Genetic Interactions of Phase II Xenobiotic-Metabolizing Enzymes GSTO1 and GCLC in Relation to Alcohol Abuse and Psoriasis Risk
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Patients
2.2. The Inclusion/Exclusion Criteria in the Study Groups and Diagnosis of Psoriasis
2.3. Interviewing of Patients
2.4. SNP Selection
2.5. Genetic Analysis
2.6. Statistical and Bioinformatics Analysis
3. Results
3.1. Association Between GSTO1 Gene Polymorphisms and the Risk of Psoriasis
3.2. The Combined Impact of GSTO1 Gene Polymorphisms on Psoriasis Risk
3.3. The Role of Gene–Gene and Gene–Environment Interactions in the Risk of Psoriasis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Campanati, A.; Marani, A.; Martina, E.; Diotallevi, F.; Radi, G.; Offidani, A. Psoriasis as an Immune-Mediated and Inflammatory Systemic Disease: From Pathophysiology to Novel Therapeutic Approaches. Biomedicines 2021, 9, 1511. [Google Scholar] [CrossRef]
- Parisi, R.; Symmons, D.P.M.; Griffiths, C.E.; Ashcroft, D.M.; on behalf of the Identification and Management of Psoriasis and Associated ComorbidiTy (IMPACT) Project Team. Global epidemiology of psoriasis: A systematic review of incidence and prevalence. J. Investig. Dermatol. 2013, 133, 377–385. [Google Scholar] [CrossRef]
- Rendon, A.; Schäkel, K. Psoriasis Pathogenesis and Treatment. Int. J. Mol. Sci. 2019, 20, 1475. [Google Scholar] [CrossRef] [PubMed]
- Capon, F. The Genetic Basis of Psoriasis. Int. J. Mol. Sci. 2017, 18, 2526. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Chen, M.; Huang, H.; Li, X.; Qian, D.; Hong, X.; Zheng, L.; Hong, J.; Zhu, Z.; Zheng, X.; et al. Exome-Wide Rare Loss-of-Function Variant Enrichment Study of 21,347 Han Chinese Individuals Identifies Four Susceptibility Genes for Psoriasis. J. Investig. Dermatol. 2020, 140, 799–805.e1. [Google Scholar] [CrossRef]
- Kamiya, K.; Kishimoto, M.; Sugai, J.; Komine, M.; Ohtsuki, M. Risk Factors for the Development of Psoriasis. Int. J. Mol. Sci. 2019, 20, 4347. [Google Scholar] [CrossRef] [PubMed]
- Lønnberg, A.S.; Skov, L.; Skytthe, A.; Kyvik, K.O.; Pedersen, O.B.; Thomsen, S.F. Heritability of psoriasis in a large twin sample. Br. J. Dermatol. 2013, 169, 412–416. [Google Scholar] [CrossRef]
- Zeng, J.; Luo, S.; Huang, Y.; Lu, Q. Critical role of environmental factors in the pathogenesis of psoriasis. J. Dermatol. 2017, 44, 863–872. [Google Scholar] [CrossRef]
- Kathuria, S.; Puri, P.; Nandar, S.; Ramesh, V. Effects of air pollution on the skin: A review. Indian J. Dermatol. Venereol. Leprol. 2017, 83, 415–423. [Google Scholar] [CrossRef]
- Araviiskaia, E.; Berardesca, E.; Bieber, T.; Gontijo, G.; Viera, M.S.; Marrot, L.; Chuberre, B.; Dreno, B. The impact of airborne pollution on skin. J. Eur. Acad. Dermatol. Venereol. 2019, 33, 1496–1505. [Google Scholar] [CrossRef]
- Wu, J.; Ma, Y.; Yang, J.; Tian, Y. Exposure to Air Pollution, Genetic Susceptibility, and Psoriasis Risk in the UK. JAMA Netw. Open 2024, 7, e2421665. [Google Scholar] [CrossRef] [PubMed]
- Liaw, F.-Y.; Chen, W.-L.; Kao, T.-W.; Chang, Y.-W.; Huang, C.-F. Exploring the link between cadmium and psoriasis in a nationally representative sample. Sci. Rep. 2017, 7, 1723. [Google Scholar] [CrossRef] [PubMed]
