Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (222)

Search Parameters:
Keywords = xenobiotic metabolizing enzymes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3146 KiB  
Article
TnP as a Multifaceted Therapeutic Peptide with System-Wide Regulatory Capacity
by Geonildo Rodrigo Disner, Emma Wincent, Carla Lima and Monica Lopes-Ferreira
Pharmaceuticals 2025, 18(8), 1146; https://doi.org/10.3390/ph18081146 - 1 Aug 2025
Viewed by 196
Abstract
Background: The candidate therapeutic peptide TnP demonstrates broad, system-level regulatory capacity, revealed through integrated network analysis from transcriptomic data in zebrafish. Our study primarily identifies TnP as a multifaceted modulator of drug metabolism, wound healing, proteolytic activity, and pigmentation pathways. Results: Transcriptomic profiling [...] Read more.
Background: The candidate therapeutic peptide TnP demonstrates broad, system-level regulatory capacity, revealed through integrated network analysis from transcriptomic data in zebrafish. Our study primarily identifies TnP as a multifaceted modulator of drug metabolism, wound healing, proteolytic activity, and pigmentation pathways. Results: Transcriptomic profiling of TnP-treated larvae following tail fin amputation revealed 558 differentially expressed genes (DEGs), categorized into four functional networks: (1) drug-metabolizing enzymes (cyp3a65, cyp1a) and transporters (SLC/ABC families), where TnP alters xenobiotic processing through Phase I/II modulation; (2) cellular trafficking and immune regulation, with upregulated myosin genes (myhb/mylz3) enhancing wound repair and tlr5-cdc42 signaling fine-tuning inflammation; (3) proteolytic cascades (c6ast4, prss1) coupled to autophagy (ulk1a, atg2a) and metabolic rewiring (g6pca.1-tg axis); and (4) melanogenesis-circadian networks (pmela/dct-fbxl3l) linked to ubiquitin-mediated protein turnover. Key findings highlight TnP’s unique coordination of rapid (protease activation) and sustained (metabolic adaptation) responses, enabled by short network path lengths (1.6–2.1 edges). Hub genes, such as nr1i2 (pxr), ppara, and bcl6aa/b, mediate crosstalk between these systems, while potential risks—including muscle hypercontractility (myhb overexpression) or cardiovascular effects (ace2-ppp3ccb)—underscore the need for targeted delivery. The zebrafish model validated TnP-conserved mechanisms with human relevance, particularly in drug metabolism and tissue repair. TnP’s ability to synchronize extracellular matrix remodeling, immune resolution, and metabolic homeostasis supports its development for the treatment of fibrosis, metabolic disorders, and inflammatory conditions. Conclusions: Future work should focus on optimizing tissue-specific delivery and assessing genetic variability to advance clinical translation. This system-level analysis positions TnP as a model example for next-generation multi-pathway therapeutics. Full article
Show Figures

Graphical abstract

20 pages, 2548 KiB  
Article
In Vitro Metabolism of Doping Agents (Stanozolol, LGD-4033, Anastrozole, GW1516, Trimetazidine) by Human Seminal Vesicle and Liver Fractions
by Johanna Sternberg, Insa Peters, Nana Naumann, Andreas Thomas and Mario Thevis
Metabolites 2025, 15(7), 452; https://doi.org/10.3390/metabo15070452 - 4 Jul 2025
Viewed by 495
Abstract
Background: In order to address complex scenarios in anti-doping science, especially in cases where an unintentional exposure of athletes to prohibited substances and a corresponding contamination of doping control samples at the collection event are argued, an understanding of tissue-specific drug metabolism is [...] Read more.
Background: In order to address complex scenarios in anti-doping science, especially in cases where an unintentional exposure of athletes to prohibited substances and a corresponding contamination of doping control samples at the collection event are argued, an understanding of tissue-specific drug metabolism is essential. Hence, in this study, the metabolic capacity of the seminal vesicle using in vitro assays was investigated. Methods: The aim was to assess whether selected doping-relevant substances—stanozolol, LGD-4033, GW1516, trimetazidine, and anastrozole—are metabolised in seminal vesicle cellular fractions (SV-S9) and how that metabolism compares to biotransformations induced by human liver S9 fractions (HL-S9). Liquid chromatography coupled to high-resolution/accurate mass spectrometry (LC HRAM MS) enabled the sensitive detection and identification of metabolites, revealing a limited metabolic activity of SV-S9. Results: For LGD-4033, GW1516, and trimetazidine, minor metabolic transformations were observed, whereas no metabolites of stanozolol or anastrozole were detected. Gene expression analysis using digital polymerase chain reaction (dPCR) confirmed transcripts of CYP2D6, CYP2E1, and CYP2C9 in SV-S9, though no enzymatic activity was detected. Gene expression and enzymatic activity in CYP3A4 and CYP1A2—major hepatic enzymes—were absent in SV-S9. Conclusions: Overall, these pilot study results suggest that the seminal vesicle has only a low capacity for xenobiotic metabolism, which translates into a limited role in the biotransformation of drugs and, hence, the metabolic pattern. Full article
(This article belongs to the Section Pharmacology and Drug Metabolism)
Show Figures

