Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = xylose/glucose isomerase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 12770 KiB  
Review
Engineering Xylose Isomerase for Industrial Applications
by Ki Hyun Nam
Catalysts 2024, 14(9), 597; https://doi.org/10.3390/catal14090597 - 5 Sep 2024
Cited by 2 | Viewed by 2617
Abstract
Xylose isomerase (XI), also known as glucose isomerase, is an aldose isomerase that converts D-glucose to D-fructose and D-xylose to D-xylulose. This enzyme is widely used in the production of high-fructose corn syrup and bioethanol. Enhancing the efficiency of XI is critical for [...] Read more.
Xylose isomerase (XI), also known as glucose isomerase, is an aldose isomerase that converts D-glucose to D-fructose and D-xylose to D-xylulose. This enzyme is widely used in the production of high-fructose corn syrup and bioethanol. Enhancing the efficiency of XI is critical for its use in industrial applications. To improve the enzymatic efficiency of XI in the desired reaction environment, various protein engineering studies have used rational engineering and directed evolution. This review introduces the molecular features and structural studies of XI. Additionally, it provides a structural analysis of the functional characteristics of the engineering sites discovered through biochemical and computational experiments in engineered XI research. This review will offer crucial insights for future XI engineering aimed at enhancing its industrial applications. Full article
(This article belongs to the Special Issue New Trends in Industrial Biocatalysis, 2nd Edition)
Show Figures

Graphical abstract

14 pages, 2826 KiB  
Article
Structural Analysis of Xylose Isomerase from Streptomyces avermitilis
by Ki Hyun Nam
Crystals 2024, 14(5), 446; https://doi.org/10.3390/cryst14050446 - 7 May 2024
Cited by 3 | Viewed by 1884
Abstract
Xylose isomerase (XI, also known as glucose isomerase) is an oxidoreductase that interconverts aldoses and ketoses. XI catalyzes the reversible isomerization of D-glucose and D-xylose into D-fructose and D-xylulose, respectively. The molecular function of XI is widely applied in producing high-fructose corn syrup [...] Read more.
Xylose isomerase (XI, also known as glucose isomerase) is an oxidoreductase that interconverts aldoses and ketoses. XI catalyzes the reversible isomerization of D-glucose and D-xylose into D-fructose and D-xylulose, respectively. The molecular function of XI is widely applied in producing high-fructose corn syrup (HFCS) in the food industry and bioethanol from hemicellulose in the biofuel industry. The structural information of XI from diverse strains is important for understanding molecular properties that can provide insights into protein engineering to improve enzyme efficiency. To extend the knowledge of the structural information on XI, the crystal structure of XI from Streptomyces avermitilis (SavXI) was determined at a 2.81 Å resolution. SavXI containing TIM barrel and extended α-helix domains formed the tetrameric assembly. The two metal-binding sites and their coordinating residues showed diverse conformations, providing the structural flexibility of the active site of SavXI. The structural comparison of SavXI and XI homologs exhibited unique metal-binding sites and conformations of the C-terminal α-helix domain. These structural results extend our knowledge of the molecular flexibility and mechanism of the XI family. Full article
(This article belongs to the Section Biomolecular Crystals)
Show Figures

