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Abstract: Cost-effective production of cellulosic ethanol requires robust microorganisms for
rapid co-fermentation of glucose and xylose. This study aims to develop a recombinant diploid
xylose-fermenting Saccharomyces cerevisiae strain for efficient conversion of lignocellulosic biomass
sugars to ethanol. Episomal plasmids harboring codon-optimized Piromyces sp. E2 xylose isomerase
(PirXylA) and Orpinomyces sp. ukk1 xylose (OrpXylA) genes were constructed and transformed into
S. cerevisiae. The strain harboring plasmids with tandem PirXylA was favorable for xylose utilization
when xylose was used as the sole carbon source, while the strain harboring plasmids with tandem
OrpXylA was beneficial for glucose and xylose cofermentation. PirXylA and OrpXylA genes were
also individually integrated into the genome of yeast strains in multiple copies. Such integration was
beneficial for xylose alcoholic fermentation. The respiration-deficient strain carrying episomal or
integrated OrpXylA genes exhibited the best performance for glucose and xylose co-fermentation.
This was partly attributed to the high expression levels and activities of xylose isomerase. Mating a
respiration-efficient strain carrying the integrated PirXylA gene with a respiration-deficient strain
harboring integrated OrpXylA generated a diploid recombinant xylose-fermenting yeast strain STXQ
with enhanced cell growth and xylose fermentation. Co-fermentation of 162 g L−1 glucose and
95 g L−1 xylose generated 120.6 g L−1 ethanol in 23 h, with sugar conversion higher than 99%, ethanol
yield of 0.47 g g−1, and ethanol productivity of 5.26 g L−1·h−1.

Keywords: Saccharomyces cerevisiae; diploid; xylose isomerase; xylose fermentation; glucose and
xylose co-fermentation; biomass hydrolysate; cellulosic ethanol

1. Introduction

Ethanol can be produced from renewable resources such as crops or agricultural waste. It is
therefore a sustainable and clean fuel. Further growth in bioethanol production largely depends on the
effective conversion of lignocellulosic feedstock such as agricultural and forestry wastes to bioethanol
because they are the most abundant polymers of fermentable sugars [1–3].

Saccharomyces cerevisiae is the most effective microorganism for fermenting sugars to ethanol due to
its rapid sugar consumption rate, high sugar and ethanol tolerance, and resistance to biomass-derived
inhibitors [4,5]. Much research has been done to genetically engineer S. cerevisiae strains for xylose
fermentation [6–10].

Two xylose-assimilating pathways were heterologously engineered in S. cerevisiae for
xylose-fermenting yeast construction. One focused on the D-xylose isomerase (XI) pathway [11,12],
the other focused on the D-xylose reductase (XR) and xylitol dehydrogenase (XDH) pathway [10,13–15].
In the XI pathway, xylose is first isomerized into xylulose by XI and xylulose was then phosphorylated
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into xylulose 5-phosphate by xylulokinase. Xylulose is subsequently metabolized to ethanol through
glycolysis in the pentose phosphate pathway [11]. As no xylitol is produced in this pathway,
much research focused on the XI pathway construction in xylose-fermenting yeast [12].

However, for all the engineered strains developed, rapid glucose and xylose co-fermentation
is still challenging, in particular when sugar concentration is high [4,8–10]. Because fermentation
time on mixed-substrate hydrolysates is still not cost-effective, strategies in evolutionary engineering
were used to improve fermentation kinetics [16–18] and much research focused on the search for
new or engineered sugar transporters [19–21]. More recently, robust diploid S. cerevisiae strains were
developed for rapid xylose-fermentation [22–25].

This study aims to develop a recombinant S. cerevisiae strain for rapid glucose and xylose
co-fermentation through metabolic engineering, evolutionary engineering and strain mating. Firstly,
four episomal plasmids containing the two-copy codon-optimized Piromyces sp. E2 XI gene (PirXylA,
GenBank accession number AJ249909.1), one-copy codon-optimized Orpinomyces sp. ukk1 XI gene
(OrpXylA, GenBank accession number EU411046), one-copy PirXylA and OrpXylA in tandem,
and two-copy OrpXylA, were individually constructed. They were subsequently transformed to
an evolved respiration-deficient yeast strain. Four engineered strains with episomal XI genes were
generated and optimal XI functional expression was identified. Afterwards, PirXylA and OrpXylA were
separately integrated into the genome of two evolved S. cerevisiae strains (one respiration-efficient and
the other respiration-deficient) in multiple copies according the methods described previously [26,27].
Four engineered yeasts with integrated XI genes were generated and screened for xylose fermentation
or glucose/xylose co-fermentation. In the end, a diploid recombinant xylose-fermenting S. cerevisiae
was constructed by mating a respiration-efficient haploid strain with a respiration-deficient haploid
strain. To the best of our knowledge, this is the first report on diploid xylose-fermenting yeast strain
construction by such strain mating. The resulted diploid yeast strain displayed superior glucose and
xylose co-fermentation performance, which far exceeded that by engineered S. cerevisiae reported
to-date [28,29].

2. Materials and Methods

2.1. Plasmid Construction

All plasmids used in this work are listed in Table 1. All primers used in this study are listed in
Table S1.

E. coli strain DH5α (Life Technologies, Rockville, MD, USA) were used as the transformation
host for plasmid construction. E. coli were grown in LB medium containing 100 µg/mL ampicillin
at 30 ◦C or 37 ◦C for plasmid maintenance [25]. The PGK1 promoter was amplified from
genomic DNA of S. cerevisiae strain ATCC 24860 and was ligated to pYES2 (Thermo-Fischer
Scientific, Singapore) to replace the GAL1 promoter, resulting in pPY1. PirXylA and OrpXylA
were synthesized by Integrated DNA Technologies Singapore). Cassettes PGK1p-OrpXylA-CYC1t,
PGK1p-PirXylA-CYC1t-PGK1p-OrpXylA-CYC1t, PGK1p-OrpXylA-CYC1t-PGK1p-OrpXylA-CYC1t and
PGK1p-PirXylA-CYC1t-PGK1p-PirXylA-CYC1t were cloned into pPY1 individually, resulting in
plasmids pPYXo, pPYXpXo, pPYXoXo and pPYXpXp (Figure 1A–D).