Graphical abstract

45 pages, 11750 KiB  
Review
Recent Progress and Challenges in Microbial Defluorination and Degradation for Sustainable Remediation of Fluorinated Xenobiotics
by Mohd Faheem Khan
Processes 2025, 13(7), 2017; https://doi.org/10.3390/pr13072017 - 25 Jun 2025
Viewed by 1405
Abstract
Fluorinated xenobiotics, such as per- and polyfluoroalkyl substances (PFAS), fluorinated pesticides, and pharmaceuticals, are extensively used across industries, but their extreme persistence, driven by the high carbon–fluorine (C–F) bond dissociation energy (~485 kJ/mol), poses serious environmental and health risks. These compounds have been [...] Read more.
Fluorinated xenobiotics, such as per- and polyfluoroalkyl substances (PFAS), fluorinated pesticides, and pharmaceuticals, are extensively used across industries, but their extreme persistence, driven by the high carbon–fluorine (C–F) bond dissociation energy (~485 kJ/mol), poses serious environmental and health risks. These compounds have been detected in water, soil, and biota at concentrations from ng/L to µg/L, leading to widespread contamination and bioaccumulation. Traditional remediation approaches are often costly (e.g., EUR >100/m3 for advanced oxidation), energy-intensive, and rarely achieve complete degradation. In contrast, microbial defluorination offers a low-energy, sustainable alternative that functions under mild conditions. Microorganisms cleave C–F bonds through reductive, hydrolytic, and oxidative pathways, mediated by enzymatic and non-enzymatic mechanisms. Factors including electron donor availability and oxygen levels critically influence microbial defluorination efficiency. Microbial taxa, including bacteria, fungi, algae, and syntrophic consortia, exhibit varying defluorination capabilities. Metagenomic and microbial ecology studies continue to reveal novel defluorinating organisms and metabolic pathways. Key enzymes, such as fluoroacetate dehalogenases, cytochrome P450 monooxygenases, reductive dehalogenases, peroxidases, and laccases, have been characterised, with structural and mechanistic insights enhancing the understanding of their catalytic functions. Enzyme engineering and synthetic biology tools now enable the optimisation of these enzymes, and the design of microbial systems tailored for fluorinated compound degradation. Despite these advances, challenges remain in improving enzyme efficiency, broadening substrate specificity, and overcoming physiological constraints. This review emphasises the emerging promise of microbial defluorination as a transformative and green solution, uniquely integrating recent multidisciplinary findings to accelerate the development of sustainable microbial defluorination strategies for effective remediation of fluorinated xenobiotics. Full article
(This article belongs to the Special Issue 1st SUSTENS Meeting: Advances in Sustainable Engineering Systems)
Show Figures

Figure 1

16 pages, 1966 KiB  
Article
Identifying Cellular Stress-Related mRNA Changes Induced by Novel Xanthone Derivatives in Ovarian Cancer Cells In Vitro
by Jakub Rech, Dorota Żelaszczyk, Henryk Marona and Ilona Anna Bednarek
Pharmaceutics 2025, 17(7), 816; https://doi.org/10.3390/pharmaceutics17070816 - 24 Jun 2025
Viewed by 434
Abstract
Background: Ovarian cancer is a major challenge in oncology due to high mortality rates, especially in advanced stages, despite current therapeutic approaches relying on chemotherapy and surgery. The search for novel therapeutic strategies is driven by the need for more effective treatments. This [...] Read more.
Background: Ovarian cancer is a major challenge in oncology due to high mortality rates, especially in advanced stages, despite current therapeutic approaches relying on chemotherapy and surgery. The search for novel therapeutic strategies is driven by the need for more effective treatments. This study focuses on novel xanthone derivatives modified with a morpholine ring, aiming to improve anticancer efficacy. Methods: In silico studies were conducted using ProTox III and SwissADME databases to assess the toxicity and ADME properties of the synthesized compounds. Molecular changes in cellular stress-related genes were investigated through qPCR in two ovarian cancer cell lines (TOV-21G and SKOV-3) following treatment with the compounds. Results: In silico analyses predicted high gastrointestinal absorption and blood–brain barrier permeability for the derivatives. Compounds exhibited varying toxicity and metabolic profiles. qPCR revealed significant alterations in genes related to antioxidant enzymes, molecular chaperones, and xenobiotic metabolism, indicating potential mechanisms of action and cellular responses to the compounds. Conclusions: The study demonstrates the potential of novel xanthone derivatives as promising candidates for ovarian cancer therapy, with implications for enhancing therapeutic efficacy and addressing drug resistance. Further research is warranted to elucidate the precise mechanisms underlying the observed effects and to develop tailored treatment strategies leveraging these agents. Full article
(This article belongs to the Special Issue Advances in Anticancer Agent, 2nd Edition)
Show Figures