- Wacewicz-Muczyńska, M.; Socha, K.; Soroczyńska, J.; Niczyporuk, M.; Borawska, M.H. Cadmium, lead and mercury in the blood of psoriatic and vitiligo patients and their possible associations with dietary habits. Sci. Total. Environ. 2021, 757, 143967. [Google Scholar] [CrossRef] [PubMed]
- Bellinato, F.; Adami, G.; Vaienti, S.; Benini, C.; Gatti, D.; Idolazzi, L.; Fassio, A.; Rossini, M.; Girolomoni, G.; Gisondi, P. Association Between Short-term Exposure to Environmental Air Pollution and Psoriasis Flare. JAMA Dermatol. 2022, 158, 375–381. [Google Scholar] [CrossRef]
- Wu, J.; Chen, H.; Yang, R.; Yu, H.; Shang, S.; Hu, Y. Short-term exposure to ambient fine particulate matter and psoriasis: A time-series analysis in Beijing, China. Front. Public Health 2022, 10, 1015197. [Google Scholar] [CrossRef]
- Chen, Y.; Pan, Z.; Shen, J.; Wu, Y.; Fang, L.; Xu, S.; Ma, Y.; Zhao, H.; Pan, F. Associations of exposure to blood and urinary heavy metal mixtures with psoriasis risk among U.S. adults: A cross-sectional study. Sci. Total. Environ. 2023, 887, 164133. [Google Scholar] [CrossRef]
- Götz, C.; Pfeiffer, R.; Tigges, J.; Blatz, V.; Jäckh, C.; Freytag, E.; Fabian, E.; Landsiedel, R.; Merk, H.F.; Krutmann, J.; et al. Xenobiotic metabolism capacities of human skin in comparison with a 3D epidermis model and keratinocyte-based cell culture as in vitro alternatives for chemical testing: Activating enzymes (Phase I). Exp. Dermatol. 2012, 21, 358–363. [Google Scholar] [CrossRef]
- van Eijl, S.; Zhu, Z.; Cupitt, J.; Gierula, M.; Götz, C.; Fritsche, E.; Edwards, R.J. Elucidation of xenobiotic metabolism pathways in human skin and human skin models by proteomic profiling. PLoS ONE 2012, 7, e41721. [Google Scholar] [CrossRef]
- Hayes, J.D.; Flanagan, J.U.; Jowsey, I.R. Glutathione Transferases. Annu. Rev. Pharmacol. Toxicol. 2005, 45, 51–88. [Google Scholar] [CrossRef]
- Cho, J.-W.; Ryu, J.; Park, S.G.; Park, B.C.; Choe, M.; Lee, K.-S. Proteomic analysis of psoriatic skin tissue for identification of differentially expressed proteins: Up-regulation of GSTP1, SFN and PRDX2 in psoriatic skin. Int. J. Mol. Med. 2011, 28, 785–792. [Google Scholar] [CrossRef]
- Karadag, A.S.; Uzunçakmak, T.K.; Ozkanli, S.; Oguztuzun, S.; Moran, B.; Akbulak, O.; Ozlu, E.; Zemheri, I.E.; Bilgili, S.G.; Akdeniz, N. An investigation of cytochrome p450 (CYP) and glutathione S-transferase (GST) isoenzyme protein expression and related interactions with phototherapy in patients with psoriasis vulgaris. Int. J. Dermatol. 2016, 56, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Akbulak, O.; Karadag, A.S.; Akdeniz, N.; Ozkanli, S.; Ozlu, E.; Zemheri, E.; Oguztuzun, S. Evaluation of oxidative stress via protein expression of glutathione S-transferase and cytochrome p450 (CYP450) ısoenzymes in psoriasis vulgaris patients treated with methotrexate. Cutan. Ocul. Toxicol. 2017, 37, 180–185. [Google Scholar] [CrossRef] [PubMed]
- Reich, K.; Zipprich, S.; Fuchs, T.; Neumann, C.; Westphal, G.; Schulz, T.; Müller, M.; Hallier, E. Combined Combined analysis of poly-morphisms of the tumor necrosis factor-alpha and interleukin-10 promoter regions and polymorphic xenobiotic metabolizing enzymes in psoriasis. J. Investig. Dermatol. 1999, 113, 214–220. [Google Scholar] [CrossRef]