Figure 1

17 pages, 3650 KiB  
Article
Xylose Isomerase Depletion Enhances Virulence of Xanthomonas citri subsp. citri in Citrus aurantifolia
by André Vessoni Alexandrino, Evandro Luis Prieto, Nicole Castro Silva Nicolela, Tamiris Garcia da Silva Marin, Talita Alves dos Santos, João Pedro Maia de Oliveira da Silva, Anderson Ferreira da Cunha, Franklin Behlau and Maria Teresa Marques Novo-Mansur
Int. J. Mol. Sci. 2023, 24(14), 11491; https://doi.org/10.3390/ijms241411491 - 15 Jul 2023
Cited by 2 | Viewed by 1809
Abstract
Citrus canker, caused by the bacterium Xanthomonas citri (Xcc), is one of the most devastating diseases for the citrus industry. Xylose is a constituent of the cell wall of plants, and the ability of Xcc to use this carbohydrate may play a role [...] Read more.
Citrus canker, caused by the bacterium Xanthomonas citri (Xcc), is one of the most devastating diseases for the citrus industry. Xylose is a constituent of the cell wall of plants, and the ability of Xcc to use this carbohydrate may play a role in virulence. Xcc has two genes codifying for xylose isomerase (XI), a bifunctional enzyme that interconverts D-xylose into D-xylulose and D-glucose into D-fructose. The aim of this work was to investigate the functional role of the two putative XI ORFs, XAC1776 (xylA1) and XAC4225 (xylA2), in Xcc pathogenicity. XI-coding genes of Xcc were deleted, and the single mutants (XccΔxylA1 or XccΔxylA2) or the double mutant (XccΔxylA1ΔxylA2) remained viable. The deletion of one or both XI genes (xylA1 and/or xylA2) increased the aggressiveness of the mutants, causing disease symptoms. RT-qPCR analysis of wild strain and xylA deletion mutants grown in vivo and in vitro revealed that the highest expression level of hrpX and xylR was observed in vivo for the double mutant. The results indicate that XI depletion increases the expression of the hrp regulatory genes in Xcc. We concluded that the intracellular accumulation of xylose enhances Xcc virulence. Full article
(This article belongs to the Collection Feature Papers in Molecular Microbiology)
Show Figures

Figure 1

11 pages, 2000 KiB  
Article
Characterization of l-Arabinose Isomerase from Klebsiella pneumoniae and Its Application in the Production of d-Tagatose from d-Galactose
by Kyung-Chul Shin, Min-Ju Seo, Sang Jin Kim, Yeong-Su Kim and Chang-Su Park
Appl. Sci. 2022, 12(9), 4696; https://doi.org/10.3390/app12094696 - 7 May 2022
Cited by 7 | Viewed by 3117
Abstract
d-Tagatose, a functional sweetener, is converted from d-galactose by l-arabinose isomerase, which catalyzes the conversion of l-arabinose to l-ribulose. In this study, the araA gene encoding l-arabinose isomerase from Klebsiella pneumoniae was cloned and expressed in Escherichia [...] Read more.
d-Tagatose, a functional sweetener, is converted from d-galactose by l-arabinose isomerase, which catalyzes the conversion of l-arabinose to l-ribulose. In this study, the araA gene encoding l-arabinose isomerase from Klebsiella pneumoniae was cloned and expressed in Escherichia coli, and the expressed enzyme was purified and characterized. The purified l-arabinose isomerase, a soluble protein with 11.6-fold purification and a 22% final yield, displayed a specific activity of 1.8 U/mg for d-galactose and existed as a homohexamer of 336 kDa. The enzyme exhibited maximum activity at pH 8.0 and 40 °C in the presence of Mn2+ and relative activity for pentoses and hexoses in the order l-arabinose > d-galactose > l-ribulose > d-xylulose > d-xylose > d-tagatose > d-glucose. The thermal stability of recombinant E. coli cells expressing l-arabinose isomerase from K. pneumoniae was higher than that of the enzyme. Thus, the reaction conditions of the recombinant cells were optimized to pH 8.0, 50 °C, and 4 g/L cell concentration using 100 g/L d-galactose with 1 mM Mn2+. Under these conditions, 33.5 g/L d-tagatose was produced from d-galactose with 33.5% molar yield and 67 g/L/h productivity. Our findings will help produce d-tagatose using whole-cell reactions, extending its industrial application. Full article
(This article belongs to the Special Issue Biotransformation and Analysis of Functional Foods and Ingredients)
Show Figures