Figure 1

16 pages, 3289 KiB  
Article
Unique Structural Features Relate to Evolutionary Adaptation of Cytochrome P450 in the Abyssal Zone
by Tatiana Y. Hargrove, David C. Lamb, Zdzislaw Wawrzak, George Minasov, Jared V. Goldstone, Steven L. Kelly, John J. Stegeman and Galina I. Lepesheva
Int. J. Mol. Sci. 2025, 26(12), 5689; https://doi.org/10.3390/ijms26125689 - 13 Jun 2025
Viewed by 542
Abstract
Cytochromes P450 (CYPs) form one of the largest enzyme superfamilies, with similar structural folds yet biological functions varying from synthesis of physiologically essential compounds to metabolism of myriad xenobiotics. Sterol 14α-demethylases (CYP51s) represent a very special P450 family, regarded as a possible evolutionary [...] Read more.
Cytochromes P450 (CYPs) form one of the largest enzyme superfamilies, with similar structural folds yet biological functions varying from synthesis of physiologically essential compounds to metabolism of myriad xenobiotics. Sterol 14α-demethylases (CYP51s) represent a very special P450 family, regarded as a possible evolutionary progenitor for all currently existing P450s. In metazoans CYP51 is critical for the biosynthesis of sterols including cholesterol. Here we determined the crystal structures of ligand-free CYP51s from the abyssal fish Coryphaenoides armatus and human-. Comparative sequence–structure–function analysis revealed specific structural elements that imply elevated conformational flexibility, uncovering a molecular basis for faster catalytic rates, lower substrate selectivity, and intrinsic resistance to inhibition. In addition, the C. armatus structure displayed a large-scale repositioning of structural segments that, in vivo, are immersed in the endoplasmic reticulum membrane and border the substrate entrance (the FG arm, >20 Å, and the β4 hairpin, >15 Å). The structural distinction of C. armatus CYP51, which is the first structurally characterized deep sea P450, suggests stronger involvement of the membrane environment in regulation of the enzyme function. We interpret this as a co-adaptation of the membrane protein structure with membrane lipid composition during evolutionary incursion to life in the deep sea. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

21 pages, 1915 KiB  
Article
CYP1B1 Knockout in a Bovine Hepatocyte-like Cell Line (BFH12) Unveils Its Role in Liver Homeostasis and Aflatoxin B1-Induced Hepatotoxicity
by Silvia Iori, Ludovica Montanucci, Caterina D’Onofrio, Maija Lahtela-Kakkonen, Lorena Lucatello, Anisa Bardhi, Andrea Barbarossa, Francesca Capolongo, Anna Zaghini, Marianna Pauletto, Mauro Dacasto and Mery Giantin
Toxins 2025, 17(6), 294; https://doi.org/10.3390/toxins17060294 - 10 Jun 2025
Viewed by 704
Abstract
CYP1B1 is a key enzyme involved in xenobiotic and endogenous metabolism, yet its physiological role in bovine liver homeostasis remains unclear. In this study, we generated a CYP1B1 knockout (CYP1B1KO) bovine hepatocyte-like cell line to indirectly investigate its role in [...] Read more.
CYP1B1 is a key enzyme involved in xenobiotic and endogenous metabolism, yet its physiological role in bovine liver homeostasis remains unclear. In this study, we generated a CYP1B1 knockout (CYP1B1KO) bovine hepatocyte-like cell line to indirectly investigate its role in liver function. Transcriptomic analysis revealed alterations in immune regulation, epithelial barrier integrity, and detoxification pathways, with concurrent compensatory CYP1A1 upregulation. Beyond its physiological role, CYP1B1 was found to actively participate in Aflatoxin B1 (AFB1) metabolism, a mycotoxin posing significant health risks to humans and livestock. Molecular docking suggested that CYP1B1 facilitates the conversion of AFB1 into AFM1 and AFBO. In agreement with these predictions, CYP1B1KO cells exposed to AFB1 showed reduced AFM1 production and decreased cytotoxicity. Further transcriptomic analysis indicated that CYP1B1KO cells exhibited mitigated oxidative stress and inflammatory responses, along with downregulation of CYP3A74, a key enzyme in AFB1 bioactivation. This suggests that CYP1B1 KO reduces AFB1 toxicity by directly limiting AFB1 bioactivation and indirectly modulating the broader hepatic CYP network, further limiting the formation of toxic intermediates. These findings provide novel insights into CYP1B1’s function in bovine hepatocytes, highlighting its dual role in maintaining liver homeostasis and mediating AFB1 metabolism. The observed interplay between CYP1B1, CYP1A1, and CYP3A74 underscores the complexity of AFB1 biotransformation and warrants further investigation into the coordinated regulation of xenobiotic metabolism in cattle. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Graphical abstract