NTS2-2 partial fragment (pNTS) was obtained by overlap extension polymerase chain reaction
(OE-PCR) of S. cerevisiae ATCC 24860 genomic DNA over 274 bp upstream and 245 bp downstream
homologous regions of NTS2-2. The XXUN plasmid (Figure 1E) is an integrating yeast plasmid based
on pPYXpXp whereby the 2 µ origin was replaced with pNTS. The loxP-KanMX4-loxP cassette was
amplified from the plasmid pUG6 [30]. Cassettes PGK1p-OrpXylA-CYC1t and loxP-KanMX4-loxP-pNTS
were obtained by OE-PCR and then subsequently constructed into plasmid pUC19 [12], resulting in
plasmid XoNK (Figure 1F). Both plasmids were digested with SwaI for XI genome integration using
NTS2-2 homologous recombinant arms.
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Figure 1. Map of plasmids. (A) pPYXo; (B) pPYXpXo; (C) pPYXoXo; (D) pPYXpXp; (E) XXUN; and 
(F) XoNK. 

2.2. Strain Construction and Adaptive Evolution 

All strains used in this work are listed in Table 1. S. cerevisiae haploid strains JUK36α and JUK39a 
were isolated from the diploid strain S. cerevisiae ATCC 24860. They were both overexpressed with 
the non-oxidative pentose phosphate pathway (PPP) genes and xylulokinase gene, XKS1. URA3 and 
GRE3 genes were disrupted in both haploid strains. In addition, the CYC3 gene, encoding cytochrome 
c heme lyase, was knocked out in strain JUK39a to eliminate respiration [12]. 

Plasmid pPYXpXp was transformed into strain JUK39a using the LiAc/SS carrier DNA/PEG 
method [31], resulting in recombinant S. cerevisiae 39aXpXp. The respiration-deficient strain 39aXpXp 
was evolved by continuous transfer and cultivation in a synthetic medium (SM) containing 6.7 g L−1 
yeast nitrogen base without amino acids (YNB) (Difco Laboratories Inc., Detroit, MI, USA) and 20 g 
L−1 xylose (SMX) under oxygen-limited conditions according to the protocols described in our earlier 
report [12]. After 75-day continuous transfer, cell doubling time was reduced from 15.9 h to 6.4 h. 

Figure 1. Map of plasmids. (A) pPYXo; (B) pPYXpXo; (C) pPYXoXo; (D) pPYXpXp; (E) XXUN;
and (F) XoNK.

2.2. Strain Construction and Adaptive Evolution

All strains used in this work are listed in Table 1. S. cerevisiae haploid strains JUK36α and JUK39a
were isolated from the diploid strain S. cerevisiae ATCC 24860. They were both overexpressed with
the non-oxidative pentose phosphate pathway (PPP) genes and xylulokinase gene, XKS1. URA3 and
GRE3 genes were disrupted in both haploid strains. In addition, the CYC3 gene, encoding cytochrome
c heme lyase, was knocked out in strain JUK39a to eliminate respiration [12].

Plasmid pPYXpXp was transformed into strain JUK39a using the LiAc/SS carrier DNA/PEG
method [31], resulting in recombinant S. cerevisiae 39aXpXp. The respiration-deficient strain 39aXpXp
was evolved by continuous transfer and cultivation in a synthetic medium (SM) containing 6.7 g L−1

yeast nitrogen base without amino acids (YNB) (Difco Laboratories Inc., Detroit, MI, USA) and 20 g L−1

xylose (SMX) under oxygen-limited conditions according to the protocols described in our earlier
report [12]. After 75-day continuous transfer, cell doubling time was reduced from 15.9 h to 6.4 h.
Samples were taken on day 75 and streaked on SMX plates containing 20 g L−1 xylose and 20 g L−1

agar. Fifteen large single colonies were selected. They were then incubated in 50 mL SMX medium in
100 mL Erlenmeyer flasks capped with rubber stoppers, shaken at 200 rpm and 30 ◦C. Weight loss of the
cultures from the 15 colonies was individually measured on Day 4. The best ethanol-producing strain
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was indicated by the highest weight loss [18]. This strain was denoted 39aXpXp2415, and plasmid
pPYXpXp in this strain was removed by streaking the culture on 5-FOA plates [12]. This generated
the background strain 39a2 (Table 1). On the other hand, strain JUK51a_2 (Table 1) was evolved
anaerobically in a chemostat with an increase in the dilution rate from 0.01 to 0.14 h−1 on xylose using
the method described in our earlier report [12]. The fastest growing strain was selected, and the plasmid
pJFX11 was removed according to the above-described method on 5-FOA plates. The background
strain 36α2 was later obtained (Table 1).

Table 1. Strains and plasmids used in this study.