Figure 1

12 pages, 2880 KiB  
Review
Glucose Isomerase: Functions, Structures, and Applications
by Ki Hyun Nam
Appl. Sci. 2022, 12(1), 428; https://doi.org/10.3390/app12010428 - 3 Jan 2022
Cited by 51 | Viewed by 28188
Abstract
Glucose isomerase (GI, also known as xylose isomerase) reversibly isomerizes D-glucose and D-xylose to D-fructose and D-xylulose, respectively. GI plays an important role in sugar metabolism, fulfilling nutritional requirements in bacteria. In addition, GI is an important industrial enzyme for the production of [...] Read more.
Glucose isomerase (GI, also known as xylose isomerase) reversibly isomerizes D-glucose and D-xylose to D-fructose and D-xylulose, respectively. GI plays an important role in sugar metabolism, fulfilling nutritional requirements in bacteria. In addition, GI is an important industrial enzyme for the production of high-fructose corn syrup and bioethanol. This review introduces the functions, structure, and applications of GI, in addition to presenting updated information on the characteristics of newly discovered GIs and structural information regarding the metal-binding active site of GI and its interaction with the inhibitor xylitol. This review provides an overview of recent advancements in the characterization and engineering of GI, as well as its industrial applications, and will help to guide future research in this field. Full article
(This article belongs to the Special Issue Enzyme Catalysis: Advances, Techniques, and Outlooks)
Show Figures

Figure 1

19 pages, 924 KiB  
Review
Xylose Metabolism in Bacteria—Opportunities and Challenges towards Efficient Lignocellulosic Biomass-Based Biorefineries
by Rafael Domingues, Maryna Bondar, Inês Palolo, Odília Queirós, Catarina Dias de Almeida and M. Teresa Cesário
Appl. Sci. 2021, 11(17), 8112; https://doi.org/10.3390/app11178112 - 31 Aug 2021
Cited by 41 | Viewed by 8852
Abstract
In a sustainable society based on circular economy, the use of waste lignocellulosic biomass (LB) as feedstock for biorefineries is a promising solution, since LB is the world’s most abundant renewable and non-edible raw material. LB is available as a by-product from agricultural [...] Read more.
In a sustainable society based on circular economy, the use of waste lignocellulosic biomass (LB) as feedstock for biorefineries is a promising solution, since LB is the world’s most abundant renewable and non-edible raw material. LB is available as a by-product from agricultural and forestry processes, and its main components are cellulose, hemicellulose, and lignin. Following suitable physical, enzymatic, and chemical steps, the different fractions can be processed and/or converted to value-added products such as fuels and biochemicals used in several branches of industry through the implementation of the biorefinery concept. Upon hydrolysis, the carbohydrate-rich fraction may comprise several simple sugars (e.g., glucose, xylose, arabinose, and mannose) that can then be fed to fermentation units. Unlike pentoses, glucose and other hexoses are readily processed by microorganisms. Some wild-type and genetically modified bacteria can metabolize xylose through three different main pathways of metabolism: xylose isomerase pathway, oxidoreductase pathway, and non-phosphorylative pathway (including Weimberg and Dahms pathways). Two of the commercially interesting intermediates of these pathways are xylitol and xylonic acid, which can accumulate in the medium either through manipulation of the culture conditions or through genetic modification of the bacteria. This paper provides a state-of-the art perspective regarding the current knowledge on xylose transport and metabolism in bacteria as well as envisaged strategies to further increase xylose conversion into valuable products. Full article
Show Figures