17 pages, 1933 KiB  
Article
Profiling the Tox21 Compound Library for Their Inhibitory Effects on Cytochrome P450 Enzymes
by Srilatha Sakamuru, Jameson Travers, Carleen Klumpp-Thomas, Ruili Huang, Kristine L. Witt, Stephen S. Ferguson, Steven O. Simmons, David M. Reif, Anton Simeonov and Menghang Xia
Int. J. Mol. Sci. 2025, 26(11), 4976; https://doi.org/10.3390/ijms26114976 - 22 May 2025
Viewed by 899
Abstract
Cytochrome P450 (CYP) enzymes are membrane-bound hemoproteins crucial for drug and xenobiotic metabolism. While more than 50 CYPs have been identified in humans, the isoforms from CYP1, 2, and 3 families contribute to the metabolism of about 80% of clinically approved drugs. To [...] Read more.
Cytochrome P450 (CYP) enzymes are membrane-bound hemoproteins crucial for drug and xenobiotic metabolism. While more than 50 CYPs have been identified in humans, the isoforms from CYP1, 2, and 3 families contribute to the metabolism of about 80% of clinically approved drugs. To evaluate the effects of environmental chemicals on the activities of these important CYP enzyme families, we screened the Tox21 10K compound library to identify chemicals that inhibit CYP1A2, 2C9, 2C19, 2D6, and 3A4 enzymes. The data obtained from these five screenings were analyzed to reveal the structural classes responsible for inhibiting multiple and/or selective CYPs. Some known structural compound classes exhibiting pan-CYP inhibition, such as azole fungicides, along with established clinical inhibitors of CYPs, including erythromycin and verapamil inhibiting CYP3A4 and paroxetine and terbinafine inhibiting CYP2D6, were all confirmed in the current study. In addition, some selective CYP inhibitors, previously unknown but with potent activity (IC50 values < 1 µM), were identified. Examples included yohimbine, an indole alkaloid, and loteprednol, a corticosteroid, which showed inhibitory activity in CYP2D6 and 3A4 assays, respectively. These findings suggest that assessment of a candidate compound’s impact on CYP function may allow pre-emptive mitigation of potential adverse reactions and toxicity during drug development or toxicological characterization of environmental chemicals. Full article
(This article belongs to the Special Issue Cytochrome P450 Mechanism and Reactivity)
Show Figures