Strains/Plasmid Genotype/Phenotype References

Saccharomyces cerevisiae strains

Saccharomyces cerevisiae ATCC 24860 Obtained from American Type Culture Collection (ATCC)

JUK36α
S. cerevisiae ATCC 24860 segregant; MAT; ura3::loxP;
TKL1::RKIt-RKI1-ADH1p-RPE1t-RPE1-TPI1p-loxP-XKS1t-XKS1-PGK1p-
PDC1p-TAL1-TAL1t-FBA1p; gre3::loxP

[12]

JUK39a
S. cerevisiae ATCC 24860 segregant; MATa; ura3::loxP;
TKL1::RKIt-RKI1-ADH1p-RPE1t-RPE1-TPI1p-loxP-XKS1t-XKS1-PGK1p-
PDC1p-TAL1-TAL1t-FBA1p; gre3::loxP; cyc3::loxP

[12]

JUK51a_2 JUK36α derivative; {pJFX11}/(BvuXylA, XK, PPP, gre3∆) [12]

39aXpXp JUK39a derivative; {pPYXpXp}/(two-copy PirXylA, XK, PPP, gre3∆, cyc3∆) This work

39aXpXp2415 39aXpXp derivative; {pPYXpXp}/(two-copy PirXylA, XK, PPP, gre3∆, cyc3∆, AE) This work

36α2
Isolate from chemostat anaerobic and adaptive evolution at a dilution rate of 0.15
h−1 on xylose of JUK51a_2 and loss of plasmid pJFX11 This work

39a2 Isolate from 39aXpXp2415 and loss of plasmid pPYXpXp This work

39a2XpXp 39a2 derivative; {pPYXpXp}/(two-copy PirXylA, XK, PPP, gre3∆, cyc3∆) This work

39a2XpXo 39a2 derivative; {pPYXpXo}/(OrpXylA, PirXylA, XK, PPP, gre3∆, cyc3∆) This work

39a2Xo 39a2 derivative; {pPYXo}/(OrpXylA, XK, PPP, gre3∆, cyc3∆) This work

39a2XoXo 39a2 derivative; {pPYXoXo}/}/(two-copy OrpXylA, XK, PPP, gre3∆, cyc3∆) This work

36α2XpXpUN 36α2 derivative;NTS2-2::two-copy PirXylA, ura3, XK, PPP, gre3∆ This work

36α2XoNK 36α2 derivative;NTS2-2::OrpXylA-KanMX4, XK, PPP, gre3∆, ura3∆ This work

39a2XpXpUN 39a2 derivative; NTS2-2::two-copy PirXylA, ura3, XK, PPP, gre3∆, cyc3∆ This work

39a2XoNK 39a2 derivative; NTS2-2::OrpXylA-KanMX4, XK, PPP, gre3∆, cyc3∆, ura3∆ This work

STXQ Isolate from mating of 36α2XpXpUN with 39a2XoNK This work

Plasmids

pUG6 E. coli plasmid with segment loxP–KanMX4–loxP [30]

pJFX11 YEp, TEF1p-BvuXylA-CYC1t [12]

pPY1 pPYES2; GAL1p replaced by PGK1p This work

pPYXo pPY1; PGK1p-OrpXylA-CYC1t This work

pPYXpXp pPY1; 2 copies of PGK1p-PirXylA-CYC1t in tandem This work

pPYXpXo pPY1; PGK1p-PirXylA-CYC1t-PGK1p-OrpXylA-CYC1t This work

pPYXoXo pPY1; 2 copies of PGK1p-OrpXylA-CYC1t in tandem This work

XXUN pPYXpXp-based yeast integration plasmid; 2 µ and ura3 were replaced with ura3
and NTS2-2 partial fragment This work

XoNK pUC19-based yeast integration plasmid;
loxP-KanMX4-loxP-pNTS-PGK1p-OrpXylA-CYC1t This work

Plasmids pPYXo, pPYXpXo, pPYXoXo and pPYXpXp were individually transformed into 39a2,
resulting in strains 39a2Xo, 39a2XpXo, 39a2XoXo and 39a2XpXp, respectively. Plasmids XoNK and
XXUN were digested with SwaI and linearized. The linearized fragments were integrated into the
genome of 39a2 and 36α2 at the NTS2-2 site, individually, resulting in recombinant strains 39a2XoNK,
39a2XpXpUN, 36α2XoNK and 36α2XpXpUN. For each plasmid transformation, a pool of transformants
were generated. The best transformant was isolated based on its cell growth and ethanol production in
xylose medium as described in the isolation of 39aXpXp2415. Recombinant strains, 36α2XpXpUN and
39a2XoNK, were later mated to obtain strain STXQ through screening on SMX agar plates containing
20 g L−1 xylose at pH 6 followed by fermentation in SMX medium containing up to 250 g L−1 xylose.
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2.3. Enzyme Activity Assay

Cells were grown to the exponential phase in SMX medium containing 20 g L−1 xylose.
After centrifugation, cells were washed twice with chilled distilled water, and then lysed in chilled
extraction buffer (100 mM Tris-HCl, 10 mM MgSO4, pH 7.5) by vortex mixing using a Vortex Mixer
(Mixer UZUSIO, Tokyo, Japan) with 0.5 mg of 0.5 mm glass beads (Sigma-Aldirich, Singapore).
Protease inhibitor cocktail set V (Merck Millipore, Singapore) was added to inhibit serine and cysteine
generated in the lysis process. Cell debris was removed by centrifugation (Microcentrifuge D3024, DR.
LAB Technology Hong Kong, Hong Kong, China) at 4000× g for 10 min at 4 ◦C, and the crude extract
was stored for enzyme activity assay. The protein concentration of the cell extract was determined by
the Bradford Assay using a Coomassie Protein Assay Kit (Thermo Scientific, Singapore), and bovine
serum albumin (BSA) was used as the standard. Extraction of raw proteins from the yeast strains was
performed in duplicate.

The in-vitro XI activity was determined by measuring NADH absorbance using sorbitol
dehydrogenase (SDH) (Sigma Aldrich, Singapore). The assay mixture (1 mL) contained extraction
buffer, 0.15 mM NADH, 1 U SDH, and 50 µL crude extract. It was equilibrated at 30 ◦C for 2 min.
The reaction was started by the addition of D-xylose to a final concentration of 500 mM. The change of
NADH concentration within 3 min was detected using a UV-visible spectrophotometer (Shimadzu,
Tokyo, Japan) at wavelength 340 nm, and the specific activity of XI in the recombinant strains was
determined [32]. A molar extinction coefficient of 6.25 (mM cm)−1 at 340 nm for NADH was used to
calculate specific activity. Specific activity was expressed as units per mg protein. One unit of enzyme
activity was defined as the amount of enzyme required to oxidize 1 µmol of coenzyme/min, under the
specified reaction conditions [12].

