Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,433)

Search Parameters:
Keywords = yeast interaction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 2672 KiB  
Article
The Effects of Gamma-Decalactone on the Physicochemical and Antimicrobial Properties of Pectin-Based Packaging Films
by Gabriela Kozakiewicz, Jolanta Małajowicz, Magdalena Karwacka, Agnieszka Ciurzyńska, Karolina Szulc, Anna Żelazko, Monika Janowicz and Sabina Galus
Materials 2025, 18(16), 3831; https://doi.org/10.3390/ma18163831 - 15 Aug 2025
Abstract
This study introduces an innovative strategy for active, biodegradable food packaging through the incorporation of gamma-decalactone (GDL), a natural aromatic compound with antimicrobial properties, into apple-pectin-based edible films. The addition of GDL significantly modified the film structure, resulting in enhanced light barrier properties [...] Read more.
This study introduces an innovative strategy for active, biodegradable food packaging through the incorporation of gamma-decalactone (GDL), a natural aromatic compound with antimicrobial properties, into apple-pectin-based edible films. The addition of GDL significantly modified the film structure, resulting in enhanced light barrier properties (the opacity increased from 1.10 to 8.64 a.u./mm), a more porous microstructure (confirmed by SEM), and reduced tensile strength (from 13.84 to 5.68 MPa). The films also exhibited lower water vapour sorption (from 1.45 to 0.80 g/g dry matter (d.m.) and increased gas permeability. FTIR analysis confirmed interactions between GDL and the polymer matrix. The films with GDL added exhibited antimicrobial properties against various microbial species, such as bacteria, yeasts, and moulds. A 5% addition of GDL to the coating completely inhibited the growth of Bacillus subtilis bacteria and Yarrowia lipolytica, reducing the number of yeast cells by 3 log units (after 48 h of culture, from 7.11 ± 0.09 to 4.09 ± 0.27 log CFU/mL) and limiting Monilinia fructicola mycelium growth by 70%. These results highlight GDL’s dual function as a natural aromatic and antimicrobial agent, supporting its potential application in sustainable packaging for perishable foods. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Graphical abstract

25 pages, 1001 KiB  
Review
Functional Foods for Cholesterol Management: A Review of the Mechanisms, Efficacy, and a Novel Cholesterol-Lowering Capacity Index
by Daniel A. Jacobo-Velázquez
Nutrients 2025, 17(16), 2648; https://doi.org/10.3390/nu17162648 - 15 Aug 2025
Abstract
Cardiovascular disease (CVD) remains the leading cause of death worldwide, with elevated low-density lipoprotein cholesterol (LDL-C) as a major risk factor. Beyond medications, dietary interventions and functional foods offer significant cholesterol-lowering potential. This article provides a comprehensive review of functional foods and nutraceutical [...] Read more.
Cardiovascular disease (CVD) remains the leading cause of death worldwide, with elevated low-density lipoprotein cholesterol (LDL-C) as a major risk factor. Beyond medications, dietary interventions and functional foods offer significant cholesterol-lowering potential. This article provides a comprehensive review of functional foods and nutraceutical ingredients that help to reduce cholesterol levels and introduces the novel Cholesterol-Lowering Capacity Index (CLCI), designed to quantify and communicate the efficacy of such foods. In doing so, it summarizes key functional components, including plant sterols/stanols, viscous fibers, soy protein, red yeast rice, berberine, polyphenols (e.g., bergamot extract, garlic), and others, highlighting their mechanisms of action and the typical LDL-C reductions observed in clinical studies. Strategies for the design of next-generation cholesterol-lowering foods are discussed, such as combining multiple bioactives for synergistic effects, personalized nutrition approaches, and novel food processing techniques to enhance bioavailability. Building on these strategies, the CLCI is then proposed as a practical scoring system, analogous to the glycemic index for blood sugar, that integrates the evidence-based potency of ingredients, effective dosing, and synergistic interactions into a single metric. A methodology for the calculation of the CLCI is presented, alongside potential applications in food labeling, clinical guidance, and dietary planning. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