- Richter-Hintz, D.; Their, R.; Steinwachs, S.; Kronenberg, S.; Fritsche, E.; Sachs, B.; Wulferink, M.; Tonn, T.; Esser, C. Allelic variants of drug metabolizing enzymes as risk factors in psoriasis. J. Investig. Dermatol. 2003, 120, 765–770. [Google Scholar] [CrossRef]
- Gambichler, T.; Kreuter, A.; Susok, L.; Skrygan, M.; Rotterdam, S.; Höxtermann, S.; Müller, M.; Tigges, C.; Altmeyer, P.; Lahner, N. Glutathione-S-transferase T1 genotyping and phenotyping in psoriasis patients receiving treatment with oral fumaric acid esters. J. Eur. Acad. Dermatol. Venereol. 2014, 28, 574–580. [Google Scholar] [CrossRef] [PubMed]
- Solak, B.; Karkucak, M.; Turan, H.; Ocakoğlu, G.; Sağ, Ş.Ö.; Uslu, E.; Yakut, T.; Erdem, T. Glutathione S-Transferase M1 and T1 Gene Polymorphisms in Patients with Chronic Plaque-Type Psoriasis: A Case-Control Study. Med Princ. Pract. 2016, 25, 155–158. [Google Scholar] [CrossRef]
- Hruska, P.; Rybecka, S.; Novak, J.; Zlamal, F.; Splichal, Z.; Slaby, O.; Vasku, V.; Bienertova-Vasku, J. Combinations of common polymorphisms within GSTA1 and GSTT1 as a risk factor for psoriasis in a central European population: A case-control study. J. Eur. Acad. Dermatol. Venereol. 2017, 31, e461–e463. [Google Scholar] [CrossRef]
- Jain, V.K.; Srivastava, D.S.L.; Verma, P.; Yadav, J.P. Polymorphism of glutathione S-transferase M1 and T1 genes and susceptibility to psoriasis disease: A study from North India. Indian J. Dermatol. Venereol. Leprol. 2018, 84, 39–44. [Google Scholar] [CrossRef]
- Guarneri, F.; Sapienza, D.; Papaianni, V.; Marafioti, I.; Guarneri, C.; Mondello, C.; Roccuzzo, S.; Asmundo, A.; Cannavò, S.P. Association between genetic polymorphisms of glutathione S-transferase M1/T1 and psoriasis in a population from the area of the strict of messina (Southern Italy). Free. Radic. Res. 2020, 54, 57–63. [Google Scholar] [CrossRef]
- Tawfik, N.Z.; Abdallah, H.Y.; Abdullah, M.E.; Alshaarawy, H.F.; Atwa, M.A. Glutathione S-transferase M1 and T1 gene polymorphisms in psoriasis patients: A pilot case-control study. Egypt. J. Dermatol. Venerol. 2023, 43, 200–207. [Google Scholar] [CrossRef]
- Dursun, H.G.; Dursun, R.; Ayan, I.Ç.; Zamani, A.G.; Yıldırım, M.S. Relationship between Glutathione S-transferase gene polymorphisms and clinical features of psoriasis: A case-control study in the Turkish population. Turkderm 2024, 58, 75–82. [Google Scholar] [CrossRef]
- Klyosova, E.; Azarova, I.; Polonikov, A. A Polymorphism in the Gene Encoding Heat Shock Factor 1 (HSF1) Increases the Risk of Type 2 Diabetes: A Pilot Study Supports a Role for Impaired Protein Folding in Disease Pathogenesis. Life 2022, 12, 1936. [Google Scholar] [CrossRef] [PubMed]
- Drozdova, E.L.; Komkova, G.V.; Polonikova, A.A.; Churilin, M.I.; Solodilova, M.A. Relationship between polymorphism rs1546155 of the GGT7 gene and the risk of ischemic stroke. Res. Results Biomed. 2024, 10, 339–350. [Google Scholar] [CrossRef]
- Kobzeva, K.A.; Shilenok, I.V.; Belykh, A.E.; Gurtovoy, D.E.; Bobyleva, L.A.; Krapiva, A.B.; Stetskaya, T.A.; Bykanova, M.A.; Mezhenskaya, A.A.; Lysikova, E.A.; et al. C9orf16 (BBLN) gene, encoding a member of Hero proteins, is a novel marker in ischemic stroke risk. Res. Results Biomed. 2022, 8, 278–292. [Google Scholar] [CrossRef]