2.4. Glucose and Xylose Fermentation by the Recombinant Strains

The preculture of the evolved engineered strains was prepared by growing them in 40 mL SMX
medium containing 20 g L−1 xylose in 100 mL Erlenmeyer flaks at 200 rpm and 30 ◦C for 24 h.
The oxygen-limited conditions in the flasks was maintained by capping the flasks with rubber stoppers
pierced with a needle to allow the release of CO2. Cells in the exponential phase were harvested
by centrifugation (Microcentrifuge D3024, DR. LAB Technology Hong Kong, Hong Kong, China)
at 14,000× g for 1 min. Cell pellets were washed twice and were then inoculated into SM medium
supplemented with 20 g L−1 xylose with (SMGX) or without 20 g L−1 glucose (SMX). The initial optical
cell density at 600 nm (OD600) of the culture was about 2 unless otherwise stated. Fermentation was
conducted in 100 mL Erlenmeyer shaking flasks under oxygen-limited conditions with a working
volume of 40 mL at 200 rpm and 30 ◦C. The pH value was adjusted at 5.0–6.0 using 3 M NaOH
during fermentation. All fermentation experiments were performed in duplicate. Samples were taken
periodically to measure OD600, sugar and metabolite concentration.

2.5. Analytical Methods

Cell densities (OD600) were determined using a UV-visible spectrophotometer (Shimadzu, Tokyo,
Japan). Fifty-mL cell cultures with varying OD600 (1–5) were filtered with 0.22 µm glass fiber
filter membrane (Merck Millipore, Singapore) using Aspirator A-3S (Fisher Scientific, Tokyo, Japan).
Cells were washed twice with distilled water, dried at 105 ◦C in an oven for 24 h, and then weighed.
One OD600 unit corresponded to 0.241 g L−1 dry cell weight (DCW). Concentrations of glucose, xylose,
xylitol, acetate, glycerol and ethanol produced in fermentation were determined by Agilent 1200 series
HPLC system (Agilent Technologies, Santa Clara, CA, USA) equipped with a refractive index detector
RID-10A using an Aminex HPX-87H ion exchange column (Bio-Rad Laboratories, Woodinville, WA,
USA). The column was eluted at 60 ◦C with 5 mM of sulfuric acid as the mobile phase at a flow rate of
0.6 mL min−1.



Fermentation 2018, 4, 59 6 of 15

2.6. Quantitative Reserve Transcription Polymerase Chain Reaction (RT-PCR)

Recombinant yeast strains 39a2Xo, 39a2XpXo, 39a2XoXo and 39a2XpXp were individually
cultivated in 40 mL SMX medium containing 20 g L−1 xylose under oxygen-limited conditions at
200 rpm and 30 ◦C. The expression of XI gene transcripts was determined by quantitative reverse
transcription polymerase chain reaction (qRT-PCR). Primers for RT-PCR are listed in Table S1. Samples
were taken at 24 h, and cells were harvested by centrifuging 2-mL culture at 14,000× g and 4 ◦C for
1 min. Cell pellets were washed twice using double distilled water and total RNA was isolated by
using the E.Z.N.A™ Yeast RNA Kit (Omega Bio-tek, Norcross, GA, USA). First-strand cDNA was
obtained by using the SuperScript® First-Strand Synthesis System for RT-PCR (Invitrogen, Carlsbad,
CA, USA). Such cDNA was then used as the template for qRT-PCR using iCycler iQ™ Real-time PCR
Detection System (Bio-Rad Laboratories, Woodinville, WA, USA) and FastStart Universal SYBR Green
Master (Roche Applied Science, Penzberg, Germany). The cycle threshold values were calculated
with the Optical System Software Version 3.1 (Bio-Rad Laboratories, Woodinville, WA, USA), and the
detection threshold over the cycle range was set at 2 to 10. Each PCR was carried out in duplicate.
All kits were used under conditions recommended by the manufacturers. The 2−∆∆Ct method [33]
was used to analyze the relative changes in gene expression using the housekeeping ACT1 gene as
the reference.

2.7. Biomass Hydrolysate Fermentation Using Strain S. cerevisiae STXQ

The diploid recombinant S. cerevisiae strain STXQ (Table 1) was inoculated into YP medium (10
g L−1 yeast extract, 20 g L−1 peptone, pH 5.0) containing 132 g L−1 xylose or mixture of 162 g L−1

glucose and 95 g L−1 xylose at an initial OD600 of about 13. Fermentation was conducted in 40 mL YP
medium in 100 mL shaking flasks under oxygen limited conditions at 200 rpm and 30 ◦C.

Oil palm empty fruit bunch (OPEFB) hydrolysate was obtained using crude cellulase from
Trichoderma reesei Rut-C30 according to the protocols described in our earlier report [34]. OPEFB
hydrolysate was sterilized using 0. 22 µm filter membrane (Merck Millipore, Singapore) and was
supplemented with 7 g L−1 yeast extract 2 g L−1 peptone, 2 g L−1 (NH4)2SO4, 2.05 g L−1 KH2PO4,
and 0.25 g L−1 Na2HPO4. The diploid recombinant S. cerevisiae strain STXQ was inoculated into the
above OPEFB hydrolysate medium with an initial OD600 about 5. Fermentation was carried out in
40 mL fermentation medium in 100 mL shaking flasks under oxygen-limited conditions at 200 rpm
and 30 ◦C with an initial pH of 4.48. Samples were taken periodically for OD600, sugar and metabolite
analysis. Experiments were conducted in duplicate.