Figure 1

18 pages, 1772 KiB  
Article
Sustainable Production of N-methylphenylalanine by Reductive Methylamination of Phenylpyruvate Using Engineered Corynebacterium glutamicum
by Anastasia Kerbs, Melanie Mindt, Lynn Schwardmann and Volker F. Wendisch
Microorganisms 2021, 9(4), 824; https://doi.org/10.3390/microorganisms9040824 - 13 Apr 2021
Cited by 14 | Viewed by 4543
Abstract
N-alkylated amino acids occur widely in nature and can also be found in bioactive secondary metabolites such as the glycopeptide antibiotic vancomycin and the immunosuppressant cyclosporine A. To meet the demand for N-alkylated amino acids, they are currently produced chemically; however, [...] Read more.
N-alkylated amino acids occur widely in nature and can also be found in bioactive secondary metabolites such as the glycopeptide antibiotic vancomycin and the immunosuppressant cyclosporine A. To meet the demand for N-alkylated amino acids, they are currently produced chemically; however, these approaches often lack enantiopurity, show low product yields and require toxic reagents. Fermentative routes to N-alkylated amino acids like N-methyl-l-alanine or N-methylantranilate, a precursor of acridone alkaloids, have been established using engineered Corynebacterium glutamicum, which has been used for the industrial production of amino acids for decades. Here, we describe metabolic engineering of C. glutamicum for de novo production of N-methylphenylalanine based on reductive methylamination of phenylpyruvate. Pseudomonas putida Δ-1-piperideine-2-carboxylate reductase DpkA containing the amino acid exchanges P262A and M141L showed comparable catalytic efficiencies with phenylpyruvate and pyruvate, whereas the wild-type enzyme preferred the latter substrate over the former. Deletion of the anthranilate synthase genes trpEG and of the genes encoding branched-chain amino acid aminotransferase IlvE and phenylalanine aminotransferase AroT in a strain engineered to overproduce anthranilate abolished biosynthesis of l-tryptophan and l-phenylalanine to accumulate phenylpyruvate. Upon heterologous expression of DpkAP262A,M141L, N-methylphenylalanine production resulted upon addition of monomethylamine to the medium. In glucose-based minimal medium, an N-methylphenylalanine titer of 0.73 ± 0.05 g L−1, a volumetric productivity of 0.01 g L−1 h−1 and a yield of 0.052 g g−1 glucose were reached. When xylose isomerase gene xylA from Xanthomonas campestris and the endogenous xylulokinase gene xylB were expressed in addition, xylose as sole carbon source supported production of N-methylphenylalanine to a titer of 0.6 ± 0.04 g L−1 with a volumetric productivity of 0.008 g L−1 h−1 and a yield of 0.05 g g−1 xylose. Thus, a fermentative route to sustainable production of N-methylphenylalanine by recombinant C. glutamicum has been established. Full article
(This article belongs to the Special Issue Secondary Metabolism of Microorganisms)
Show Figures

Figure 1

14 pages, 4545 KiB  
Article
Room-Temperature Structure of Xylitol-Bound Glucose Isomerase by Serial Crystallography: Xylitol Binding in the M1 Site Induces Release of Metal Bound in the M2 Site
by Ki Hyun Nam
Int. J. Mol. Sci. 2021, 22(8), 3892; https://doi.org/10.3390/ijms22083892 - 9 Apr 2021
Cited by 22 | Viewed by 2564
Abstract
Glucose isomerase (GI) is an important enzyme that is widely used in industrial applications, such as in the production of high-fructose corn syrup or bioethanol. Studying inhibitor effects on GI is important to deciphering GI-specific molecular functions, as well as potential industrial applications. [...] Read more.
Glucose isomerase (GI) is an important enzyme that is widely used in industrial applications, such as in the production of high-fructose corn syrup or bioethanol. Studying inhibitor effects on GI is important to deciphering GI-specific molecular functions, as well as potential industrial applications. Analysis of the existing xylitol-bound GI structure revealed low metal occupancy at the M2 site; however, it remains unknown why this phenomenon occurs. This study reports the room-temperature structures of native and xylitol-bound GI from Streptomyces rubiginosus (SruGI) determined by serial millisecond crystallography. The M1 site of native SruGI exhibits distorted octahedral coordination; however, xylitol binding results in the M1 site exhibit geometrically stable octahedral coordination. This change results in the rearrangement of metal-binding residues for the M1 and M2 sites, the latter of which previously displayed distorted metal coordination, resulting in unstable coordination of Mg2+ at the M2 site and possibly explaining the inducement of low metal-binding affinity. These results enhance the understanding of the configuration of the xylitol-bound state of SruGI and provide insights into its future industrial application. Full article
(This article belongs to the Special Issue Molecular Dynamics from Macromolecule to Small Molecules)
Show Figures