- Di Meglio, P.; Villanova, F.; Nestle, F.O. Psoriasis. Cold Spring Harb. Perspect. Med. 2014, 4, a015354. [Google Scholar] [CrossRef] [PubMed]
- Klyosova, E.Y.; Azarova, I.E.; Sunyaykina, O.A.; Polonikov, A.V. Validity of a brief screener for environmental risk factors of age-related diseases using type 2 diabetes and coronary artery disease as examples. Res. Results Biomed. 2022, 8, 130–137. [Google Scholar]
- Garbicz, J.; Całyniuk, B.; Górski, M.; Buczkowska, M.; Piecuch, M.; Kulik, A.; Rozentryt, P. Nutritional Therapy in Persons Suffering from Psoriasis. Nutrients 2021, 14, 119. [Google Scholar] [CrossRef]
- Mazari, A.M.A.; Zhang, L.; Ye, Z.-W.; Zhang, J.; Tew, K.D.; Townsend, D.M. The Multifaceted Role of Glutathione S-Transferases in Health and Disease. Biomolecules 2023, 13, 688. [Google Scholar] [CrossRef]
- Efanova, E.; Bushueva, O.; Saranyuk, R.; Surovtseva, A.; Churnosov, M.; Solodilova, M.; Polonikov, A. Polymorphisms of the GCLC Gene Are Novel Genetic Markers for Susceptibility to Psoriasis Associated with Alcohol Abuse and Cigarette Smoking. Life 2023, 13, 1316. [Google Scholar] [CrossRef]
- Azarova, I.; Klyosova, E.; Polonikov, A. Association between RAC1 gene variation, redox homeostasis and type 2 diabetes mellitus. Eur. J. Clin. Investig. 2022, 52, e13792. [Google Scholar] [CrossRef]
- Stetskaya, T.A.; Kursk State Medical University; Kobzeva, K.A.; Zaytsev, S.M.; Shilenok, I.V.; Komkova, G.V.; Goryainova, N.V.; Bushueva, O.Y.; Pavlov First Saint Petersburg State Medical University; Hospital, K.C.C.E. HSPD1 gene polymorphism is associated with an increased risk of ischemic stroke in smokers. Res. Results Biomed. 2024, 10, 175–186. [Google Scholar] [CrossRef]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [PubMed]
- Calle, M.L.; Urrea, V.; Malats, N.; Van Steen, K. mbmdr: An R package for exploring gene-gene interactions associated with binary or quantitative traits. Bioinformatics 2010, 26, 2198–2199. [Google Scholar] [CrossRef]
- Polonikov, A.; Bocharova, I.; Azarova, I.; Klyosova, E.; Bykanova, M.; Bushueva, O.; Polonikova, A.; Churnosov, M.; Solodilova, M. The Impact of Genetic Polymorphisms in Glutamate-Cysteine Ligase, a Key Enzyme of Glutathione Biosynthesis, on Ischemic Stroke Risk and Brain Infarct Size. Life 2022, 12, 602. [Google Scholar] [CrossRef]
- Zhabin, S.; Lazarenko, V.; Azarova, I.; Klyosova, E.; Bykanova, M.; Chernousova, S.; Bashkatov, D.; Gneeva, E.; Polonikova, A.; Churnosov, M.; et al. The Joint Link of the rs1051730 and rs1902341 Polymorphisms and Cigarette Smoking to Peripheral Artery Disease and Atherosclerotic Lesions of Different Arterial Beds. Life 2023, 13, 496. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, M.D.; Hahn, L.W.; Roodi, N.; Bailey, L.R.; Dupont, W.D.; Parl, F.F.; Moore, J.H. Multifactor-Dimensionality Reduction Reveals High-Order Interactions among Estrogen-Metabolism Genes in Sporadic Breast Cancer. Am. J. Hum. Genet. 2001, 69, 138–147. [Google Scholar] [CrossRef]
- Chattopadhyay, A.; Lu, T.-P. Gene-gene interaction: The curse of dimensionality. Ann. Transl. Med. 2019, 7, 813. [Google Scholar] [CrossRef]