27 pages, 1732 KiB  
Review
Modern Palatant Strategies in Dry and Wet Pet Food: Formulation Technologies, Patent Innovations, and Market Evolution
by Phatthranit Klinmalai, Pitiya Kamonpatana, Janenutch Sodsai, Khwanchat Promhuad, Atcharawan Srisa, Yeyen Laorenza, Attawit Kovitvadhi, Sathita Areerat, Anusorn Seubsai and Nathdanai Harnkarnsujarit
Foods 2025, 14(16), 2824; https://doi.org/10.3390/foods14162824 - 14 Aug 2025
Abstract
Palatability is a critical determinant of pet food performance, directly influencing voluntary intake, nutrient utilization, and therapeutic efficacy. In this systematic review, we examine peer-reviewed research publications, patent filings, and commercial product data pertaining to palatant technologies in dry and wet pet food [...] Read more.
Palatability is a critical determinant of pet food performance, directly influencing voluntary intake, nutrient utilization, and therapeutic efficacy. In this systematic review, we examine peer-reviewed research publications, patent filings, and commercial product data pertaining to palatant technologies in dry and wet pet food from 2014 to 2024. Major palatant classes—including fats, proteins, yeast extracts, and novel plant-derived or insect-based hydrolysates—are evaluated for their physicochemical properties, flavor-release mechanisms, and stability during processing. We analyze formulation techniques such as microencapsulation, Maillard-reaction enhancement, and multilayer coating systems, focusing on their impact on aromatic compound retention and palatability consistency. Patent landscape assessment identifies over 15 key innovations in delivery systems, life-stage-specific palatant modulation, and dual-phase release architectures. Dual-phase release architectures are defined as systems that deliver active compounds in two sequential phases, such as immediate and sustained release. Sensory evaluation methodologies—ranging from multivariate preference mapping to descriptive analysis—are critically appraised to correlate human-panel metrics with canine and feline feeding behavior. We also discuss strategic integration of palatants at different processing stages (pre-conditioning, extrusion, and post-extrusion) and the challenges of balancing taste masking with nutritional requirements, particularly in formulations containing alternative proteins for sustainability. Despite rapid market growth in functional palatant-infused products, peer-reviewed literature remains relatively limited, suggesting opportunities for further research on species-specific flavor drivers, synbiotic flavor–nutrient interactions, and novel delivery platforms. This comprehensive overview of palatant science, patent innovations, and market evolution provides evidence-based guidance for researchers, formulators, and veterinarians seeking to optimize organoleptic properties and consumer acceptance of next-generation pet foods. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

24 pages, 1647 KiB  
Review
Exploring Exopolysaccharides Produced in Indigenous Mexican Fermented Beverages and Their Biotechnological Applications
by Julián Fernando Oviedo-León, Abril Ramírez Higuera, Jorge Yáñez-Fernández, Humberto Hernández-Sánchez and Diana C. Castro-Rodríguez
Fermentation 2025, 11(8), 463; https://doi.org/10.3390/fermentation11080463 - 12 Aug 2025
Viewed by 287
Abstract
Indigenous Mexican fermented beverages, such as pulque, colonche, tepache, and water kefir, are pillars of the country’s cultural and gastronomic heritage. Their sensory attributes and health-promoting properties arise from complex microbial consortia, in which lactic acid bacteria (LAB), mainly Lactobacillus and Leuconostoc, [...] Read more.
Indigenous Mexican fermented beverages, such as pulque, colonche, tepache, and water kefir, are pillars of the country’s cultural and gastronomic heritage. Their sensory attributes and health-promoting properties arise from complex microbial consortia, in which lactic acid bacteria (LAB), mainly Lactobacillus and Leuconostoc, acetic acid bacteria (AAB), primarily Acetobacter, and yeasts such as Saccharomyces and Candida interact and secrete exopolysaccharides (EPSs). Dextran, levan, and heteropolysaccharides rich in glucose, galactose, and rhamnose have been consistently isolated from these beverages. EPSs produced by LAB enhance the viscosity and mouthfeel, extend the shelf life, and exhibit prebiotic, antioxidant, and immunomodulatory activities that support gut and immune health. Beyond food, certain EPSs promote plant growth, function as biocontrol agents against phytopathogens, and facilitate biofilm-based bioremediation, underscoring their biotechnological potential. This review integrates recent advances in the composition, biosynthetic pathways, and functional properties of microbial EPSs from Mexican fermented beverages. We compare reported titers, outline key enzymes, including dextransucrase, levansucrase, and glycosyltransferases, and examine how fermentation variables (the substrate, pH, and temperature) influence the polymer yield and structure. Finally, we highlight emerging applications that position these naturally occurring biopolymers as sustainable ingredients for food and agricultural innovation. Full article
(This article belongs to the Special Issue The Health-Boosting Power of Fermented Foods and Their By-Products)
Show Figures

