin
Plants 2025, 14(12), 1860; https://doi.org/10.3390/plants14121860 - 17 Jun 2025
Viewed by 540
Abstract
BEL1-like homeodomain protein 3 (BLH3) plays a crucial role in plant development. However, its involvement in the salt stress response has not been studied. In this study, we investigated the molecular mechanism underlying the response of LpBLH3 to salt stress in Lilium pumilum [...] Read more.
BEL1-like homeodomain protein 3 (BLH3) plays a crucial role in plant development. However, its involvement in the salt stress response has not been studied. In this study, we investigated the molecular mechanism underlying the response of LpBLH3 to salt stress in Lilium pumilum (L. pumilum) using various techniques, including quantitative PCR (RT-qPCR), determination of physiological indices of plant after Saline-Alkali stress, yeast two-hybrid screening, luciferase complementation imaging (LCI), and chromosome walking to obtain the promoter sequence, analyzed by PlantCARE, electrophoretic mobility shift assay (EMSA), and then dual-luciferase reporter assay(LUC). RT-qPCR analysis revealed that LpBLH3 is most highly expressed in the leaves of L. pumilum. The expression of LpBLH3 peaks at 24 or 36 h in the leaves under different saline stress. Under various treatments, compared to the wild type (WT), the LpBLH3 overexpression lines exhibited less chlorosis and leaf curling and stronger photosynthesis. The overexpression of LpBLH3 can enhance lignin accumulation in root and stem by positively modulating the expression of crucial genes within the lignin biosynthesis pathway. Y2H and LCI analyses demonstrated that LpBLH3 interacts with LpKNAT3. Additionally, EMSA and LUC analyses confirmed that LpBLH3 can bind to the promoter of LpABI5 and upregulate the expression of ABI5 downstream genes (LpCAT1/LpATEM/LpRD29B). In summary, LpBLH3 enhances the plant’s salt tolerance through the ABA pathway and lignin synthesis. This study can enrich the functional network of the BLH transcription factor family, obtain Lilium pumilum lines with good saline-alkali resistance, expand the planting area of Lilium pumilum, and improve its medicinal and ornamental values. Additionally, the functional analysis of the BLH transcription factor family provides new insights into how crops adapt to the extreme growth environment of saline-alkali soils. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

14 pages, 1692 KiB  
Article
Isolation, Optimization and Characterization of Rhodotorula alborubescens for Dietary Pigment β-Carotene Production
by Anshi, Hardeep Kaur, Lalit Goswami, Shikha Kapil and Vipasha Sharma
Appl. Microbiol. 2025, 5(2), 54; https://doi.org/10.3390/applmicrobiol5020054 - 4 Jun 2025
Viewed by 1243
Abstract
In this study, pigment-producing yeast (Rhodotorula alborubescens) was isolated from the soil sample, demonstrating the potential for carotenoid biosynthesis. Physiological, morphological, biochemical, and molecular characterization confirmed the identity of the isolate. Optimization of the physical parameters for carotenoid production was achieved [...] Read more.
In this study, pigment-producing yeast (Rhodotorula alborubescens) was isolated from the soil sample, demonstrating the potential for carotenoid biosynthesis. Physiological, morphological, biochemical, and molecular characterization confirmed the identity of the isolate. Optimization of the physical parameters for carotenoid production was achieved through batch shake flask experiments. The optimal conditions were determined to be 84 h of incubation at pH 6.0 and 28 °C under white light irradiation, utilizing the Yeast Peptone Dextrose (YPD) medium composed of 10 g/L yeast extract, 5 g/L of peptone, and 5 g/L dextrose, resulting in maximum carotenoid content. Further, the presence of β-carotene was confirmed using High-Performance Liquid Chromatography and Fourier Transform Infrared Spectroscopy. These findings highlight the potential of the isolated soil yeast (R. alborubescens) as a potential source of carotenoids, offering natural alternatives for various industrial applications. Full article
Show Figures

Figure 1

24 pages, 11957 KiB  
Article
DoDELLA-GAI2 Integrates Gibberellin and Ethylene Signaling to Regulate Chinese Yam (Dioscorea opposita) Tuber Development
by Mingran Ge, Yanfang Zhang, Yanping Xing, Linan Xing, Huiqin Miao and Xiuwen Huo
Biology 2025, 14(6), 635; https://doi.org/10.3390/biology14060635 - 30 May 2025
Viewed by 478
Abstract
Yam (Dioscorea opposita) tuber development is a complex process regulated by various phytohormones, with gibberellin (GA) playing a crucial role. However, the underlying mechanisms and interaction of GA with other phytohormone pathways on yam tuber development remain incompletely understood. This study [...] Read more.
Yam (Dioscorea opposita) tuber development is a complex process regulated by various phytohormones, with gibberellin (GA) playing a crucial role. However, the underlying mechanisms and interaction of GA with other phytohormone pathways on yam tuber development remain incompletely understood. This study investigated the regulatory role of GA and its crosstalk with other phytohormones during yam tuber growth through phenotypic, cytological, physiological, and transcriptomic as well as targeted phytohormone metabolomics analyses. The results reveal that exogenous GA promoted tuber enlargement increases vascular bundle and the number and diameter of sieve tubes, and alters the expression of GA anabolism genes and GA signal transduction pathways. Integrated transcriptome and targeted metabolomics analyses revealed coordinated changes in GA and ethylene (ETH) biosynthesis and signaling pathways during tuber development, particularly DELLA-GAI2 acting as a negative regulator of GA signaling. Overexpression of DoDELLA-GAI2 in transgenic tobacco significantly reduced GA level, starch, cytokinin (CTK), and ETH content, as well as aerenchyma tissue growth and parenchyma cell size. Exogenous GA and ethephon treatments increased GA, starch, CTK, and ETH content, and downregulated DoDELLA-GAI2 gene expression. The yeast two-hybrid and bimolecular fluorescence complementation (BiFC) assays confirmed a direct interaction between DoDELLA-GAI2 and DoMTCPB, an upstream gene-encoding key enzyme in ETH biosynthesis. DoDELLA-GAI2 acts as a negative regulator of ETH synthesis by interacting with DoMTCPB. GA-induced degradation of DoDELLA-GAI2 relieves this inhibition, promoting ETH production and contributing to tuber growth. Taken together, our findings reveal a novel mechanism based on DoDELLA-GAI2 integrating the GA and ETH signaling processes to regulate tuber development in D. opposita, offering a potential target for improving yam crop productivity. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