- Lazarenko, V.; Churilin, M.; Azarova, I.; Klyosova, E.; Bykanova, M.; Ob’Edkova, N.; Churnosov, M.; Bushueva, O.; Mal, G.; Povetkin, S.; et al. Comprehensive Statistical and Bioinformatics Analysis in the Deciphering of Putative Mechanisms by Which Lipid-Associated GWAS Loci Contribute to Coronary Artery Disease. Biomedicines 2022, 10, 259. [Google Scholar] [CrossRef]
- Sharma, R.; Yang, Y.; Sharma, A.; Awasthi, S.; Awasthi, Y.C. Antioxidant role of glutathione S-transferases: Protection against oxidant toxicity and regulation of stress-mediated apoptosis. Antioxidants Redox Signal. 2004, 6, 289–300. [Google Scholar] [CrossRef] [PubMed]
- Singhal, S.S.; Singh, S.P.; Singhal, P.; Horne, D.; Singhal, J.; Awasthi, S. Antioxidant role of glutathione S-transferases: 4-Hydroxynonenal, a key molecule in stress-mediated signaling. Toxicol. Appl. Pharmacol. 2015, 289, 361–370. [Google Scholar] [CrossRef]
- Kim, Y.; Cha, S.J.; Choi, H.-J.; Kim, K. Omega Class Glutathione S-Transferase: Antioxidant Enzyme in Pathogenesis of Neurodegenerative Diseases. Oxidative Med. Cell. Longev. 2017, 2017, 5049532. [Google Scholar] [CrossRef]
- Board, P.G.; Menon, D. Glutathione transferases, regulators of cellular metabolism and physiology. Biochim. Biophys. Acta (BBA)—Gen. Subj. 2013, 1830, 3267–3288. [Google Scholar] [CrossRef]
- Lanner, J.T.; Georgiou, D.K.; Joshi, A.D.; Hamilton, S.L. Ryanodine receptors: Structure, expression, molecular details, and function in calcium release. Cold Spring Harb. Perspect. Biol. 2010, 2, a003996. [Google Scholar] [CrossRef] [PubMed]
- Menon, D.; Coll, R.; O’Neill, L.A.; Board, P.G. Glutathione transferase Omega 1 is required for the lipopolysaccharide-stimulated induction of NADPH oxidase 1 and the production of reactive oxygen species in macrophages. Free. Radic. Biol. Med. 2014, 73, 318–327. [Google Scholar] [CrossRef]
- Yang, S.; Yan, K.-L.; Zhang, X.-J.; Xiao, F.-L.; Fan, X.; Gao, M.; Cui, Y.; Wang, P.-G.; Zhang, G.-L.; Sun, L.-D.; et al. Systematic evaluation of association between the microsomal glutathione S-transferase 2 common variation and psoriasis vulgaris in Chinese population. Arch. Dermatol. Res. 2006, 298, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Campione, E.; Mazzilli, S.; Di Prete, M.; Dattola, A.; Cosio, T.; Barbato, D.L.; Costanza, G.; Lanna, C.; Manfreda, V.; Schumak, R.G.; et al. The Role of Glutathione-S Transferase in Psoriasis and Associated Comorbidities and the Effect of Dimethyl Fumarate in This Pathway. Front. Med. 2022, 9, 760852. [Google Scholar] [CrossRef] [PubMed]
- Farkas, Á.; Kemény, L. Alcohol, liver, systemic inflammation and skin: A focus on patients with psoriasis. Ski. Pharmacol. Physiol. 2013, 26, 119–126. [Google Scholar] [CrossRef]
- Dobozy, A.; Farkas, Á.; Kemény, L.; Széll, M.; Bata-Csörgő, Z. Ethanol and acetone stimulate the proliferation of HaCaT keratinocytes: The possible role of alcohol in exacerbating psoriasis. Arch. Dermatol. Res. 2003, 295, 56–62. [Google Scholar] [CrossRef]
- Wu, D.; Cederbaum, A.I. Alcohol, oxidative stress, and free radical damage. Alcohol. Res. Health 2003, 27, 277–284. [Google Scholar]
- Michalak, A.; Lach, T.; Cichoż-Lach, H. Oxidative Stress—A Key Player in the Course of Alcohol-Related Liver Disease. J. Clin. Med. 2021, 10, 3011. [Google Scholar] [CrossRef]