Figure 1

21 pages, 3964 KiB  
Article
Screening for GmRCD1-Interacting Proteins in Glycine Max and Characterization of the GmRCD1-GmNAC058 Interaction
by Yupeng Li, Youda Bu, Yun Liu and Guobao Liu
Int. J. Mol. Sci. 2025, 26(16), 7760; https://doi.org/10.3390/ijms26167760 - 11 Aug 2025
Viewed by 129
Abstract
In response to abiotic stress, plants utilize hub protein-mediated signaling networks, with members of the SIMILAR TO RCD ONE (SRO) protein family playing a pivotal role in regulating stress resistance pathways. This study investigates the functional role of the soybean GmRCD1 protein and [...] Read more.
In response to abiotic stress, plants utilize hub protein-mediated signaling networks, with members of the SIMILAR TO RCD ONE (SRO) protein family playing a pivotal role in regulating stress resistance pathways. This study investigates the functional role of the soybean GmRCD1 protein and its interaction mechanisms to elucidate its molecular regulatory network in stress resistance responses. By employing yeast two-hybrid technology to screen a soybean cDNA library under high-salt stress conditions, 17 potential interacting proteins were identified, which include NAC transcription factors (e.g., GmNAC058), ubiquitin–proteasome proteins, and ribosomal proteins. Subsequent validation using GST pull-down and bimolecular fluorescence complementation assays confirmed the direct interaction between GmRCD1 and GmNAC058, which is mediated by the RST domain of GmRCD1 and the C-terminal disordered region (amino acids 288–323) of GmNAC058. Subcellular localization studies revealed that both proteins are nuclear-localized, aligning with their roles in transcriptional regulation. Furthermore, PAR binding assays demonstrated that both GmRCD1 and AtRCD1 can bind to PAR polymers; however, PARP activity analysis revealed that neither protein exhibits catalytic activity, indicating their participation in stress responses via non-enzymatic mechanisms. This study represents the first to elucidate the interaction network and structural basis between soybean GmRCD1 and GmNAC058, providing crucial theoretical support for understanding the multifunctional roles of plant hub proteins in stress resistance regulation and for molecular breeding in soybean. Full article
(This article belongs to the Special Issue Molecular Biology of Soybean)
Show Figures

Figure 1

29 pages, 21040 KiB  
Article
The DIR Gene Family in Watermelon: Evolution, Stress Expression Profiles, and Functional Exploration of ClDIR8
by Kaijing Zhang, Zhu Wang, Huiyu Tian, Jiong Gao, Rongjing Cui, Yingjie Shu, Qiangqiang Ding, Li Jia and Congsheng Yan
Int. J. Mol. Sci. 2025, 26(16), 7730; https://doi.org/10.3390/ijms26167730 - 10 Aug 2025
Viewed by 262
Abstract
Dirigent proteins (DIR) are involved in lignan biosynthesis, stress responses, and disease resistance in plants. However, systematic characterization of the DIR gene family in watermelon (Citrullus lanatus) remains limited. Here, we identified 22 ClDIR genes in watermelon using bioinformatics methods, designated [...] Read more.
Dirigent proteins (DIR) are involved in lignan biosynthesis, stress responses, and disease resistance in plants. However, systematic characterization of the DIR gene family in watermelon (Citrullus lanatus) remains limited. Here, we identified 22 ClDIR genes in watermelon using bioinformatics methods, designated ClDIR1 to ClDIR22, which were unevenly distributed across eight chromosomes and classified into three subfamilies (DIR-a, DIR-b/d, DIR-e) based on phylogenetic analysis, with DIR-b/d being the largest. Synteny analysis revealed that tandem duplication primarily drove ClDIR family expansion, and collinear relationships with Arabidopsis, rice, and cucurbit species indicated evolutionary conservation. Cis-acting element analysis showed abundant stress- and hormone-responsive elements in ClDIR promoters, suggesting roles in stress regulation. Tissue-specific expression analysis demonstrated distinct patterns, with most genes highly expressed in roots. Expression profiling under 16 abiotic and biotic stresses showed 18 ClDIR genes responded to stress, with ClDIR8 differentially expressed across all conditions. qRT-PCR validation of six key genes (ClDIR5, ClDIR8, ClDIR9, ClDIR12, ClDIR16, ClDIR22) confirmed their expression patterns under high-temperature, drought, salt, and low-temperature stresses, showing a high degree of consistency with transcriptome data. Subcellular localization indicated ClDIR8 is peroxisome-localized. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays validated two ClDIR8-interacting proteins, Cla97C02G049920 (encoding peroxidase) and Cla97C08G152180 (encoding catalase). These findings provide insights into ClDIR genes in watermelon, highlighting ClDIR8 as a key stress-responsive candidate for further functional studies and breeding. Full article
(This article belongs to the Special Issue Plant Stress Biology)
Show Figures