16 pages, 1738 KiB  
Article
Biosynthesis and Bioactivity of Melanin from the Deep-Sea Hydrothermal Vent Yeast Hortaea werneckii Mo34
by Hui-Juan Li and Zhen-Ming Chi
J. Mar. Sci. Eng. 2025, 13(6), 1004; https://doi.org/10.3390/jmse13061004 - 22 May 2025
Viewed by 356
Abstract
Importance of this study: Melanin synthesized through the oxidative polymerization of phenolic compounds exhibits a high molecular weight and has many physiological functions and activities. Main results: In this study, the key PKS1-1, PKS1-2, CMR1-1, and CMR1-2 genes [...] Read more.
Importance of this study: Melanin synthesized through the oxidative polymerization of phenolic compounds exhibits a high molecular weight and has many physiological functions and activities. Main results: In this study, the key PKS1-1, PKS1-2, CMR1-1, and CMR1-2 genes for melanin biosynthesis and regulation from the highly genome-duplicated black yeast Hortaea werneckii Mo34, isolated from a deep-sea hydrothermal vent, were heterologously complemented in the ∆pks1 albino mutant K5 and the ∆cmr1 albino mutant CM7-2 of Aureobasidium melanogenum XJ5-1. Melanin formation in all the resulting transformants was restored, confirming that both the PKS1-1 and PKS1-2 genes from H. werneckii Mo34 were likely involved in the DHN melanin biosynthesis of A. melanogenum XJ5-1. Furthermore, the CMR1-1 and CMR1-2 genes from H. werneckii Mo34 could play significant roles in regulating melanin biosynthesis in A. melanogenum XJ5-1. Simultaneously, the expression of the PKS1 and THR1 genes involved in melanin biosynthesis was also enhanced in the transformants complemented with the CMR1-1 and CMR1-2 genes. The purified high-molecular-weight melanin from H. werneckii Mo34 exhibited excellent Fe2⁺-chelating, DPPH radical-scavenging, and superoxide radical-scavenging activities. Additionally, it actively inhibited the growth of Staphylococcus aureus and Pseudomonas putida. Conclusions: The black yeast H. werneckii Mo34 indeed had the DHN melanin biosynthesis pathway and the melanin produced by it had many potential applications. Full article
(This article belongs to the Section Marine Biology)
Show Figures

Figure 1

19 pages, 8535 KiB  
Article
Genome-Wide Characterization of WRKY Gene Family in Camellia chekiangoleosa Identifies Potential Regulatory Components in Pigment Biosynthesis Pathways
by Zhenyu Liu, Yixuan Peng, Yanshu Qu, Bin Huang, Chun Gong and Qiang Wen
Int. J. Mol. Sci. 2025, 26(10), 4622; https://doi.org/10.3390/ijms26104622 - 12 May 2025
Viewed by 423
Abstract
The WRKY gene family is essential for controlling a variety of plant physiological functions, yet the involvement of specific WRKY members in pigment biosynthesis and accumulation in Camellia chekiangoleosa remains unexplored, particularly in anthocyanins and carotenoids, which play crucial roles in the pigmentation [...] Read more.
The WRKY gene family is essential for controlling a variety of plant physiological functions, yet the involvement of specific WRKY members in pigment biosynthesis and accumulation in Camellia chekiangoleosa remains unexplored, particularly in anthocyanins and carotenoids, which play crucial roles in the pigmentation of C. chekiangoleosa. This study systematically identified 87 WRKY genes across 15 chromosomes in C. chekiangoleosa through bioinformatic approaches. Further structural and phylogenetic analyses of these TFs enabled their classification into six different subgroups. WRKY family expansion was shown to be mostly driven by tandem duplication. W-box elements, which can be binding sites for WRKY transcription factors, were present in a number of biosynthetic genes in the pigment production pathway. Yeast one-hybrid assay confirmed that five WRKY transcription factors (CchWRKY15/24/33/47/76) directly bind to the promoter regions of two key biosynthetic genes, CchPSY1 and Cch4CL1. Intriguingly, among the five WRKYs tested, the expression levels of CchWRKY15, CchWRKY33, and CchWRKY47 showed the strongest positive associations with flavonoid accumulation (p < 0.05, Pearson correlation analysis).These findings provide novel insights into the evolutionary patterns, transcriptional regulation, and functional characteristics of CchWRKYs, while elucidating their possible regulatory mechanisms in the fruit coloration of C. chekiangoleosa. Full article
(This article belongs to the Special Issue Molecular Research in Bamboo, Tree, Grass, and Other Forest Products)
Show Figures

Figure 1

Back to TopTop