- Lu, S.C. Glutathione synthesis. Biochim. Biophys. Acta (BBA) Gen. Subj. 2013, 1830, 3143–3153. [Google Scholar] [CrossRef]
- Vairetti, M.; Di Pasqua, L.G.; Cagna, M.; Richelmi, P.; Ferrigno, A.; Berardo, C. Changes in Glutathione Content in Liver Diseases: An Update. Antioxidants 2021, 10, 364. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, K.; Ishigaki, K.; Suzuki, A.; Tsuchida, Y.; Tsuchiya, H.; Sumitomo, S.; Nagafuchi, Y.; Miya, F.; Tsunoda, T.; Shoda, H.; et al. Splicing QTL analysis focusing on coding sequences reveals mechanisms for disease susceptibility loci. Nat. Commun. 2022, 13, 4659. [Google Scholar] [CrossRef] [PubMed]
- Lowe, M.E.; Akhtari, F.S.; Potter, T.A.; Fargo, D.C.; Schmitt, C.P.; Schurman, S.H.; Eccles, K.M.; Motsinger-Reif, A.; Hall, J.E.; Messier, K.P. The skin is no barrier to mixtures: Air pollutant mixtures and reported psoriasis or eczema in the Personalized Environment and Genes Study (PEGS). J. Expo. Sci. Environ. Epidemiology 2023, 33, 474–481. [Google Scholar] [CrossRef] [PubMed]
- Sachdeva, M.; Mufti, A.; Maliyar, K.; Lytvyn, Y.; Yeung, J. Hydroxychloroquine effects on psoriasis: A systematic review and a cautionary note for COVID-19 treatment. J. Am. Acad. Dermatol. 2020, 83, 579–586. [Google Scholar] [CrossRef]
- van der Fits, L.; Mourits, S.; Voerman, J.S.A.; Kant, M.; Boon, L.; Laman, J.D.; Cornelissen, F.; Mus, A.-M.; Florencia, E.; Prens, E.P.; et al. Imiquimod-induced psoriasis-like skin inflammation in mice is mediated via the IL-23/IL-17 axis. J. Immunol. 2009, 182, 5836–5845. [Google Scholar] [CrossRef]
- Jafferany, M. Lithium and Psoriasis: What primary care and family physicians should know. Prim. Care Companion J. Clin. Psychiatry 2008, 10, 435–439. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, M.; Zhao, C. Exposure to Per- and Polyfluoroalkyl Substances and Risk of Psoriasis: A Population-Based Study. Toxics 2024, 12, 828. [Google Scholar] [CrossRef]
- Zakharyan, R.A.; Sampayo-Reyes, A.; Healy, S.M.; Tsaprailis, G.; Board, P.G.; Liebler, D.C.; Aposhian, H.V. Human monomethylarsonic acid (MMA(V)) reductase is a member of the glutathione-S-transferase superfamily. Chem. Res. Toxicol. 2001, 14, 1051–1057. [Google Scholar] [CrossRef]
- Schmuck, E.M.; Board, P.G.; Whitbread, A.K.; Tetlow, N.; Cavanaugh, J.A.; Blackburn, A.C.; Masoumi, A. Characterization of the monomethylarsonate reductase and dehydroascorbate reductase activities of Omega class glutathione transferase variants: Implications for arsenic metabolism and the age-at-onset of Alzheimer’s and Parkinson’s diseases. Pharmacogenetics Genom. 2005, 15, 493–501. [Google Scholar] [CrossRef]
- Barnett, J.B.; Brundage, K.M. Immunotoxicology of pesticides and chemotherapies. In Comprehensive Toxicology, 2nd ed.; Elsevier Science: Amsterdam, The Netherlands, 2010; pp. 467–487. [Google Scholar]
- Kitahata, K.; Matsuo, K.; Hara, Y.; Naganuma, T.; Oiso, N.; Kawada, A.; Nakayama, T. Ascorbic acid derivative DDH-1 ameliorates psoriasis-like skin lesions in mice by suppressing inflammatory cytokine expression. J. Pharmacol. Sci. 2018, 138, 284–288. [Google Scholar] [CrossRef]