Figure 1

14 pages, 1759 KiB  
Article
Machine Learning on Toxicogenomic Data Reveals a Strong Association Between the Induction of Drug-Metabolizing Enzymes and Centrilobular Hepatocyte Hypertrophy in Rats
by Kazuki Ikoma, Takuomi Hosaka, Akira Ooka, Ryota Shizu and Kouichi Yoshinari
Int. J. Mol. Sci. 2025, 26(10), 4886; https://doi.org/10.3390/ijms26104886 - 20 May 2025
Viewed by 578
Abstract
Centrilobular hepatocyte hypertrophy is frequently observed in animal studies for chemical safety assessment. Although its toxicological significance and precise mechanism remain unknown, it is considered an adaptive response resulting from the induction of drug-metabolizing enzymes (DMEs). This study aimed to elucidate the association [...] Read more.
Centrilobular hepatocyte hypertrophy is frequently observed in animal studies for chemical safety assessment. Although its toxicological significance and precise mechanism remain unknown, it is considered an adaptive response resulting from the induction of drug-metabolizing enzymes (DMEs). This study aimed to elucidate the association between centrilobular hepatocyte hypertrophy and DME induction using machine learning on toxicogenomic data. Utilizing publicly available gene expression data and pathological findings from rat livers of 134 compounds, we developed six different types of machine learning models to predict the occurrence of centrilobular hepatocyte hypertrophy based on gene expression data as explanatory variables. Among these, a LightGBM-based model demonstrated the best performance with an accuracy of approximately 0.9. With this model, we assessed each gene’s contribution to predicting centrilobular hepatocyte hypertrophy using mean absolute SHAP values. The results revealed that Cyp2b1 had an extremely significant contribution, while other DME genes also displayed positive contributions. Additionally, enrichment analysis of the top 100 genes based on mean absolute SHAP values identified “Metabolism of xenobiotics by cytochrome P450” as the most significantly enriched term. In conclusion, the current results suggest that the induction of multiple DMEs, including CYP2B1, is crucial for the development of centrilobular hepatocyte hypertrophy. Full article
(This article belongs to the Special Issue Advanced Research in Biomolecular Design for Medical Applications)
Show Figures

Figure 1

25 pages, 2556 KiB  
Article
Exploration of CYP4B1 Substrate Promiscuity Across Three Species
by Annika Röder, Michael C. Hutter, Eva Heitzer, Pia Josephine Franz, Saskia Hüsken, Constanze Wiek and Marco Girhard
Catalysts 2025, 15(5), 454; https://doi.org/10.3390/catal15050454 - 7 May 2025
Viewed by 823
Abstract
Enzymes of the cytochrome P450 monooxygenase family 4 (CYP4) in mammals are generally involved either in endobiotic metabolism (e.g., acting on fatty acids or eicosanoids), or the modification of xenobiotics including therapeutic drugs. CYP4B1 is special, as it is an enigmatic enzyme acting [...] Read more.
Enzymes of the cytochrome P450 monooxygenase family 4 (CYP4) in mammals are generally involved either in endobiotic metabolism (e.g., acting on fatty acids or eicosanoids), or the modification of xenobiotics including therapeutic drugs. CYP4B1 is special, as it is an enigmatic enzyme acting at the interface between xenobiotic and endobiotic metabolism. However, a systematic analysis of CYP4B1’s substrate scope has not yet been reported. Herein, a three-step approach to identify novel substrates for three CYP4B1 orthologs (namely from rabbits, green monkeys, and mouse lemurs) is described. First, screening of a library containing 502 natural products revealed potential novel substrate groups for CYP4B1. Second, based on these results, a systematic library was defined consisting of 63 compounds representing 10 compound groups. Third, in vitro conversion of these compounds by CYP4B1 and identification of conversion products were conducted, supported by in silico docking, allowing the prediction of binding probabilities and potential oxidation sites. We report five new substrate groups (acyclic, monocyclic and bicyclic terpenoids, stilbenoids, and vanilloids), twenty-eight new substrates (inter alia capsaicin, gingerol, genistein, stilbene, myristicin, thioanisole), and two new reaction types for CYP4B1 (S-oxidation, O-demethylation). Consequently, CYP4B1 is a far more promiscuous enzyme than previously thought. Full article
Show Figures