3. Results

3.1. Expression of XIs with Various Combinations

XI activities were assayed for 39a2 recombinant strains with episomal XI genes (Table 2). XI activity
of 39a2XoXo was three times higher than that of 39a2XpXp and 2.5 times higher than that of 39a2Xo.
Strain 39a2XoNK presented the highest XI activity among all the yeast strains with integrated XI genes,
followed by 39a2XpXpUN. Quantitative RT-PCR showed that the transcription level of XI gene in
the engineered strains significantly increased compared to that in the parent strain 39a2 (Table 3).
In 36α2XpXpUN and 39a2XoNK, respective 1.04-fold and 1.41-fold increases in XI gene transcription
levels were observed compared to those in 39a2XpXp and 39a2XoXo. Inconsistent XI activity and
transcription level were observed.
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Table 2. Specific activity of xylose isomerase in the recombinant strains.

Strains Specific Activity (U mg−1 Protein)

39a2XpXp 0.10 ± 0.003
39a2XpXo 0.11 ± 0.019

39a2Xo 0.12 ± 0.041
39a2XoXo 0.30 ± 0.079

36α2XpXpUN 0.11 ± 0.007
36α2 XoNK 0.04 ± 0.005

39a2XpXpUN 0.26 ± 0.004
39a2XoNK 0.72 ± 0.006

The results represent the mean ± standard deviation of duplicate independent experiments.

Table 3. Fold-change in xylose isomerase (XI) mRNA expression.

Strain
Fold-Change a

PirXylA OrpXylA

39a2XpXp 50.21 (47.81–52.74) nil
39a2XpXo 29.86 (28.43–31.36) 11.71 (10.62–12.92)

39a2Xo nil 59.71 (51.98–68.59)
39a2XoXo nil 59.71 (55.72–64)

36α2XpXpUN 51.98 (49.50–54.60) nil
39a2XoNK nil 84.45 (59.71–119.43)

a Fold-change of XI mRNA level in the recombinant yeast strains compared to the parent strain 39a2. Results were
based on duplicate independent real-time RT-PCR reactions.

3.2. Glucose and Xylose Fermentation by the Engineered 39a2 Strains Harboring Episomal XI Genes

Fermentation performance of 39a2 recombinant strains with episomal XI genes was tested in SMX
medium containing 20 g L−1 xylose under oxygen-limited conditions. Apparently, strain 39a2XpXp
displayed the fastest xylose utilization rate, followed by 39a2XoXo (Figure 2). Strain 39a2XpXo utilized
xylose more slowly than 39a2XpXp, though it demonstrated almost the same XI activity (Table 2).
On the other hand, strain 39a2XoXo showed a faster xylose utilization rate than strain 39a2Xo; however,
the former displayed much higher activity than the latter. On the contrary, xylose utilization results
accorded quite well with the results of qRT-PCR analysis showing that strain 39a2XpXp had higher XI
gene transcription levels than strain 39a2XpXo (Table 3) and a faster xylose utilization rate (Figure 2).
However, strains 39a2XoXo and 39a2Xo displayed identical XI gene transcription levels (Table 3),
almost the same xylose consumption rate (Figure 2) and xylose conversion (Table 4). Interestingly,
strain 39a2XpXp also exhibited the maximal ethanol yield of 0.472 g g−1 (Table 4). Such results suggest
that expression of two-copy PirXylA is favorable for xylose alcoholic fermentation when xylose is used
as the sole carbon source.
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Figure 2. Sugar fermentation under oxygen-limited conditions by the engineered S. cerevisiae
strains in SM medium containing 20 g L−1 xylose (SMX) or 20 g L−1 glucose and 20 g L−1 xylose
(SMGX). (A) 39a2XpXp SMX; (B) 39a2XpXo SMX; (C) 39a2Xo SMX; (D) 39a2XoXo SMX; (E) 39a2XpXp
SMGX; (F) 39a2XpXo SMGX; (G) 39a2Xo SMGX; (H) 39a2XoXo SMGX. The results represent the
mean ± standard deviation of duplicate independent experiments (p < 0.01).

Table 4. Glucose and xylose fermentation by recombinant xylose-fermenting yeast strains.

Strains
Initial

glucose
(g L−1)

Initial
Xylose
(g L−1)

Xylose Conversion
(%)

Ethanol Yield
(g g−1)

Ethanol
Productivity
(g h−1 L−1)

Specific Growth
Rate (h−1)

39a2xpXp a - 20 98% ± 0.004 0.472 ± 0.013 0.098 ± 0.004 0.014 ± 0.001
39a2XpXo a - 20 89.8% ± 0.011 0.434 ± 0.017 0.098 ± 0.004 0.011 ± 5.89 × 10−6

39a2Xo a - 20 97.3% ± 0.0138 0.428 ± 0.026 0.084 ± 0.001 0.011 ± 0.0003
39a2XoXo a - 20 98.5% ± 0.0057 0.449 ± 0.038 0.108 ± 0.001 0.013 ± 2.29 × 10−5

36α2XpXpUN a - 20 86.4% ± 0.052 0.318 ± 0.01 0.069 ± 0.007 0.014 ± 0.0003
36α2XoNK a - 20 6.42% ± 0.057 ND ND 0.003 ± 0.0006

39a2XpXpUNa - 20 67.0% ± 0.089 0.398 ± 0.048 0.067 ± 0.001 0.013 ± 0.0002
39a2XoNK a - 20 99.0% ± 0.002 0.368 ± 0.029 0.107 ± 0.007 0.0098 ± 0.0003
39a2XpXp a 20 20 22.0% ± 0.003 0.444 ± 0.029 0.221 ± 0.020 0.020 ± 0.0007
39a2XpXo a 20 20 77.5% ± 0.017 0.392 ± 0.001 0.081 ± 0.006 0.022 ± 0.0001