Figure 1

17 pages, 392 KiB  
Article
The Effects of Fermenting Psophocarpus tetragonolobus Tubers with Candida tropicalis KKU20 as a Soybean Meal Replacement Using an In Vitro Gas Technique
by Thiraphat Surakhai, Chanon Suntara, Pachara Srichompoo, Metha Wanapat, Sompong Chankaew and Anusorn Cherdthong
Animals 2025, 15(16), 2328; https://doi.org/10.3390/ani15162328 - 8 Aug 2025
Viewed by 222
Abstract
This study evaluated the effects of replacing soybean meal (SBM) with winged bean tuber (Psophocarpus tetragonolobus) fermented using ruminal Candida tropicalis KKU20 on gas kinetics, ruminal fermentation, and degradability using the in vitro gas production technique. A 3 × 4 factorial [...] Read more.
This study evaluated the effects of replacing soybean meal (SBM) with winged bean tuber (Psophocarpus tetragonolobus) fermented using ruminal Candida tropicalis KKU20 on gas kinetics, ruminal fermentation, and degradability using the in vitro gas production technique. A 3 × 4 factorial arrangement in a completely randomized design was used. Factor A included three roughage-to-concentrate (R:C) ratios: 60:40, 50:50, and 40:60. Factor B consisted of four levels of SBM replacement with yeast-fermented winged bean tuber (YFWBT): 0%, 33%, 66%, and 100%. Fermentation with C. tropicalis KKU20 increased the crude protein content of winged bean tuber by 13.32%. No significant interaction was found between the R:C ratio and YFWBT level for cumulative gas production at 24, 48, or 96 h (p > 0.05). Cumulative gas production at 96 h was not affected by either factor. However, at 24 and 48 h, gas production increased with higher proportions of concentrate (p < 0.05). Both the R:C ratio and YFWBT level significantly influenced pH and ammonia–nitrogen (NH3-N) concentrations (p < 0.01). After 24 h, NH3-N ranged from 7.66 to 13.76 mg/dL, rising to 16.44–16.63 mg/dL after 48 h. A significant interaction (p < 0.01) was observed for in vitro dry matter degradability (IVDMD) and in vitro organic matter degradability (IVOMD). Increasing concentrate levels along with YFWBT inclusion improved degradability at both incubation times. The highest IVDMD (64.49%) and IVOMD (65.81%) were recorded at 48 h in the 40:60 R:C ratio with 33% YFWBT. At 48 h, a significant interaction effect (p < 0.05) was also found for total volatile fatty acid (VFA) and propionic acid (C3) concentrations. Total VFA peaked in the 40:60 group with 33% YFWBT (104.31 mM), while the highest C3 concentration (26.22%) was observed in the same R:C group with 66% YFWBT. At 24 h, total VFA was significantly affected by the R:C ratio (p < 0.05), with the lowest values in the 60:40 group and increasing in response to higher concentrate and YFWBT levels. Incorporating YFWBT at 33% in diets with an R:C ratio of 40:60 optimized degradability, indicating its potential as a sustainable alternative to SBM in ruminant nutrition. Full article
Show Figures