Graphical abstract

20 pages, 6836 KiB  
Article
Effect of Spinetoram Stress on Midgut Detoxification Enzyme and Gene Expression of Apis cerana cerana Fabricius
by Lin Chen, Tianjun He, Linglong Ding, Xinyan Lan, Jiahao Sun, Xiaoheng Xu, Huafen Wu, Dayun Zhou, Zhichu Huang, Tianxing Zhou, Xiaoling Su and Limin Chen
Insects 2025, 16(5), 492; https://doi.org/10.3390/insects16050492 - 4 May 2025
Cited by 1 | Viewed by 719
Abstract
This study aimed to evaluate the impact of Spinetoram (SPI) on the midgut of Apis cerana cerana Fabricius pupae, emphasizing detoxifying enzyme activity, gene expression, and morphological alterations. Pupae were subjected to SPI at LC20 and LC50 concentrations, and the midgut was [...] Read more.
This study aimed to evaluate the impact of Spinetoram (SPI) on the midgut of Apis cerana cerana Fabricius pupae, emphasizing detoxifying enzyme activity, gene expression, and morphological alterations. Pupae were subjected to SPI at LC20 and LC50 concentrations, and the midgut was evaluated using morphological assessment, detoxifying enzyme assays, and transcriptome analysis utilizing gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment. Transcriptome analysis revealed 32 differentially expressed genes (DEGs) that were common to both the LC20 vs. control (CK) and LC50 vs. CK comparisons, along with 24 DEGs unique to the LC20 vs. CK comparison and 76 DEGs unique to the LC50 vs. CK comparison. KEGG pathway analysis indicated the substantial enrichment of pathways associated with drug metabolism, xenobiotic metabolism, and amino acid metabolism, implying disruptions in detoxification mechanisms and broader metabolic imbalances resulting from SPI exposure. Morphological analysis showed a normal midgut structure in the control group, while significant damage was observed in the LC20 group, and severe degeneration was observed in the LC50 group. Detoxification enzyme assays revealed that the activities of cytochrome P450, glutathione S-transferase, and carboxylesterase significantly increased at LC20 (p < 0.05), indicating an initial induction of detoxification responses; however, they declined at LC50, suggesting enzyme inhibition or midgut damage. The activity of acetylcholinesterase markedly diminished at both LC20 and LC50 (p < 0.05), with a more substantial decline observed at LC50, suggesting possible neurotoxicity. These findings indicate that SPI exposure causes substantial alterations in midgut morphology, detoxifying enzyme activity, and gene expression in Apis cerana cerana Fabricius pupae, underscoring the insecticide’s detrimental impact on honey bee health. Full article
(This article belongs to the Section Social Insects and Apiculture)
Show Figures

Figure 1

17 pages, 1430 KiB  
Article
Development and Characterization of pFluor50, a Fluorogenic-Based Kinetic Assay System for High-Throughput Inhibition Screening and Characterization of Time-Dependent Inhibition and Inhibition Type for Six Human CYPs
by Pratik Shriwas, Andre Revnew, Sarah Roo, Alex Bender, Kevin Miller, Christopher M. Hadad, Thomas R. Lane, Sean Ekins and Craig A. McElroy
Molecules 2025, 30(9), 2032; https://doi.org/10.3390/molecules30092032 - 2 May 2025
Viewed by 613
Abstract
Cytochrome P450s (CYPs) play an integral role in drug and xenobiotic metabolism in humans, and thus, understanding CYP inhibition and/or activation by new therapeutic candidates is an important step in the drug development process. Ideally, CYP inhibition/activation assays should be high-throughput, use commercially [...] Read more.
Cytochrome P450s (CYPs) play an integral role in drug and xenobiotic metabolism in humans, and thus, understanding CYP inhibition and/or activation by new therapeutic candidates is an important step in the drug development process. Ideally, CYP inhibition/activation assays should be high-throughput, use commercially available components, allow for analysis of metabolism by the majority of human CYPs, and allow for kinetic analysis of inhibition type and time-dependent inhibition. Here, we developed pFluor50, a 384-well microtiter plate-based fluorogenic kinetic enzyme assay system using substrates metabolized by six human CYPs to generate fluorescent products and determined the Michaelis–Menten kinetics constants (KM) and product formation rates (Vmax) for each substrate–CYP pair. The pFluor50 assay was also used to elucidate inhibition type and time-dependent inhibition for some inhibitors, demonstrating its utility for characterizing the observed inhibition, even mechanism-based inhibition. The pFluor50 assay system developed in this study using commercially available components should be very useful for high-throughput screening and further characterization of potential therapeutic candidates for inhibition/activation with the most prevalent human CYPs. Full article
Show Figures

