Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (206)

Search Parameters:
Keywords = yaw moment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3379 KiB  
Article
Research on Electric Vehicle Differential System Based on Vehicle State Parameter Estimation
by Huiqin Sun and Honghui Wang
Vehicles 2025, 7(3), 80; https://doi.org/10.3390/vehicles7030080 - 30 Jul 2025
Viewed by 220
Abstract
To improve the stability and safety of electric vehicles during medium-to-high-speed cornering, this paper investigates torque differential control for dual rear-wheel hub motor drive systems, extending beyond traditional speed control based on the Ackermann steering model. A nonlinear three-degree-of-freedom vehicle dynamics model incorporating [...] Read more.
To improve the stability and safety of electric vehicles during medium-to-high-speed cornering, this paper investigates torque differential control for dual rear-wheel hub motor drive systems, extending beyond traditional speed control based on the Ackermann steering model. A nonlinear three-degree-of-freedom vehicle dynamics model incorporating the Dugoff tire model was established. By introducing the maximum correntropy criterion, an unscented Kalman filter was developed to estimate longitudinal velocity, sideslip angle at the center of mass, and yaw rate. Building upon the speed differential control achieved through Ackermann steering model-based rear-wheel speed calculation, improvements were made to the conventional exponential reaching law, while a novel switching function was proposed to formulate a new sliding mode controller for computing an additional yaw moment to realize torque differential control. Finally, simulations conducted on the Carsim/Simulink platform demonstrated that the maximum correntropy criterion unscented Kalman filter effectively improves estimation accuracy, achieving at least a 22.00% reduction in RMSE metrics compared to conventional unscented Kalman filter. With torque control exhibiting higher vehicle stability than speed control, the RMSE values of yaw rate and sideslip angle at the center of mass are reduced by at least 20.00% and 4.55%, respectively, enabling stable operation during medium-to-high-speed cornering conditions. Full article
Show Figures

Figure 1

18 pages, 3583 KiB  
Article
Coordinated Slip Ratio and Yaw Moment Control for Formula Student Electric Racing Car
by Yuxing Bai, Weiyi Kong, Liguo Zang, Weixin Zhang, Chong Zhou and Song Cui
World Electr. Veh. J. 2025, 16(8), 421; https://doi.org/10.3390/wevj16080421 - 26 Jul 2025
Viewed by 206
Abstract
The design and optimization of drive distribution strategies are critical for enhancing the performance of Formula Student electric racing cars, which face demanding operational conditions such as rapid acceleration, tight cornering, and variable track surfaces. Given the increasing complexity of racing environments and [...] Read more.
The design and optimization of drive distribution strategies are critical for enhancing the performance of Formula Student electric racing cars, which face demanding operational conditions such as rapid acceleration, tight cornering, and variable track surfaces. Given the increasing complexity of racing environments and the need for adaptive control solutions, a multi-mode adaptive drive distribution strategy for four-wheel-drive Formula Student electric racing cars is proposed in this study to meet specialized operational demands. Based on the dynamic characteristics of standardized test scenarios (e.g., straight-line acceleration and figure-eight loop), two control modes are designed: slip-ratio-based anti-slip control for longitudinal dynamics and direct yaw moment control for lateral stability. A CarSim–Simulink co-simulation platform is established, with test scenarios conforming to competition standards, including variable road adhesion coefficients (μ is 0.3–0.9) and composite curves. Simulation results indicate that, compared to conventional PID control, the proposed strategy reduces the peak slip ratio to the optimal range of 18% during acceleration and enhances lateral stability in the figure-eight loop, maintaining the sideslip angle around −0.3°. These findings demonstrate the potential for significant improvements in both performance and safety, offering a scalable framework for future developments in racing vehicle control systems. Full article
Show Figures