39a2Xo a 20 20 84.3% ± 0.0007 0.428 ± 0.01 0.238 ± 0.003 0.021 ± 0.0004
39a2XoXo a 20 20 96.7% ± 0.011 0.449 ± 0.022 0.213 ± 0.004 0.021 ± 0.001

36α2XpXpUN a 20 20 73.8% ± 0.011 0.348 ± 0.049 0.225 ± 0.007 0.029 ± 0.0006
36α2XoNK a 20 20 2.62% ± 0.000 0.390 ± 0.043 0.222 ± 0.003 0.016 ± 0.0013

39a2XpXpUN a 20 20 25.6% ± 0.097 0.405 ± 0.049 0.213 ± 0.002 0.013 ± 0.0002
39a2XoNK a 20 20 97.3% ± 0.006 0.387 ± 0.002 0.243 ± 0.003 0.020 ± 0.0005

36α2XpXpUN b - 40 75.9% ± 0.041 0.384 ± 0.033 0.108 ± 0.011 0.013 ± 0.0004
39a2XoNK b - 40 81.6% ± 0.004 0.421 ± 0.004 0.131 ± 0.000 0.010 ± 0.0003

STXQ b - 40 93.3% ± 0.019 0.393 ± 0.024 0.146 ± 0.009 0.017 ± 0.0002
STXQ b - 132 100% 0.498 ± 0.006 1.13 ± 0.01 0.014 ± 0.0004
STXQ c 162 95 99.27% ± 0.002 0.475 ± 0.01 5.24 ± 0.02 0.024 ± 0.0001

a Fermentation in SM medium in 72 h; b Fermentation in YP medium in 102 h; c Fermentation in YP medium.
The results represent the mean ± standard deviation of duplicate independent experiments.

Co-fermentation of 20 g L−1 glucose and 20 g L−1 xylose was carried out in SM medium under
oxygen-limited conditions. It can be seen that for all strains, glucose was almost completely consumed
at 24 h (Figure 2). However, xylose utilization varied greatly for the four engineered 39a2 strains.
Noticeably, in the presence of 20 g L−1 glucose, strain 39a2XpXp utilized xylose quite slowly and about
22% xylose was consumed at 72 h (Table 4). On the other hand, xylose utilization was improved to
77.5% by strain 39a2XpXo. Moreover, xylose consumption was improved to 84.3% by strain 39a2Xo
and it was further improved to 97% by 39a2XoXo (Table 4). It is worth noting that strain 39a2XoXo
presented the highest ethanol yield (0.449 g g−1). The above results suggest that the expression of
two-copy of OrpXylA is beneficial for glucose and xylose co-fermentation.
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3.3. Glucose and xylose Fermentation by the Engineered Yeast Strains Harboring Integrated XI Genes

Fermentation performance of 39a2 recombinant strains with integrated XI genes was tested in SM
medium containing 20 g L−1 xylose (SMX) or 20 g L−1 glucose and 20 g L−1 xylose (SMGX) under
oxygen-limited conditions (Figure 3). In SMX fermentation, the specific growth rate of 36α2XpXpUN
on xylose was 0.014 h−1, much higher than that of 36α2XoNK (0.003 h−1), whereas xylose conversion
by strain 39a2XoNK was 99.0%, much higher than that by 39a2XpXpUN (67.0%) (Table 4). In SMGX
fermentation, the specific growth rate of 36α2XpXpUN on xylose was 0.029 h−1, much higher
than that of 36α2XoNK (0.016 h−1), whereas xylose conversion by strain 39a2XoNK was 97.30%,
much higher than that by 39a2XpXpUN (73.8%) (Table 4). In both SMX and SMGX fermentation,
strain 36α2XpXpUN presented the best cell growth, whereas strain 39a2XoNK displayed the best
xylose conversion. Furthermore, strain 39a2XoNK exhibited the highest ethanol productivity in
both SMX and SMGX fermentation. Despite the possible XI gene copy number variation in these
strains, the above results demonstrated that the elimination of respiration was favorable for xylose
fermentation, which corroborated quite well with previous reports [12,14]. Strains 36α2XpXpUN and
39a2XoNK were therefore selected for mating to generate the diploid recombinant strain STXQ to
attain good cell growth and xylose fermentation.

3.4. Glucose and xylose Fermentation by Diploid Recombinant Strain STXQ

Fermentation performance of STXQ was tested in YP medium containing 40 g L−1 xylose under
oxygen-limited conditions. As expected, strain STXQ inherited the advantages of both parent strains,
36α2XpXpUN and 39a2XoNK. It presented 93.3% xylose conversion and a specific growth rate of
0.017 h−1; both were higher than those of its parent strains (Table 4). In addition, ethanol productivity
was greatly improved (Figure 3, Table 4). A very minimum amount of glycerol was produced by
STXQ, although glycerol production was notable for the respiration-deficient parent strain 39a2XoNK
(Figure 3). Moreover, production of xylitol and acetate was almost undetectable.
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Figure 3. Xylose fermentation in YPX medium containing 40 g L−1 xylose under oxygen-limited
conditions. (A) 36α2XpXpUN; (B) 39a2XoNK; (C) STXQ. The results represent the mean ± standard
deviation of duplicate independent experiments (p < 0.01).