Figure 1

20 pages, 23943 KiB  
Article
A Novel Cysteine Protease from Phytolacca americana Cleaves Pokeweed Antiviral Protein Generating Bioactive Fragments
by Annabelle Audet, Jennifer A. Chivers and Katalin A. Hudak
Plants 2025, 14(15), 2441; https://doi.org/10.3390/plants14152441 - 7 Aug 2025
Viewed by 268
Abstract
The apoplast is often the first point of contact between plant cells and invading pathogens, serving as an important site for defense signaling. Pokeweed antiviral protein (PAP), a ribosome-inactivating protein from Phytolacca americana (pokeweed), is localized to the apoplast and is hypothesized to [...] Read more.
The apoplast is often the first point of contact between plant cells and invading pathogens, serving as an important site for defense signaling. Pokeweed antiviral protein (PAP), a ribosome-inactivating protein from Phytolacca americana (pokeweed), is localized to the apoplast and is hypothesized to accompany a pathogen to the cytosol, where it would inactivate host ribosomes to prevent pathogen spread. However, it is not known whether PAP interacts with other proteins in the apoplast. In this study, we identified Phytolacca americana cysteine protease 1 (PaCP1), an extracellular cysteine protease, as a novel PAP interactor. Sequence and structural analyses classified PaCP1 as a member of the C1A subfamily of papain-like cysteine proteases. Immunoprecipitation, mass spectrometry, and yeast two-hybrid analysis showed that PAP specifically binds the mature, active form of PaCP1. Curiously, PaCP1 cleaves PAP at its N- and C-termini, generating peptides that enhance MAPK phosphorylation in pokeweed leaves, indicating their potential role in stress signaling. PaCP1 processing of PAP to generate bioactive peptides diversifies the function of a ribosome-inactivating protein beyond its canonical inhibition of translation. Our findings present a novel extracellular role for PAP and advance our understanding of how protein interactions in the apoplast contribute to plant immune responses. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

22 pages, 4669 KiB  
Article
Metabolomic Insights into the Antimicrobial Effects of Metschnikowia Yeast on Phytopathogens
by Zofia Perek, Sumi Krupa, Joanna Nizioł, Dorota Kręgiel, Tomasz Ruman and Beata Gutarowska
Molecules 2025, 30(15), 3268; https://doi.org/10.3390/molecules30153268 - 4 Aug 2025
Viewed by 226
Abstract
One of the most important features of Metschnikowia pulcherrima is its strong antimicrobial activity against phytopathogens, which makes it a suitable candidate for use in biocontrol during crop cultivation. However, the mechanisms of its antimicrobial activity are not currently well understood. In this [...] Read more.
One of the most important features of Metschnikowia pulcherrima is its strong antimicrobial activity against phytopathogens, which makes it a suitable candidate for use in biocontrol during crop cultivation. However, the mechanisms of its antimicrobial activity are not currently well understood. In this study, we used metabolomic methods to investigate the possible mechanisms of antimicrobial activity by M. pulcherrima against phytopathogenic fungi. First, we tested the antimicrobial activity of five selected isolates against eleven phytopathogenic molds. Based on the results, selected yeast–pathogen co-cultures were cultivated on liquid and solid media. The supernatants from the liquid co-cultures were analyzed using the UHPLC-QToF-UHRMS and MS/MS methods. Co-culture growth on solid agar media was examined using the LARAPPI/CI MSI method. The yeast exhibited strong antagonism toward the mold phytopathogens. The LARAPPI/CI MSI method revealed the presence of various compounds with potential antifungal activity. The complex UHPLC-QToF-UHRMS analysis confirmed that the metabolic response of M. pulcherrima depends on specific yeast–pathogen interactions. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Graphical abstract