Graphical abstract

25 pages, 5451 KiB  
Article
Research on the Stability and Trajectory Tracking Control of a Compound Steering Platform Based on Hierarchical Theory
by Huanqin Feng, Hui Jing, Xiaoyuan Zhang, Bing Kuang, Yifan Song, Chao Wei and Tianwei Qian
Electronics 2025, 14(14), 2836; https://doi.org/10.3390/electronics14142836 - 15 Jul 2025
Viewed by 230
Abstract
Compound steering technology has been extensively adopted in military logistics and related applications, owing to its superior maneuverability and enhanced stability compared to conventional systems. To enhance the steering efficiency and dynamic response of distributed-drive unmanned platforms under low driving torque conditions, this [...] Read more.
Compound steering technology has been extensively adopted in military logistics and related applications, owing to its superior maneuverability and enhanced stability compared to conventional systems. To enhance the steering efficiency and dynamic response of distributed-drive unmanned platforms under low driving torque conditions, this study investigates their unique compound steering system. Specifically, a compound steering dynamics model is established, and a hierarchical stability control strategy, along with a model predictive control-based trajectory tracking algorithm, are innovatively proposed. First, a compound steering platform dynamics model is established by combining the Ackermann steering and skid yaw moment methods. Then, a trajectory tracking controller is designed using model predictive control algorithm. Finally, the additional yaw moment is calculated based on the lateral velocity error and yaw rate error, with stability control allocation performed using a fuzzy control algorithm. Comparative hardware-in-the-loop experiments are conducted for compound steering, Ackermann steering, and skid steering. The experimental results show that the compound steering technology enables unmanned platforms to achieve trajectory tracking tasks with a lower torque, faster speed, and higher efficiency. Full article
Show Figures

Figure 1

18 pages, 4099 KiB  
Article
Numerical Study of the Effect of Unsteady Aerodynamic Forces on the Fatigue Load of Yawed Wind Turbines
by Dereje Haile Hirgeto, Guo-Wei Qian, Xuan-Yi Zhou and Wei Wang
Machines 2025, 13(7), 607; https://doi.org/10.3390/machines13070607 - 15 Jul 2025
Viewed by 288
Abstract
The intentional yaw offset of wind turbines has shown potential to redirect wakes, enhancing overall plant power production, but it may increase fatigue loading on turbine components. This study analyzed fatigue loads on the NREL 5 MW reference wind turbine under varying yaw [...] Read more.
The intentional yaw offset of wind turbines has shown potential to redirect wakes, enhancing overall plant power production, but it may increase fatigue loading on turbine components. This study analyzed fatigue loads on the NREL 5 MW reference wind turbine under varying yaw offsets using blade element momentum theory, dynamic blade element momentum, and the converging Lagrange filaments vortex method, all implemented in OpenFAST. Simulations employed yaw angles from −40° to 40°, with turbulent inflow generated by TurbSim, an OpenFAST tool for realistic wind conditions. Fatigue loads were calculated according to IEC 61400-1 design load case 1.2 standards, using thirty simulations per yaw angle across five wind speed bins. Damage equivalent load was evaluated via rainflow counting, Miner’s rule, and Goodman correction. Results showed that the free vortex method, by modeling unsteady aerodynamic forces, yielded distinct differences in damage equivalent load compared to the blade element method in yawed conditions. The free vortex method predicted lower damage equivalent load for the low-speed shaft bending moment at negative yaw offsets, attributed to its improved handling of unsteady effects that reduce load variations. Conversely, for yaw offsets above 20°, the free vortex method indicated higher damage equivalent for low-speed shaft torque, reflecting its accurate capture of dynamic inflow and unsteady loading. These findings highlight the critical role of unsteady aerodynamics in fatigue load predictions and demonstrate the free vortex method’s value within OpenFAST for realistic damage equivalent load estimates in yawed turbines. The results emphasize the need to incorporate unsteady aerodynamic models like the free vortex method to accurately assess yaw offset impacts on wind turbine component fatigue. Full article
(This article belongs to the Special Issue Aerodynamic Analysis of Wind Turbine Blades)
Show Figures