- Mittelstrass, K.; Ried, J.S.; Yu, Z.; Krumsiek, J.; Gieger, C.; Prehn, C.; Roemisch-Margl, W.; Polonikov, A.; Peters, A.; Theis, F.J.; et al. Discovery of sexual dimorphisms in metabolic and genetic biomarkers. PLOS Genet. 2011, 7, e1002215. [Google Scholar] [CrossRef] [PubMed]
- Randall, J.C.; Winkler, T.W.; Kutalik, Z.; Berndt, S.I.; Jackson, A.U.; Monda, K.L.; Kilpeläinen, T.O.; Esko, T.; Mägi, R.; Li, S.; et al. Sex-stratified genome-wide association studies including 270,000 individuals show sexual dimorphism in genetic loci for anthropometric traits. PLOS Genet. 2013, 9, e1003500. [Google Scholar] [CrossRef]
- Queiro, R.; Tejón, P.; Coto, P.; Alonso, S.; Alperi, M.; Sarasqueta, C.; González, S.; Martínez-Borra, J.; López-Larrea, C.; Ballina, J. Clinical differences between men and women with psoriatic arthritis: Relevance of the analysis of genes and polymorphisms in the major histocompatibility complex region and of the age at onset of psoriasis. J. Immunol. Res. 2013, 2013, 482691. [Google Scholar] [CrossRef] [PubMed]
- Dang, S.; Wither, J.; Jurisica, I.; Chandran, V.; Eder, L. Sex differences in biomarkers and biologic mechanisms in psoriatic diseases and spondyloarthritis. J. Autoimmun. 2025, 152, 103394. [Google Scholar] [CrossRef] [PubMed]
- Winiarska-Mieczan, A.; Mieczan, T.; Wójcik, G. Importance of Redox Equilibrium in the Pathogenesis of Psoriasis—Impact of Antioxidant-Rich Diet. Nutrients 2020, 12, 1841. [Google Scholar] [CrossRef]
- Chung, M.; Bartholomew, E.; Yeroushalmi, S.; Hakimi, M.; Bhutani, T.; Liao, W. Dietary Intervention and Supplements in the Management of Psoriasis: Current Perspectives. Psoriasis Targets Ther. 2022, 12, 151–176. [Google Scholar] [CrossRef]
- Vogt, B.L.; Richie, J.P. Glutathione depletion and recovery after acute ethanol administration in the aging mouse. Biochem. Pharmacol. 2007, 73, 1613–1621. [Google Scholar] [CrossRef]
- Minich, D.M.; Brown, B.I. A Review of Dietary (Phyto)Nutrients for Glutathione Support. Nutrients 2019, 11, 2073. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fares-Medina, S.; Díaz-Caro, I.; García-Montes, R.; Corral-Liria, I.; García-Gómez-Heras, S. Multiple Chemical Sensitivity Syndrome: First Symptoms and Evolution of the Clinical Picture: Case-Control Study/Epidemiological Case-Control Study. Int. J. Environ. Res. Public Health 2022, 19, 15891. [Google Scholar] [CrossRef]
- Chhabra, R.S.; Fouts, J.R. Sex differences in the metabolism of xenobiotics by extrahepatic tissue in rats. Drug Metab. Dispos. 1974, 2, 375–379. [Google Scholar] [CrossRef]
- Mugford, C.A.; Kedderis, G.L. Sex-dependent metabolism of xenobiotics. Drug Metab. Rev. 1998, 30, 441–498. [Google Scholar] [CrossRef] [PubMed]
SNP ID | Minor Allele | N | Permutation p-Values (Pperm) Estimated for Genetic Models of SNP–Disease Associations * | |||
---|---|---|---|---|---|---|
Allelic | Additive | Dominant | Recessive | |||
Entire group | ||||||
rs11191736 | T | 901 | 0.26 | 0.22 | 0.19 | NA |
rs34040810 | A | 944 | 0.45 | 0.29 | 0.39 | NA |
rs2289964 | T | 941 | 0.86 | 1.00 | 0.78 | 0.86 |
rs11191979 | C | 930 | 0.59 | 1.00 | 0.67 | 0.73 |
rs187304410 | A | 944 | 0.86 | 0.31 | 0.52 | NA |
Males | ||||||
rs11191736 | T | 467 | 0.02 | NA | NA | NA |
rs34040810 | A | 486 | 0.34 | 0.39 | 0.64 | NA |
rs2289964 | T | 486 | 0.78 | 0.64 | 0.55 | 0.59 |