14 pages, 4690 KiB  
Article
Systematic Analysis of Dof Gene Family in Prunus persica Unveils Candidate Regulators for Enhancing Cold Tolerance
by Zheng Chen, Xiaojun Wang, Juan Yan, Zhixiang Cai, Binbin Zhang, Jianlan Xu, Ruijuan Ma, Mingliang Yu and Zhijun Shen
Int. J. Mol. Sci. 2025, 26(15), 7509; https://doi.org/10.3390/ijms26157509 - 4 Aug 2025
Viewed by 215
Abstract
Late-spring frost events severely damage low-chill peach blossoms, causing significant yield losses. Although 5-aminolevulinic acid (ALA) enhances cold tolerance through the PpC3H37-PpWRKY18 module, the regulatory mechanism of ALA on PpC3H37 remains to be elucidated. Using yeast one-hybrid screening with the PpC3H37 promoter as [...] Read more.
Late-spring frost events severely damage low-chill peach blossoms, causing significant yield losses. Although 5-aminolevulinic acid (ALA) enhances cold tolerance through the PpC3H37-PpWRKY18 module, the regulatory mechanism of ALA on PpC3H37 remains to be elucidated. Using yeast one-hybrid screening with the PpC3H37 promoter as bait, we identified PpDof9 as a key interacting transcription factor. A genome-wide analysis revealed 25 PpDof genes in peaches (Prunus persica). These genes exhibited variable physicochemical properties, with most proteins predicted as nuclear-localized. Subcellular localization experiments in tobacco revealed that PpDof9 was localized to the nucleus, consistent with predictions. A synteny analysis indicated nine segmental duplication pairs and tandem duplications on chromosomes 5 and 6, suggesting duplication events drove family expansion. A conserved motif analysis confirmed universal presence of the Dof domain (Motif 1). Promoter cis-element screening identified low-temperature responsive (LTR) elements in 12 PpDofs, including PpDof1, PpDof8, PpDof9, and PpDof25. The quantitative real-time PCR (qRT-PCR) results showed that PpDof1, PpDof8, PpDof9, PpDof15, PpDof16, and PpDof25 were significantly upregulated under low-temperature stress, and this upregulation was further enhanced by ALA pretreatment. Our findings demonstrate ALA-mediated modulation of specific PpDof TFs in cold response and provide candidates (PpDof1, PpDof9, PpDof8, PpDof25) for enhancing floral frost tolerance in peaches. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

20 pages, 6058 KiB  
Article
The GPI-Anchored Aspartyl Proteases Encoded by the YPS1 and YPS7 Genes of Candidozyma auris and Their Role Under Stress Conditions
by Alvaro Vidal-Montiel, Daniel Clark-Flores, Eulogio Valentín-Gómez, Juan Pedro Luna-Arias, Erika Rosales-Cruz, César Hernández-Rodríguez, Lourdes Villa-Tanaca and Margarita Juárez-Montiel
J. Fungi 2025, 11(8), 573; https://doi.org/10.3390/jof11080573 - 1 Aug 2025
Viewed by 482
Abstract
Candidozyma auris is a multidrug-resistant, thermo- and osmotolerant yeast capable of persisting on biotic and abiotic surfaces, attributes likely linked to its cell wall composition. Here, seven putative genes encoding yapsins, aspartyl proteases GPI-anchored to the membrane or cell wall, were identified in [...] Read more.
Candidozyma auris is a multidrug-resistant, thermo- and osmotolerant yeast capable of persisting on biotic and abiotic surfaces, attributes likely linked to its cell wall composition. Here, seven putative genes encoding yapsins, aspartyl proteases GPI-anchored to the membrane or cell wall, were identified in the genomes of C. auris CJ97 and 20-1498, from clades III and IV, respectively. The C. auris YPS1 gene is orthologous to the SAP9 of C. albicans. The YPS7 gene is orthologous to YPS7 in C. glabrata and S. cerevisiae, so that they may share similar roles. An in silico analysis suggested an interaction between pepstatin and the catalytic domain of Yps1 and Yps7. Although this inhibitor, when combined with caffeine, had a subtle effect on the growth of C. auris, it induced alterations in the cell wall. CauYPS1 and CauYPS7 expression increased under nutrient starvation and NaCl, and at 42 °C. The transcriptome of the 20-1498 strain suggests that autophagy may play a role in thermal stress, probably degrading deleterious proteins or maintaining cell wall and vacuolar homeostasis. Therefore, CauYps1 and CauYps7 may play a role in the cell wall integrity of C. auris in stress conditions, and they could be a target of new antifungal or antivirulence agents. Full article
Show Figures