Figure 1

17 pages, 2210 KiB  
Article
An Adaptive Vehicle Stability Enhancement Controller Based on Tire Cornering Stiffness Adaptations
by Jianbo Feng, Zepeng Gao and Bingying Guo
World Electr. Veh. J. 2025, 16(7), 377; https://doi.org/10.3390/wevj16070377 - 4 Jul 2025
Viewed by 247
Abstract
This study presents an adaptive integrated chassis control strategy for enhancing vehicle stability under different road conditions, specifically through the real-time estimation of tire cornering stiffness. A hierarchical control architecture is developed, combining active front steering (AFS) and direct yaw moment control (DYC). [...] Read more.
This study presents an adaptive integrated chassis control strategy for enhancing vehicle stability under different road conditions, specifically through the real-time estimation of tire cornering stiffness. A hierarchical control architecture is developed, combining active front steering (AFS) and direct yaw moment control (DYC). A recursive regularized weighted least squares algorithm is designed to estimate tire cornering stiffness from measurable vehicle states, eliminating the need for additional tire sensors. Leveraging this estimation, an adaptive sliding mode controller (ASMC) is proposed in the upper layer, where a novel self-tuning mechanism adjusts control parameters based on tire saturation levels and cornering stiffness variation trends. The lower-layer controller employs a weighted least squares allocation method to distribute control efforts while respecting physical and friction constraints. Co-simulations using MATLAB 2018a/Simulink and CarSim validate the effectiveness of the proposed framework under both high- and low-friction scenarios. Compared with conventional ASMC and DYC strategies, the proposed controller exhibits improved robustness, reduced sideslip, and enhanced trajectory tracking performance. The results demonstrate the significance of the real-time integration of tire dynamics into chassis control in improving vehicle handling and stability. Full article
Show Figures

Figure 1

27 pages, 7170 KiB  
Article
Hierarchical Torque Vectoring Control Strategy of Distributed Driving Electric Vehicles Considering Stability and Economy
by Shuiku Liu, Haichuan Zhang, Shu Wang and Xuan Zhao
Sensors 2025, 25(13), 3933; https://doi.org/10.3390/s25133933 - 24 Jun 2025
Viewed by 381
Abstract
Coordinating vehicle handling stability and energy consumption remains a key challenge for distributed driving electric vehicles (DDEVs). In this paper, a hierarchical torque vectoring control strategy is proposed to address this issue. First, a tire road friction coefficient (TRFC) estimator based on the [...] Read more.
Coordinating vehicle handling stability and energy consumption remains a key challenge for distributed driving electric vehicles (DDEVs). In this paper, a hierarchical torque vectoring control strategy is proposed to address this issue. First, a tire road friction coefficient (TRFC) estimator based on the fusion of vision and dynamic is developed to accurately and promptly obtain the TRFC in the upper layer. Second, a direct yaw moment control (DYC) strategy based on the adaptive model predictive control (MPC) is designed to ensure vehicle stability in the middle layer, where tire cornering stiffness is updated dynamically based on the estimated TRFC. Then, the lower layer develops the torque vectoring allocation controller, which comprehensively considers handling stability and energy consumption and distributes the driving torques among the wheels. The weight between stability and economy is coordinated according to the stability boundaries derived from an extended phase-plane correlated with the TRFC. Finally, Hardware-in-the-Loop (HIL) simulations are conducted to validate the effectiveness of the proposed strategy. The results demonstrate that compared with the conventional stability torque distribution strategy, the proposed control strategy not only reduces the RMSE of sideslip angle by 44.88% but also decreases the motor power consumption by 24.45% under DLC conditions, which indicates that the proposed method can significantly enhance vehicle handling stability while reducing energy consumption. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