Fermentation performance of strain STXQ was further invested in YP medium containing
high-concentration sugar. With an initial OD600 of about 13, strain STXQ consumed 100% xylose in
fermenting 132 g L−1 xylose and produced 65.8 g L−1 ethanol at 46 h. The corresponding ethanol yield
was 0.498 g g−1 (Figure 4A, Table 4). In fermentation of 162 g L−1 glucose and 95 g L−1 xylose with
about the same initial OD600, more than 99% glucose and xylose were co-utilized within 23 h (Figure 4B,
Table 4). Ethanol titer reached 120.6 g L−1 corresponding to an ethanol volumetric productivity of
5.26 g L−1 h−1. These are so far the highest values compared to those reported in the literature.
The above results indicate that the strain development strategy elaborated in this study is efficient in
generating a robust S. cerevisiae strain with improved xylose fermentation capabilities.
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4. Discussion 

Episomal plasmids containing OrpXylA, PirXylA and OrpXylA in tandem, two-copy PirXylA and 
two-copy OrpXylA expression cassettes (Figure 1) were transformed into the background strain 39a2 
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Figure 4. High-titer sugar fermentation under oxygen-limited conditions by strain STXQ in YP
media. (A) Xylose fermentation in YPX medium containing 132 g L−1 xylose; (B) Glucose and xylose
co-fermentation in YPGX medium containing 162 g L−1 glucose and 95 g L−1 xylose. The results
represent the mean ± standard deviation of duplicate independent experiments (p < 0.01).

3.5. Oil Palm Empty Fruit Bunch Hydrolysate Fermentation by Diploid Recombinant Strain STXQ

Fermentation performance of strain STXQ was further tested in OPEFB hydrolysate containing
41.81 g L−1 glucose, 30.00 g L−1 xylose, 7 g L−1 yeast extract, 2 g L−1 peptone, 2 g L−1 (NH4)2SO4,
2.05 g L−1 KH2PO4, and 0.25 g L−1 Na2HPO4 under oxygen-limited conditions with an initial OD600
of about 10. Strain STXQ consumed 95.3% glucose and 88.9% xylose (Figure 5). The pH value decreased
from 4.48 to 4.00 within 72 h. Strain STXQ consumed 94.0% total sugar from the OPEFB hydrolysate
without detoxification. The specific cell growth rate (µmax) reached 0.013 h−1 and the ethanol yield was
0.420 g g−1. Glucose was quickly consumed, and glucose-xylose co-fermentation was clearly observed
within 24 h. Subsequently, ethanol concentration kept increasing with almost the sole consumption of
xylose until it reached the final titer of 28.4 g L−1 at 72 h.
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Figure 5. Sugar fermentation under oxygen-limited conditions by strain STXQ in oil palm empty fruit
bunch hydrolysate supplemented with 7 g L−1 yeast extract, 2 g L−1 peptone, 2 g L−1 (NH4)2SO4,
2.05 g L−1 KH2PO4, and 0.25 g L−1 Na2HPO4. The results represent the mean ± standard deviation of
duplicate independent experiments (p < 0.01).

4. Discussion

Episomal plasmids containing OrpXylA, PirXylA and OrpXylA in tandem, two-copy PirXylA and
two-copy OrpXylA expression cassettes (Figure 1) were transformed into the background strain 39a2

individually. Among all the 39a2 strains harboring episomal XI genes, strain 39a2XpXp presented
the fastest rate of xylose utilization when xylose was used as the sole carbon source. However, it did
not exhibit the highest XI activity and transcription level (Tables 2 and 3). Inconsistent XI activity
and transcription level in recombinant xylose-fermenting S. cerevisiae strain was reported and it
could be due to rearrangement of pentose phosphate pathway (PPP) genes, decreased glycolysis
activity, repressed respiration activity, and enhanced gluconeogenesis [35]. Besides XI activity, the
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enhanced xylose utilization and fermentation could be associated with the elevated expression of sugar
transporter genes, non-oxidative pentose phosphate pathway (PPP) genes such as TAL1, TKL1, RKI1,
and RPE1 and xylulokinase gene, XKS1 [19,20,25,36].

For glucose and xylose co-fermentation, strain 39a2XoXo presented the best glucose and xylose
co-utilization (Figure 2) and exhibited the highest xylose conversion (96.7%) (Table 4). S. cerevisiae does
not contain specific xylose transporters. Xylose was therefore transported by glucose transporters.
Xylose affinity for the glucose transporters was very low at a high glucose concentration; however,
it could increase to a similar level of glucose affinity at low glucose concentration [19,20]. As a result,
diauxic lag is still a practical problem associated with mixed sugar utilization by xylose-fermenting
yeasts. However, the diauxic growth was not significant for strains expressing OrpXylA, 39a2Xo and
39a2XoXo (Figure 2). The above results and analysis suggest that expression of OrpXylA is beneficial
for glucose and xylose co-fermentation. This is consistent with a previous report [37].

Chromosomal integration of the XI gene into the S. cerevisiae genome has received a significant
amount of attention in recent years [25,26]. It allows the recombinant strain to retain its physiological
characteristics in nonselective medium. In the present study, multiple copies of XI genes were integrated
at the 18S rDNA sites based on random homologous recombination. Such genome integration led to
stable recombinant yeast strains (Figure S1) and boosted XI activity to 0.72 U mg−1 protein in 39a2XoNK
(Table 2). Such improvement might be associated with the multiple copies of XI integrated in the
yeast genome [25]. This further led to high XI transcription levels (Table 3), high xylose conversion
and ethanol production (Table 4). Such results accorded quite well with earlier reports [25,26,36].
Notably, among these strains, 39a2 strains with integrated XI genes presented higher XI activity and
transcription level than 36α2 strains (Tables 2 and 3). This further confirmed that the elimination of
respiration was favorable for xylose fermentation [12,14].

S. cerevisiae strains are regarded as industrial working horses for ethanol production owing to
their high ethanol titer and sugar tolerance. Mating is one of the traditional yeast breeding methods
to develop improved S. cerevisiae strains without genetic modifications [38]. Through strain mating,
robust diploid S. cerevisiae strains were developed for enhanced xylose-fermentation and inhibitor
resistance [23,24]. In the present work, a recombinant diploid S. cerevisiae strain STXQ was obtained by
mating respiration-dependent strain 36α2XpXpUN with the respiration-deficient strain 39a2XoNK.
Such strain mating enabled strain STXQ to present improved cell growth, xylose utilization and ethanol
production (Figure 4, Table 4).