Graphical abstract

15 pages, 1130 KiB  
Article
Biotechnological Potential of Weizmannia ginsengihumi in the Conversion of Xylose into Lactic Acid: A Sustainable Strategy
by Larissa Provasi Santos, Ingrid Yoshimura, Fernanda Batista de Andrade and Jonas Contiero
Fermentation 2025, 11(8), 447; https://doi.org/10.3390/fermentation11080447 - 31 Jul 2025
Viewed by 435
Abstract
The aim of this study was to isolate Weizmannia spp. that produce lactic acid from xylose and use an experimental design to optimize the production of the metabolite. After isolation, the experiments were conducted in xylose-yeast extract-peptone medium. The identification of isolates was [...] Read more.
The aim of this study was to isolate Weizmannia spp. that produce lactic acid from xylose and use an experimental design to optimize the production of the metabolite. After isolation, the experiments were conducted in xylose-yeast extract-peptone medium. The identification of isolates was performed using the 16S rDNA PCR technique, followed by sequencing. A central composite rotatable design (CCRD) was used to optimize the concentrations of the carbon source (xylose), nitrogen source (yeast extract and peptone), and sodium acetate. Two strains were considered promising for lactic acid production, with W. coagulans BLMI achieving greater lactic acid production under anaerobic conditions (21.93 ± 0.9 g·L−1) and a yield of 69.18%, while the strain W. ginsengihumi BMI was able to produce 19.79 ± 0.8 g·L−1, with a yield of 70.46%. CCRD was used with the W. ginsengihumi strain due to the lack of records in the literature on its use for lactic acid production. The carbon and nitrogen sources influenced the response, but the interactions of the variables were nonsignificant (p < 0.05). The response surface analysis indicated that the optimal concentrations of carbon and nitrogen sources were 32.5 and 3.0 g·L−1, respectively, without the need to add sodium acetate to the culture medium, leading to the production of 20.02 ± 0.19 g·L−1, productivity of 0.55 g/L/h after 36 h of fermentation, and a residual sugar concentration of 12.59 ± 0.51 g·L−1. These results demonstrate the potential of W. ginsengihumi BMI for the production of lactic acid by xylose fermentation since it is carried out at 50 °C, indicating a path for future studies Full article
Show Figures

Figure 1

19 pages, 8805 KiB  
Article
Effects of Inactive Yeast Biostimulants on Mechanical and Color Attributes of Wine Grape Cultivars
by Giovanni Gentilesco, Vittorio Alba, Giovanna Forte, Rosa Anna Milella, Giuseppe Roselli and Mauro Eugenio Maria D’Arcangelo
Sustainability 2025, 17(15), 6958; https://doi.org/10.3390/su17156958 - 31 Jul 2025
Viewed by 228
Abstract
Background: Biostimulants naturally improve plant growth, stress tolerance, and nutrient use efficiency and activate defenses by increasing protective metabolites (phenols, anthocyanins) in grapes. In viticulture, especially when using inactive yeasts, they modulate genetic expression and improve the skin resistance, color, and aroma profile [...] Read more.
Background: Biostimulants naturally improve plant growth, stress tolerance, and nutrient use efficiency and activate defenses by increasing protective metabolites (phenols, anthocyanins) in grapes. In viticulture, especially when using inactive yeasts, they modulate genetic expression and improve the skin resistance, color, and aroma profile of wine grapes in line with sustainable practices. Methods: Two wine grape cultivars, Merlot and Cabernet Sauvignon, were sprayed with the inactive yeast Saccharomyces cerevisiae in a single treatment in pre-veraison or in a double treatment in pre-veraison and veraison. Berry weight, must, total polyphenols, anthocyanins, and mechanical and colorimetric properties were measured on fresh grapes. Results: Two-way ANOVA revealed that titratable acidity (TA), pH, and total polyphenol content (TPC) were not affected, while mean berry weight and anthocyanin content varied by cultivar, treatment, and interaction; total soluble solids (TSS) differed only by cultivar. Inactive yeasts reduced weight in the single-treatment thesis but stabilized it in the double-treatment one; anthocyanins decreased in Cabernet Sauvignon but increased in Merlot. Mechanical and colorimetric analyses showed cultivar-dependent responses, with significant improvements in elasticity, skin thickness, and hue of berries, especially in Merlot when the treatment was applied twice. Conclusions: Inactive yeasts (IYs) showed an effect on the weight of the berries, the anthocyanins, the mechanics, and the color; Merlot significantly improved skin thickness, elasticity, and hue; and Cabernet remained less reactive to treatments. Full article
Show Figures