30 pages, 5700 KiB  
Article
Two-Stage Global–Local Aerodynamic/Stealth Optimization Method Based on Space Decomposition
by Wei Zhang, Lin Zhou, Bowen Shu, Xian Chen, Zhenghong Gao and Jiangtao Huang
Aerospace 2025, 12(6), 488; https://doi.org/10.3390/aerospace12060488 - 29 May 2025
Viewed by 399
Abstract
The design of the flying wing airfoil must consider aerodynamic stealth and trim requirements, with their coupling exacerbating the complexity of the design problem by introducing multiple local minimum points in design space. In addition, it would need a broad space with high [...] Read more.
The design of the flying wing airfoil must consider aerodynamic stealth and trim requirements, with their coupling exacerbating the complexity of the design problem by introducing multiple local minimum points in design space. In addition, it would need a broad space with high dimensionality to obtain the ideal result, and expansion of design space could lead to more local minimum points, causing significant challenges to traditional optimization design methods. A Two-Stage Global–Local Constrained Optimization Method (TGLCOM) was proposed to address these issues. The parametric space was divided into a large-scale global space and a high-dimensional local space. A surrogate-based global constrained optimization method was applied in the large-scale global space, followed by a gradient-based algorithm in the high-dimensional local space to refine the design and obtain the global optima. The efficiency and robustness of the proposed TGLCOM were verified through the airfoil and flying wing layout aero/stealth design. The results indicated a minor conflict between the RCS drag and pitch moment performance. Moreover, the stealth design of the airfoil improved the stealth performance of the flying wing layout in both the yaw and pitch directions. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

17 pages, 4243 KiB  
Article
Numerical Analysis of Hydrodynamic Interactions Based on Ship Types
by Chun-Ki Lee and Su-Hyung Kim
J. Mar. Sci. Eng. 2025, 13(6), 1075; https://doi.org/10.3390/jmse13061075 - 29 May 2025
Viewed by 387
Abstract
To ensure safe navigation, ship operators must not only meet the criteria defined in the International Maritime Organization (IMO) maneuverability standards but also understand maneuvering characteristics in restricted waters. This study numerically analyzed the hydrodynamic lateral forces and yaw moments acting on a [...] Read more.
To ensure safe navigation, ship operators must not only meet the criteria defined in the International Maritime Organization (IMO) maneuverability standards but also understand maneuvering characteristics in restricted waters. This study numerically analyzed the hydrodynamic lateral forces and yaw moments acting on a stern trawler, a container ship, and a very large crude carrier (VLCC) with different hull forms as they navigated near a semi-circular bank wall. The effects of varying bank radius, lateral clearance, and water depth were examined. The results showed that the VLCC experienced the strongest attractive lateral force, while the stern trawler exhibited the most significant yaw moment. The hydrodynamic interaction patterns of the stern trawler and container ship were similar, whereas the VLCC displayed distinct behavior due to its fuller hull and greater inertia. These findings demonstrate that hull geometry significantly influences hydrodynamic interactions near boundaries, and the degree of response varies by ship type. The results provide valuable reference data for improving navigation safety in confined waters and preventing marine accidents such as collisions and groundings. This study contributes to a better understanding of ship–bank interaction and offers a theoretical basis for maneuvering assessments of various ship types in restricted maritime environments. Full article
(This article belongs to the Special Issue Models and Simulations of Ship Manoeuvring)
Show Figures

Figure 1

36 pages, 44618 KiB  
Article
Analysis of the Accuracy of a Body-Force Propeller Model and a Discretized Propeller Model in RANS Simulations of the Flow Around a Maneuvering Ship
by Long Jiang, Jianxi Yao and Zuyuan Liu
J. Mar. Sci. Eng. 2025, 13(4), 788; https://doi.org/10.3390/jmse13040788 - 15 Apr 2025
Viewed by 436
Abstract
Currently, the RANS (Reynolds-Averaged Navier–Stokes) method is widely recognized as a prevalent approach for computing ship maneuvering forces and moments. Obtaining hydrodynamic derivatives using pure RANS is time-consuming, especially with rotating propellers. A reasonable simplification of the propeller is usually necessary to improve [...] Read more.
Currently, the RANS (Reynolds-Averaged Navier–Stokes) method is widely recognized as a prevalent approach for computing ship maneuvering forces and moments. Obtaining hydrodynamic derivatives using pure RANS is time-consuming, especially with rotating propellers. A reasonable simplification of the propeller is usually necessary to improve simulation efficiency. The ITTC suggests both the discretized propeller model (DPM) and the body-force model (BFM) for RANS simulations. While BFM offers computational efficiency, it may not accurately represent large-amplitude ship maneuvers. It is quite significant to figure out how BFM affects numerical accuracy. This study compares the DPM and a very simple BFM in RANS simulations of the KCS (KRISO Container Ship), focusing on static rudder, drift, and circle motion tests. The main purpose is to check the differences between the simulated results by using the BFM and DPM. While side forces and yaw moments from both models are similar, discrepancies in longitudinal forces increase with higher rudder angles, drift angles, or turning rates. Errors in side forces and yaw moments are under 10% for both models, compared with experimental data. But BFM’s longitudinal force errors exceed 20% at large motion amplitudes, indicating reduced accuracy compared to DPM. The results of the BFM method are subject to two main sources of error. First, the lack of physical shape representation for the propeller blades leads to the absence of lather force during rotation. This in turn results in an inaccurate prediction of the interaction between the propeller blade root or blade tip leakage vortices and the rudder. Second, the limitations of the adopted model prevent it from accurately providing the thrust and torque generated by the propeller under actual operating conditions. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