Figure 1

25 pages, 1367 KiB  
Review
Enzymology of Alternative Carbohydrate Catabolic Pathways
by Dominik Kopp, Peter L. Bergquist and Anwar Sunna
Catalysts 2020, 10(11), 1231; https://doi.org/10.3390/catal10111231 - 23 Oct 2020
Cited by 7 | Viewed by 5954
Abstract
The Embden–Meyerhof–Parnas (EMP) and Entner–Doudoroff (ED) pathways are considered the most abundant catabolic pathways found in microorganisms, and ED enzymes have been shown to also be widespread in cyanobacteria, algae and plants. In a large number of organisms, especially common strains used in [...] Read more.
The Embden–Meyerhof–Parnas (EMP) and Entner–Doudoroff (ED) pathways are considered the most abundant catabolic pathways found in microorganisms, and ED enzymes have been shown to also be widespread in cyanobacteria, algae and plants. In a large number of organisms, especially common strains used in molecular biology, these pathways account for the catabolism of glucose. The existence of pathways for other carbohydrates that are relevant to biomass utilization has been recognized as new strains have been characterized among thermophilic bacteria and Archaea that are able to transform simple polysaccharides from biomass to more complex and potentially valuable precursors for industrial microbiology. Many of the variants of the ED pathway have the key dehydratase enzyme involved in the oxidation of sugar derived from different families such as the enolase, IlvD/EDD and xylose-isomerase-like superfamilies. There are the variations in structure of proteins that have the same specificity and generally greater-than-expected substrate promiscuity. Typical biomass lignocellulose has an abundance of xylan, and four different pathways have been described, which include the Weimberg and Dahms pathways initially oxidizing xylose to xylono-gamma-lactone/xylonic acid, as well as the major xylose isomerase pathway. The recent realization that xylan constitutes a large proportion of biomass has generated interest in exploiting the compound for value-added precursors, but few chassis microorganisms can grow on xylose. Arabinose is part of lignocellulose biomass and can be metabolized with similar pathways to xylose, as well as an oxidative pathway. Like enzymes in many non-phosphorylative carbohydrate pathways, enzymes involved in L-arabinose pathways from bacteria and Archaea show metabolic and substrate promiscuity. A similar multiplicity of pathways was observed for other biomass-derived sugars such as L-rhamnose and L-fucose, but D-mannose appears to be distinct in that a non-phosphorylative version of the ED pathway has not been reported. Many bacteria and Archaea are able to grow on mannose but, as with other minor sugars, much of the information has been derived from whole cell studies with additional enzyme proteins being incorporated, and so far, only one synthetic pathway has been described. There appears to be a need for further discovery studies to clarify the general ability of many microorganisms to grow on the rarer sugars, as well as evaluation of the many gene copies displayed by marine bacteria. Full article
(This article belongs to the Special Issue Biocatalysis and Whole-Cell Biotransformation in Biomanufacturing)
Show Figures

Figure 1

23 pages, 2532 KiB  
Review
Parageobacillus thermantarcticus, an Antarctic Cell Factory: From Crop Residue Valorization by Green Chemistry to Astrobiology Studies
by Ilaria Finore, Licia Lama, Paola Di Donato, Ida Romano, Annabella Tramice, Luigi Leone, Barbara Nicolaus and Annarita Poli
Diversity 2019, 11(8), 128; https://doi.org/10.3390/d11080128 - 7 Aug 2019
Cited by 13 | Viewed by 5681
Abstract
Knowledge of Antarctic habitat biodiversity, both marine and terrestrial, has increased considerably in recent years, causing considerable development in the studies of life science related to Antarctica. In the Austral summer 1986–1987, a new thermophilic bacterium, Parageobacillus thermantarcticus strain M1 was isolated from [...] Read more.
Knowledge of Antarctic habitat biodiversity, both marine and terrestrial, has increased considerably in recent years, causing considerable development in the studies of life science related to Antarctica. In the Austral summer 1986–1987, a new thermophilic bacterium, Parageobacillus thermantarcticus strain M1 was isolated from geothermal soil of the crater of Mount Melbourne (74°22′ S, 164°40′ E) during the Italian Antarctic Expedition. In addition to the biotechnological potential due to the production of exopolysaccharides and thermostable enzymes, successful studies have demonstrated its use in the green chemistry for the transformation and valorization of residual biomass and its employment as a suitable microbial model for astrobiology studies. The recent acquisition of its genome sequence opens up new opportunities for the use of this versatile bacterium in still unexplored biotechnology sectors. Full article
Show Figures