Graphical abstract

14 pages, 6242 KiB  
Article
Characteristic Analysis of Ictalurus punctatus STING and Screening Validation of Interacting Proteins with Ictalurid herpesvirus 1
by Lihui Meng, Shuxin Li, Hongxun Chen, Sheng Yuan and Zhe Zhao
Microorganisms 2025, 13(8), 1780; https://doi.org/10.3390/microorganisms13081780 - 30 Jul 2025
Viewed by 363
Abstract
The innate immune response is an important defense against invading pathogens. Stimulator of interferon gene (STING) plays an important role in the cyclic GMP-AMP synthase (cGAS)-mediated activation of type I IFN responses. However, some viruses have evolved the ability to inhibit the function [...] Read more.
The innate immune response is an important defense against invading pathogens. Stimulator of interferon gene (STING) plays an important role in the cyclic GMP-AMP synthase (cGAS)-mediated activation of type I IFN responses. However, some viruses have evolved the ability to inhibit the function of STING and evade the host antiviral defenses. Understanding both the mechanism of action and the viruses targets of STING effector is important because of their importance to evade the host antiviral defenses. In this study, the STING (IpSTING) of Ictalurus punctatus was first identified and characterized. Subsequently, the yeast two-hybrid system (Y2HS) was used to screen for proteins from channel catfish virus (CCV, Ictalurid herpesvirus 1) that interact with IpSTING. The ORFs of the CCV were cloned into the pGBKT7 vector and expressed in the AH109 yeast strain. The bait protein expression was validated by autoactivation, and toxicity investigation compared with control (AH109 yeast strain transformed with empty pGBKT7 and pGADT7 vector). Two positive candidate proteins, ORF41 and ORF65, were identified through Y2HS screening as interacting with IpSTING. Their interactions were further validated using co-immunoprecipitation (Co-IP). This represented the first identification of interactions between IpSTING and the CCV proteins ORF41 and ORF65. The data advanced our understanding of the functions of ORF41 and ORF65 and suggested that they might contribute to the evasion of host antiviral defenses. However, the interaction mechanism between IpSTING, and CCV proteins ORF41 and ORF65 still needs to be further explored. Full article
Show Figures

Figure 1

16 pages, 3171 KiB  
Article
A Simple and Rapid Synthesis of Spherical Silver Phosphate (Ag3PO4) and Its Antimicrobial Activity in Plant Tissue Culture
by Nongnuch Laohavisuti, Banjong Boonchom, Pesak Rungrojchaipon, Wimonmat Boonmee, Somkiat Seesanong and Sirichet Punthipayanon
Int. J. Mol. Sci. 2025, 26(15), 7371; https://doi.org/10.3390/ijms26157371 - 30 Jul 2025
Viewed by 354
Abstract
A simple and rapid precipitation process was successfully employed to prepare silver phosphate (SP, Ag3PO4). Two different phosphate sources: diammonium hydrogen phosphate ((NH4)2HPO4) and dipotassium hydrogen phosphate (K2HPO4) were [...] Read more.
A simple and rapid precipitation process was successfully employed to prepare silver phosphate (SP, Ag3PO4). Two different phosphate sources: diammonium hydrogen phosphate ((NH4)2HPO4) and dipotassium hydrogen phosphate (K2HPO4) were applied separately as the precursor, obtaining ((NH4)2HPO4) and K2HPO4 derived SP powders, named SP-A or SP-P, respectively. Fourier transform infrared (FTIR) spectra pointed out the vibrational characteristics of P–O and O–P–O interactions, confirming the presence of the PO43– functional group for SP. X-ray diffraction (XRD) patterns revealed that the SP crystallized in a cubic crystal structure. Whereas the field emission scanning electron microscope (FESEM) exposed spherical SP particles. The potentially antibacterial activity of SP-A and SP-P against bacterial Bacillus stratosphericus, yeast Meyerozyma guilliermondii, and fungal Phanerodontia chrysosporium was subsequently investigated. All studied microorganisms were recovered and isolated from the aquatic plant during the tissue culture process. The preliminary result of the antimicrobial test revealed that SP-A has higher antimicrobial activity than SP-P. The superior antimicrobial efficiency of SP-A compared to SP-P may be attributed to its purity and crystallite size, which provide a higher surface area and more active sites. In addition, the presence of potassium-related impurities in SP-P could have negatively affected its antimicrobial performance. These findings suggest that SP holds potential as an antimicrobial agent for maintaining sterility in tissue cultures, particularly in aquatic plant systems. The growth of both B. stratosphericus and M. guilliermondii was suppressed effectively at 30 ppm SP-A, whereas 10 ppm of SP-A can suppress P. chrysosporium development. This present work also highlights the potential of SP at very low concentrations (10–30 ppm) for utilization as an effective antimicrobial agent in tissue culture, compared to a commercial antimicrobial agent, viz., acetic acid, at the same concentration. Full article
(This article belongs to the Special Issue Antimicrobial Materials: Molecular Developments and Applications)
Show Figures

Figure 1

Back to TopTop