36 pages, 8652 KiB  
Article
Investigation of Directionality Effect for 10 MW Monopile Offshore Wind Turbine Excited by Wind, Wave, and Earthquakes
by Renqiang Xi, Qingxuan Zhou, Yongqing Lai and Wanli Yu
J. Mar. Sci. Eng. 2025, 13(4), 727; https://doi.org/10.3390/jmse13040727 - 5 Apr 2025
Viewed by 530
Abstract
Offshore wind turbines (OWTs) exhibit inherent directional variations in inertia, stiffness, and damping properties. This study examines the directionality effect of a 10 MW monopile-supported OWT using an integrated rotor-nacelle assembly (RNA) and support structure model. Through combined theoretical analysis and numerical simulations, [...] Read more.
Offshore wind turbines (OWTs) exhibit inherent directional variations in inertia, stiffness, and damping properties. This study examines the directionality effect of a 10 MW monopile-supported OWT using an integrated rotor-nacelle assembly (RNA) and support structure model. Through combined theoretical analysis and numerical simulations, this paper systematically investigates the following: (1) the anisotropic characteristics of RNA rotational inertia and blade stiffness, (2) the natural frequency and aerodynamic damping properties of the system, and (3) the directional mechanisms governing seismic responses of MOWTs during parked and running states. The key findings reveal substantial structural anisotropies. The second-order natural frequencies display a 15% disparity between fore–aft (1.43 Hz) and side–side (1.24 Hz) tower modes. The blade frequencies show over 50% differences between flap-wise (0.60 Hz/1.69 Hz) and edge-wise (0.91 Hz/2.71 Hz) modes in first-/second-order vibrations. Moreover, the aerodynamic damping ratios show marked directional contrast, with first-mode fore–aft damping (8%) exceeding side–side values (1.11%) by a factor of 7.2. Consequently, the seismic input directionality induces peak yaw-bearing bending moment variations of 38% (running condition) and 73% (parked condition). The directional effects in parked OWTs are attributed to RNA inertia anisotropy and blade stiffness disparities, while the running condition demonstrates combined influences from inherent system parameters (inertia, stiffness, aerodynamic damping) and wind–wave environmental loading. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

23 pages, 2649 KiB  
Article
Transonic Dynamic Stability Derivative Estimation Using Computational Fluid Dynamics: Insights from a Common Research Model
by Roberta Bottigliero, Viola Rossano and Giuliano De Stefano
Aerospace 2025, 12(4), 304; https://doi.org/10.3390/aerospace12040304 - 3 Apr 2025
Cited by 2 | Viewed by 2065
Abstract
Dynamic stability derivatives are critical parameters in the design of trajectories and attitude control systems for flight vehicles, as they directly affect the divergence behavior of vibrations in an aircraft’s open-loop system when subjected to disturbances. This study focuses on the estimation of [...] Read more.
Dynamic stability derivatives are critical parameters in the design of trajectories and attitude control systems for flight vehicles, as they directly affect the divergence behavior of vibrations in an aircraft’s open-loop system when subjected to disturbances. This study focuses on the estimation of dynamic stability derivatives using a computational fluid dynamics (CFD)-based force oscillation method. A transient Reynolds-averaged Navier–Stokes solver is utilized to compute the time history of aerodynamic moments for an aircraft model oscillating about its center of gravity. The NASA Common Research Model serves as the reference geometry for this investigation, which explores the impact of pitching, rolling, and yawing oscillations on aerodynamic performance. Periodic oscillatory motions are imposed while using a dynamic mesh technique for CFD analysis. Preliminary steady-state simulations are conducted to validate the computational approach, ensuring the reliability and accuracy of the applied CFD model for transonic flow. The primary goal of this research is to confirm the efficacy of CFD in accurately predicting stability derivative values, underscoring its advantages over traditional wind tunnel experiments at high angles of attack. The study highlights the accuracy of CFD predictions and provides detailed insights into how different oscillations affect aerodynamic performance. This approach showcases the potential for significant cost and time savings in the estimation of dynamic stability derivatives. Full article
(This article belongs to the Special Issue Experimental Fluid Dynamics and Fluid-Structure Interactions)
Show Figures