Figure 1

15 pages, 1573 KiB  
Article
Recombinant Diploid Saccharomyces cerevisiae Strain Development for Rapid Glucose and Xylose Co-Fermentation
by Tingting Liu, Shuangcheng Huang and Anli Geng
Fermentation 2018, 4(3), 59; https://doi.org/10.3390/fermentation4030059 - 30 Jul 2018
Cited by 25 | Viewed by 6455
Abstract
Cost-effective production of cellulosic ethanol requires robust microorganisms for rapid co-fermentation of glucose and xylose. This study aims to develop a recombinant diploid xylose-fermenting Saccharomyces cerevisiae strain for efficient conversion of lignocellulosic biomass sugars to ethanol. Episomal plasmids harboring codon-optimized Piromyces sp. E2 [...] Read more.
Cost-effective production of cellulosic ethanol requires robust microorganisms for rapid co-fermentation of glucose and xylose. This study aims to develop a recombinant diploid xylose-fermenting Saccharomyces cerevisiae strain for efficient conversion of lignocellulosic biomass sugars to ethanol. Episomal plasmids harboring codon-optimized Piromyces sp. E2 xylose isomerase (PirXylA) and Orpinomyces sp. ukk1 xylose (OrpXylA) genes were constructed and transformed into S. cerevisiae. The strain harboring plasmids with tandem PirXylA was favorable for xylose utilization when xylose was used as the sole carbon source, while the strain harboring plasmids with tandem OrpXylA was beneficial for glucose and xylose cofermentation. PirXylA and OrpXylA genes were also individually integrated into the genome of yeast strains in multiple copies. Such integration was beneficial for xylose alcoholic fermentation. The respiration-deficient strain carrying episomal or integrated OrpXylA genes exhibited the best performance for glucose and xylose co-fermentation. This was partly attributed to the high expression levels and activities of xylose isomerase. Mating a respiration-efficient strain carrying the integrated PirXylA gene with a respiration-deficient strain harboring integrated OrpXylA generated a diploid recombinant xylose-fermenting yeast strain STXQ with enhanced cell growth and xylose fermentation. Co-fermentation of 162 g L−1 glucose and 95 g L−1 xylose generated 120.6 g L−1 ethanol in 23 h, with sugar conversion higher than 99%, ethanol yield of 0.47 g g−1, and ethanol productivity of 5.26 g L−1·h−1. Full article
(This article belongs to the Special Issue Yeast Biotechnology 2.0)
Show Figures

Graphical abstract

15 pages, 1467 KiB  
Article
Immobilized Trienzymatic System with Enhanced Stabilization for the Biotransformation of Lactose
by Pedro Torres and Francisco Batista-Viera
Molecules 2017, 22(2), 284; https://doi.org/10.3390/molecules22020284 - 22 Feb 2017
Cited by 28 | Viewed by 8192
Abstract
The use of ketohexose isomerases is a powerful tool in lactose whey processing, but these enzymes can be very sensitive and expensive. Development of immobilized/stabilized biocatalysts could be a further option to improve the process. In this work, β-galactosidase from Bacillus circulans, [...] Read more.
The use of ketohexose isomerases is a powerful tool in lactose whey processing, but these enzymes can be very sensitive and expensive. Development of immobilized/stabilized biocatalysts could be a further option to improve the process. In this work, β-galactosidase from Bacillus circulans, l-arabinose (d-galactose) isomerase from Enterococcus faecium, and d-xylose (d-glucose) isomerase from Streptomyces rubiginosus were immobilized individually onto Eupergit C and Eupergit C 250 L. Immobilized activity yields were over 90% in all cases. With the purpose of increasing thermostability of derivatives, two post-immobilization treatments were performed: alkaline incubation to favor the formation of additional covalent linkages, and blocking of excess oxirane groups by reacting with glycine. The greatest thermostability was achieved when alkaline incubation was carried out for 24 h, producing l-arabinose isomerase-Eupergit C derivatives with a half-life of 379 h and d-xylose isomerase-Eupergit C derivatives with a half-life of 554 h at 50 °C. Preliminary assays using immobilized and stabilized biocatalysts sequentially to biotransform lactose at pH 7.0 and 50 °C demonstrated improved performances as compared with soluble enzymes. Further improvements in ketohexose productivities were achieved when the three single-immobilizates were incubated simultaneously with lactose in a mono-reactor system. Full article
(This article belongs to the Special Issue Enzyme Immobilization 2016)
Show Figures

Graphical abstract

Back to TopTop