For glucose-xylose co-fermentation by engineered laboratory S. cerevisiae strains, higher ethanol
concentration of ~60 g L−1 was reported by Ho et al. [39] (Table 5). An ethanol titer of 47.5 g L−1 was
obtained by recombinant S. cerevisiae RWB218 expressing PirXylA [40]. About 53 g L−1 ethanol titer was
reported by Diao and his colleagues using the diploid recombinant S. cerevisiae strain CIBTS0735 [22].
Demeke et al. obtained an inhibitor-resistant recombinant S. cerevisiae through metabolic engineering
and adaptive evolution [18]. It utilized glucose and xylose rapidly with ethanol titer up to 46 g L−1 and
ethanol productivity of 2.58 g L−1·h−1. This is the highest volumetric ethanol productivity reported
to-date in the literature. More recently, about 58 g L−1 ethanol titer was obtained by a diploid
recombinant yeast strain LF1 developed from a wild-type S. cerevisiae strain in YP medium [25]. Strain
STXQ yielded 65.8 g L−1 ethanol with an ethanol yield of 0.50 g g−1 at 56 h in YPX medium containing
132 g L−1 xylose (Figure 4A, Table 4). Further glucose-xylose co-fermentation produced 120.6 g L−1

ethanol with an ethanol yield of 0.48 g g−1 at 23 h in YP medium containing 162 g L−1 glucose and
95 g L−1 xylose. The corresponding volumetric ethanol productivity reached 5.24 g L−1·h−1. (Figure 4B,
Table 4). Both ethanol titer and volumetric productivity far exceeded the results in previous reports.
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Table 5. Comparison of fermentation performance of engineered xylose-fermenting S. cerevisiae.

Strain Description Inoculum Biomass (g DCW L−1)
Initial

Glucose
(g L−1)

Initial
Xylose
(g L−1)

Final
Ethanol
(g L−1)

Ethanol
Yield (g

g−1)

Volumetric
Ethanol

Productivity
(g L−1·h−1)

Reference

CIBTS0735 PirXylA; XKS1; PPP; ciGXF1; adaptive
evolution

Rich medium, initial inoculum size
at 0.63 g DCW L−1 40 17.47 0.44 1.09 [18]

Rich medium, initial inoculum size
at 0.63 g DCW L−1 80 40 53 0.45 2.22

RWB218 PirXylA; XKS1; PPP; gre3∆; adaptive
evolution)

defined synthetic medium, initial
inoculum size at 1.1 g DCW L−1 100 25 47.5 0.38 1.98 [40]

1400 (pLNH32) XR; XDH; XK; adaptive evolution Rich medium; OD 40–45 50 24 0.48 0.52 [39]

Rich medium; OD 40–45 80 40 60 0.45 1.3

H31-A3-ALCS PirXylA; XKS1; PPP; gre3∆; adaptive
evolution

Defined medium;initial inoculum size
at 0.05 g DCW L−1 40 16.4 0.41 0.55 [28]

GS1.11-26
cpXylA; XKS1; PPP; HXT7; AraT; AraA;
AraB; AraD; TAL2; TKL2 mutagenesis;
genome shuffling; adaptive evolution

Rich medium; initial inoculum size
at 1.3 g DCW L−1 36 37 33.6 0.46 2.58 [18]

LF1
Ru-XylA, XKS1, PPP,

gre3::MGT05196N360F, adaptive
evolution

Rich medium, initial inoculum size
at 1.00 g DCW L−1 80 42 58.0 0.47 3.60 [25]

STXQ OrpXylA, PirXylA, XKS1, PPP, gre3∆;
adaptive evolution

Rich medium, initial inoculum size
at 3.13 g DCW L−1 132 65.8 0.50 1.13 This study

Rich medium, initial inoculum size
at 3.43 g DCW L−1 162 95 120.6 0.48 5.24 This study
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The OPEFB hydrolysate fermentation result demonstrated that strain STXQ could co-ferment
glucose and xylose without detoxification, with 95.3% glucose conversion and 88.9% xylose conversion
at 72 h (Figure 5). Ethanol titer reached 28.4 g L−1 at 72 h with an ethanol yield of 0.420 g g−1. Strain
STXQ has potential in the conversion of lignocellulosic biomass hydrolysate to ethanol. These results
suggest that the strain development protocols outlined in this study are effective in obtaining robust
xylose-fermenting yeast strains for industrial applications.

5. Conclusions

A recombinant haploid strain containing plasmids harboring two-copy PirXylA presented the
best xylose utilization among the engineered yeast strains harboring episomal XI genes when xylose
was used as the sole carbon source. On the other hand, the strain containing plasmids with two-copy
OrpXylA exhibited the best glucose and xylose co-fermentation. Respiration-deficient 39a2 strains
harboring the OrpXylA gene were favorable for xylose fermentation and glucose-xylose co-fermentation
in the engineered yeast strains. Chromosome integration of XI genes in S. cerevisiae resulted in high XI
activity, high XI transcription levels, and improved xylose fermentation. Mating the respiration-efficient
strain 36α2XpXpUN with the respiration-deficient strain 39a2XoNK resulted in a diploid recombinant
S. cerevisiae strain STXQ with enhanced cell growth and xylose fermentation. Strain STXQ demonstrated
superior glucose and xylose co-fermentation performance. It produced 120.6 g L−1 ethanol with a
volumetric productivity of 5.24 g L−1 h−1, the highest among those reported to-date. Such superior
performance by strain STXQ is largely associated with its development process, in particular with
strain adaptive evolution, XI gene chromosome integration and strain mating.
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