Figure 1

29 pages, 7936 KiB  
Article
Dynamic Response of a 15 MW Jacket-Supported Offshore Wind Turbine Excited by Different Loadings
by Renqiang Xi, Lijie Yu, Xiaowei Meng and Wanli Yu
Energies 2025, 18(7), 1738; https://doi.org/10.3390/en18071738 - 31 Mar 2025
Viewed by 841
Abstract
This study investigates the dynamic behavior of a jacket-supported offshore wind turbine (JOWT) by developing its substructure and controller tailored for the IEA 15 MW reference wind turbine. A fully coupled numerical model integrating the turbine, jacket, and pile is established to analyze [...] Read more.
This study investigates the dynamic behavior of a jacket-supported offshore wind turbine (JOWT) by developing its substructure and controller tailored for the IEA 15 MW reference wind turbine. A fully coupled numerical model integrating the turbine, jacket, and pile is established to analyze the natural frequencies and dynamic responses of the system under wind–wave–current loading and seismic excitations. Validation studies confirm that the proposed 15 MW JOWT configuration complies with international standards regarding natural frequency constraints, bearing capacity requirements, and serviceability limit state criteria. Notably, the fixed-base assumption leads to overestimations of natural frequencies by 32.4% and 13.9% in the fore-aft third- and fourth-order modes, respectively, highlighting the necessity of soil–structure interaction (SSI) modeling. During both operational and extreme wind–wave conditions, structural responses are governed by first-mode vibrations, with the pile-head axial forces constituting the primary resistance against jacket overturning moments. In contrast, seismic excitations conversely trigger significantly higher-mode activation in the support structure, where SSI effects substantially influence response magnitudes. Comparative analysis demonstrates that neglecting SSI underestimates peak seismic responses under the BCR (Bonds Corner Record of 1979 Imperial Valley Earthquake) ground motion by 29% (nacelle acceleration), 21% (yaw-bearing bending moment), 42% (yaw-bearing shear force), and 17% (tower-base bending moment). Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

22 pages, 14916 KiB  
Article
An Adaptive Compound Control Strategy of Electric Vehicles for Coordinating Lateral Stability and Energy Efficiency
by Xia Hua, Kai Xiang, Xiangle Cheng and Xiaobin Ning
Appl. Sci. 2025, 15(6), 3347; https://doi.org/10.3390/app15063347 - 19 Mar 2025
Viewed by 420
Abstract
To enhance the balance between lateral stability and energy efficiency, we propose an adaptive compound controller based on phase plane analysis for four-wheel independent drive electric vehicles (4WID-EVs). The adaptive stability and energy-saving controller (SEC) is designed with a three-layer structure. The upper-layer [...] Read more.
To enhance the balance between lateral stability and energy efficiency, we propose an adaptive compound controller based on phase plane analysis for four-wheel independent drive electric vehicles (4WID-EVs). The adaptive stability and energy-saving controller (SEC) is designed with a three-layer structure. The upper-layer controller employs model predictive control (MPC) to compute the external yaw moment based on the desired yaw rate and side slip angle derived from a reference model. The adaptive-layer controller utilizes a phase plane diagram to evaluate vehicle stability and reduces unnecessary external yaw moment consumption by accounting for the vehicle’s steering state and battery’s state-of-charge (SOC) level. The lower-layer controller implements an optimal torque distribution algorithm to minimize an objective function that considers tire workload, energy consumption, and smooth motor control. Numerical simulations are performed in MATLAB/Simulink using three distinct steering angles to evaluate the performance of the proposed control strategy. At each steering angle, the SEC’s stability and energy efficiency are compared to those of the energy-saving controller (EC) and stability controller (SC) under varying battery charge levels. The results indicate that, at small steering angles, the vehicle operates in a highly stable state, enabling a reduction in the external yaw moment to achieve substantial energy savings. As the steering angle increases, the vehicle approaches a critical stability state, where the external yaw moment is applied to maintain lateral stability. Furthermore, as the SOC decreases, the SEC strategy will increasingly prioritize energy savings. Simulation results verify that the SEC strategy effectively balances lateral stability and energy savings while maintaining consistent performance across a range of operating conditions. Full article
Show Figures