Figure 1

23 pages, 1827 KiB  
Article
Genetic Interactions of Phase II Xenobiotic-Metabolizing Enzymes GSTO1 and GCLC in Relation to Alcohol Abuse and Psoriasis Risk
by Roman Saranyuk, Olga Bushueva, Ekaterina Efanova, Maria Solodilova, Mikhail Churnosov and Alexey Polonikov
J. Xenobiot. 2025, 15(2), 60; https://doi.org/10.3390/jox15020060 - 20 Apr 2025
Viewed by 543
Abstract
The present pilot study aimed to investigate whether common single nucleotide polymorphisms (SNPs) in the gene encoding glutathione S-transferase omega 1 (GSTO1), both individually and in combination with variants of the catalytic subunit of the glutamate cysteine ligase (GCLC) [...] Read more.
The present pilot study aimed to investigate whether common single nucleotide polymorphisms (SNPs) in the gene encoding glutathione S-transferase omega 1 (GSTO1), both individually and in combination with variants of the catalytic subunit of the glutamate cysteine ligase (GCLC) gene and environmental risk factors, are associated with the risk of psoriasis. The research included a total of 944 participants, comprising 474 individuals diagnosed with psoriasis and 470 healthy control subjects. Five common SNPs in the GSTO1 gene—specifically, rs11191736, rs34040810, rs2289964, rs11191979, and rs187304410—were genotyped in the study groups using the MassARRAY-4 system. The allele rs187304410-A (OR = 0.19, 95% CI 0.04–0.86, Pperm = 0.02) and the genotype rs187304410-G/A (OR = 0.19, 95% CI 0.04–0.85, Pperm = 0.01) were found to be associated with psoriasis in females. The model-based multifactor dimensionality reduction approach facilitated the identification of higher-order epistatic interactions between the variants of the GSTO1 and GCLC genes (Pperm < 0.0001). These interactions, along with the risk factor of alcohol abuse, collectively contribute to the pathogenesis of psoriasis. This study is the first to demonstrate that polymorphisms in the GSTO1 gene, both individually and in combination with variants of the GCLC gene and alcohol abuse, are associated with an increased risk of psoriasis. Full article
Show Figures

Figure 1

43 pages, 380 KiB  
Article
Pharmacogenetics as a Future Tool to Risk-Stratify Breast Cancer Patients According to Chemotoxicity Potential from the Doxorubicin Hydrochloride and Cyclophosphamide (AC) Regimen
by Esraa K. Abdelfattah, Sanaa M. Hosny, Amira B. Kassem, Hebatallah Ahmed Mohamed Moustafa, Amany M. Tawfeik, Marwa N. Abdelhafez, Wael El-Sheshtawy, Bshra A. Alsfouk, Asmaa Saleh and Hoda A. Salem
Pharmaceuticals 2025, 18(4), 539; https://doi.org/10.3390/ph18040539 - 7 Apr 2025
Cited by 2 | Viewed by 1119
Abstract
Background: Studying single-nucleotide polymorphisms (SNPs) in xenobiotic-transporting and metabolizing enzyme genes before administering the doxorubicin hydrochloride and cyclophosphamide (AC) regimen may help optimize breast cancer (BC) treatment for individual patients. Objective: Genotyping specific SNPs on genes encoding for the transport and metabolism [...] Read more.
Background: Studying single-nucleotide polymorphisms (SNPs) in xenobiotic-transporting and metabolizing enzyme genes before administering the doxorubicin hydrochloride and cyclophosphamide (AC) regimen may help optimize breast cancer (BC) treatment for individual patients. Objective: Genotyping specific SNPs on genes encoding for the transport and metabolism of the AC regimen and study their association with its chemotherapeutic toxicity. Method: This prospective cohort study was conducted in two hospitals in Egypt. Before receiving AC therapy, venous blood was collected from female patients with BC for DNA extraction and the genotyping of four SNPs: rs2228100 in ALDH3A1 gene, rs12248560 in CYP2C19 gene, rs1045642 in ABCB1 gene, and rs6907567 in SLC22A16 gene. Patients were then prospectively monitored for hematological, gastrointestinal, and miscellaneous toxicities throughout the treatment cycles. Results: The ALDH3A1 gene polymorphism demonstrated a significant increase in nausea, stomachache, and peripheral neuropathy among patients carrying the GC+CC genotype, compared to those with the GG genotype (p = 0.023, 0.036, and 0.008, respectively). Conversely, patients with the GG genotype exhibited significantly higher fever grades after cycles 1, 2, and 3 of the AC regimen compared to those with the GC+CC genotype (p = 0.009, 0.017, and 0.018, respectively). Additionally, fatigue severity was significantly increased among patients with the GG genotype compared to those with the GC+CC genotype following AC administration (p = 0.008). Conclusions: The SNP variation of ALDH3A1 (rs2228100) gene significantly influenced AC regimen toxicity in female BC patients. Meanwhile, SNPs in CYP2C19 (rs12248560), ABCB1 (rs1045642), and SLC22A16 (rs6907567) genes showed a significant influence on the recurrence rate of certain toxicities. Full article
11 pages, 975 KiB  
Article
Effect of Weekend Alcohol Consumption on Hepatic Antioxidant Enzyme Activity: Role of Concentration and Gender
by Elda Victoria Rodríguez-Negrete, Jazmín García-Machorro, Eduardo Osiris Madrigal-Santillán, Ángel Morales-González and José A. Morales-González
Gastroenterol. Insights 2025, 16(2), 13; https://doi.org/10.3390/gastroent16020013 - 2 Apr 2025
Viewed by 994
Abstract
Background/Objectives: It is known that chronic alcohol consumption causes alterations to various organs of the body, mainly the liver, but there are no reports of the damage that weekend alcohol consumption can cause to the liver. The liver is the main organ responsible [...] Read more.
Background/Objectives: It is known that chronic alcohol consumption causes alterations to various organs of the body, mainly the liver, but there are no reports of the damage that weekend alcohol consumption can cause to the liver. The liver is the main organ responsible for metabolizing ethanol and therefore experiences the most significant adverse effects of this xenobiotic’s toxicity. In this study, we evaluated the effect of weekend alcohol consumption on the activity of hepatic antioxidant enzymes. Methods: Wistar rats weighing 170–200 g were divided into the following groups: (1) control group and (2) weekend alcohol consumption group, 2 days per week for 12 weeks at two different concentrations: (1) group of males and females consuming a 40% alcohol solution and (2) group of males and females consuming a 5% alcohol solution. At the end of the experiment, liver samples were obtained. The activity of the enzymes catalase, superoxide dismutase, glutathione reductase, and glutathione peroxidase, as well as the levels of total antioxidant capacity and thiobarbituric acid reactive substances, were determined. Results: surprisingly, the results showed an increase in the activity of antioxidant enzymes, as well as a decrease in thiobarbituric acid reactive substances. Conclusions: weekend alcohol consumption for a period of 3 months led to an elevation in antioxidant enzyme activity, but it was not sufficient to prevent the damage caused to the liver by weekend alcohol consumption. Full article
(This article belongs to the Section Liver)
Show Figures