Figure 1

19 pages, 6663 KiB  
Article
The Fault-Tolerant Control Strategy for the Steering System Failure of Four-Wheel Independent By-Wire Steering Electric Vehicles
by Qianlong Han, Chengye Liu, Jingbo Zhao and Haimei Liu
World Electr. Veh. J. 2025, 16(3), 183; https://doi.org/10.3390/wevj16030183 - 18 Mar 2025
Viewed by 705
Abstract
The drive torque of each wheel hub motor of a four-wheel independent wire-controlled steering electric vehicle is independently controllable, representing a typical over-actuated system. Through optimizing the distribution of the drive torque of each wheel, fault-tolerant control can be realized. In this paper, [...] Read more.
The drive torque of each wheel hub motor of a four-wheel independent wire-controlled steering electric vehicle is independently controllable, representing a typical over-actuated system. Through optimizing the distribution of the drive torque of each wheel, fault-tolerant control can be realized. In this paper, the four-wheel independent wire-controlled steering electric vehicle is taken as the research object, aiming at the collaborative control problem of trajectory tracking and yaw stability when the actuator of the by-wire steering system fails, a fault-tolerant control method based on the synergy of differential steering and direct yaw moment is proposed. This approach adopts a hierarchical control system. The front wheel controller predicts the necessary steering angle in accordance with a linear model and addresses the requirements of the front wheels and additional torque. Subsequently, considering the uncertainties in the drive control system and the complexities of the road obstacle model, the differential steering torque is computed via the sliding mode control method; the lower-level controller implements the torque optimization distribution strategy based on the quadratic programming algorithm. Finally, the validity of this approach under multiple working conditions was verified via CarSim 2019 and MATLAB R2023b/Simulink simulation experiments. Full article
Show Figures

Figure 1

24 pages, 6773 KiB  
Article
Coordinated Control Strategy for Stability Control and Trajectory Tracking with Wheel-Driven Autonomous Vehicles Under Harsh Situations
by Gang Liu and Wensheng Shao
World Electr. Veh. J. 2025, 16(3), 163; https://doi.org/10.3390/wevj16030163 - 11 Mar 2025
Cited by 1 | Viewed by 733
Abstract
A coordinated strategy is proposed to prevent interference between trajectory tracking control and stability control in wheel-driven autonomous vehicles. A tire cornering stiffness estimate model is developed using the recursive least squares approach with a forgetting factor (FFRLS), resulting in precise estimation of [...] Read more.
A coordinated strategy is proposed to prevent interference between trajectory tracking control and stability control in wheel-driven autonomous vehicles. A tire cornering stiffness estimate model is developed using the recursive least squares approach with a forgetting factor (FFRLS), resulting in precise estimation of tire cornering stiffness. An adaptive trajectory tracking control is developed, utilizing real-time updates of tire cornering stiffness; for the direct yaw moment required for stability control, an integral sliding-mode control is adopted, and the chatter problem of the integral sliding-mode controller is optimized by a fuzzy controller. The coordinated control of trajectory tracking and vehicle stability is ultimately attained through the application of the normalized stability index. The method’s practicality is validated by the hardware-in-the-loop simulation platform. Full article
Show Figures

Figure 1

Back to TopTop