Figure 1

37 pages, 9660 KiB  
Review
Fungi for Sustainable Pharmaceutical Remediation: Enzymatic Innovations, Challenges, and Applications—A Review
by Mohd Faheem Khan
Processes 2025, 13(4), 1034; https://doi.org/10.3390/pr13041034 - 31 Mar 2025
Cited by 5 | Viewed by 1815
Abstract
The extensive use of pharmaceuticals in human and veterinary medicine has led to their persistent environmental release, posing ecological and public health risks. Major sources include manufacturing effluents, excretion, aquaculture, and improper disposal, contributing to bioaccumulation and ecotoxicity. Mycoremediation is the fungal-mediated biodegradation [...] Read more.
The extensive use of pharmaceuticals in human and veterinary medicine has led to their persistent environmental release, posing ecological and public health risks. Major sources include manufacturing effluents, excretion, aquaculture, and improper disposal, contributing to bioaccumulation and ecotoxicity. Mycoremediation is the fungal-mediated biodegradation of pharmaceuticals, offers a promising and sustainable approach to mitigate pharmaceutical pollution. Studies have reported that certain fungal species, including Trametes versicolor and Pleurotus ostreatus, can degrade up to 90% of pharmaceutical contaminants, such as diclofenac, carbamazepine, and ibuprofen, within days to weeks, depending on environmental conditions. Fungi produce a range of extracellular enzymes, such as laccases and peroxidases, alongside intracellular enzymes like cytochrome P450 monooxygenases, which catalyze the transformation of complex pharmaceutical compounds. These enzymes play an essential role in modifying, detoxifying, and mineralizing xenobiotics, thereby reducing their environmental persistence and toxicity. The effectiveness of fungal biotransformation is influenced by factors such as substrate specificity, enzyme stability, and environmental conditions. Optimal degradation typically occurs at pH 4.5–6.0 and temperatures of 20–30 °C. Recent advancements in enzyme engineering, immobilization techniques, and bioreactor design have improved catalytic efficiency and process feasibility. However, scaling up fungal-based remediation systems for large-scale applications remains a challenge. Addressing these limitations with synthetic biology, metabolic engineering, and other biotechnological innovations could further enhance the enzymatic degradation of pharmaceuticals. This review highlights the enzymatic innovations, applications, and challenges of pharmaceutical mycoremediation, emphasizing the potential of fungi as a transformative solution for sustainable pharmaceutical waste management. Full article
(This article belongs to the Special Issue Feature Review Papers in Section “Pharmaceutical Processes”)
Show Figures

Figure 1

Back to TopTop