rs11191979 | C | 479 | 0.71 | 0.67 | 0.52 | 0.59 |
rs187304410 | A | 486 | 0.46 | 0.31 | 0.29 | NA |
Females | ||||||
rs11191736 | T | 434 | 0.25 | NA | NA | NA |
rs34040810 | A | 458 | 0.86 | 0.63 | 0.55 | NA |
rs2289964 | T | 455 | 0.33 | 0.33 | 0.29 | NA |
rs11191979 | C | 451 | 0.86 | 0.86 | 1.00 | 1.00 |
rs187304410 | A | 458 | 0.02 | 0.012 | 0.011 | NA |
SNP | Genotype/ Allele | Healthy Controls 1 | Patients with Psoriasis 1 | OR 2 (95% CI) | Pperm 3 | ||
---|---|---|---|---|---|---|---|
n | % | n | % | ||||
Entire group | |||||||
rs11191736 | C/C | 454 | 99.3 | 438 | 98.6 | 2.07 (0.52–8.34) | 0.19 D |
C/T | 3 | 0.7 | 6 | 1.4 | |||
T/T | 0 | 0.0 | 0 | 0.0 | |||
T | 3 | 0.3 | 6 | 0.7 | 2.07 (0.52–8.29) | 0.26 | |
rs34040810 | C/C | 465 | 98.9 | 466 | 98.3 | 1.60 (0.52–4.92) | 0.29 A |
C/A | 5 | 1.1 | 8 | 1.7 | |||
A/A | 0 | 0.0 | 0 | 0.0 | |||
A | 5 | 0.5 | 8 | 0.8 | 1.59 (0.52–4.88) | 0.45 | |
rs2289964 | C/C | 360 | 76.6 | 365 | 77.5 | 0.95 (0.70–1.29) | 0.78 D |
C/T | 103 | 21.9 | 99 | 21.0 | |||
T/T | 7 | 1.5 | 7 | 1.5 | |||
T | 117 | 12.4 | 113 | 12.0 | 0.96 (0.73–1.26) | 0.86 | |
rs11191979 | T/T | 236 | 51.3 | 248 | 52.8 | 0.94 (0.73–1.22) | 0.53 D |
T/C | 192 | 41.7 | 183 | 38.9 | |||
C/C | 32 | 7.0 | 39 | 8.3 | |||
C | 256 | 27.8 | 261 | 27.8 | 1.00 (0.81–1.22) | 0.59 | |
rs187304410 | G/G | 451 | 96.0 | 459 | 96.8 | 0.78 (0.39–1.55) | 0.31 A |
G/A | 19 | 4.0 | 15 | 3.2 | |||
A/A | 0 | 0.0 | 0 | 0.0 | |||
A | 19 | 2.0 | 15 | 1.6 | 0.78 (0.39–1.54) | 0.86 | |
Males | |||||||
rs11191736 | C/C | 226 | 100.0 | 235 | 97.5 | NA | NA |
C/T | 0 | 0.0 | 6 | 2.5 | |||
T/T | 0 | 0.0 | 0 | 0.0 | |||
T | 0 | 0.0 | 6 | 1.2 | NA | 0.017 | |
rs34040810 | C/C | 231 | 98.7 | 245 | 97.2 | 2.20 (0.56–8.6) | 0.39 A |
C/A | 3 | 1.3 | 7 | 2.8 | |||
A/A | 0 | 0.0 | 0 | 0.0 | |||
A | 3 | 0.6 | 7 | 1.4 | 2.18 (0.56–8.49) | 0.34 | |
rs2289964 | C/C | 185 | 79.1 | 192 | 76.2 | 1.18 (0.77–1.81) | 0.55 D |
C/T | 42 | 17.9 | 54 | 21.4 | |||
T/T | 7 | 3.0 | 6 | 2.4 | |||
T | 56 | 12.0 | 66 | 13.1 | 1.11 (0.76–1.62) | 0.78 | |
rs11191979 | T/T | 111 | 48.5 | 129 | 51.6 | 0.88 (0.62–1.26) | 0.52 D |
T/C | 100 | 43.7 | 98 | 39.2 | |||
C/C | 18 | 7.9 | 23 | 9.2 | |||
C | 136 | 29.7 | 144 | 28.8 | 0.96 (0.72–1.27) | 0.71 | |
rs187304410 | G/G | 226 | 96.6 | 239 | 94.8 | 1.54 (0.63–3.78) | 0.29 D |
G/A | 8 | 3.4 | 13 | 5.2 | |||
A/A | 0 | 0.0 | 0 | 0.0 | |||
A | 8 | 1.7 | 13 | 2.6 | 1.52 (0.63–3.71) | 0.46 | |
Females | |||||||
rs11191736 | C/C | 228 | 98.7 | 203 | 100.0 | NA | NA |
C/T | 3 | 1.3 | 0 | 0.0 | |||
T/T | 0 | 0.0 | 0 | 0.0 | |||
T | 3 | 0.6 | 0 | 0.0 | NA | 0.25 | |
rs34040810 | C/C | 234 | 99.2 | 221 | 99.5 | 0.53 (0.05–5.88) | 0.55 D |
C/A | 2 | 0.8 | 1 | 0.5 | |||
A/A | 0 | 0.0 | 0 | 0.0 | |||
A | 2 | 0.4 | 1 | 0.2 | 0.53 (0.05–5.87) | 0.86 | |
rs2289964 | C/C | 175 | 74.2 | 173 | 79.0 | 0.76 (0.49–1.18) | 0.29 D |
C/T | 61 | 25.8 | 45 | 20.5 | |||
T/T | 0 | 0.0 | 1 | 0.5 | |||
T | 61 | 12.9 | 47 | 10.7 | 0.81 (0.54–1.21) | 0.33 | |
rs11191979 | T/T | 125 | 54.1 | 119 | 54.1 | 1.03 (0.77–1.39) | 0.86 A |
T/C | 92 | 39.8 | 85 | 38.6 | |||
C/C | 14 | 6.1 | 16 | 7.3 | |||
C | 120 | 26.0 | 117 | 26.6 | 1.03 (0.77–1.39) | 0.86 | |
rs187304410 | G/G | 225 | 95.3 | 220 | 99.1 | 0.19 (0.04–0.85) | 0.012 D |
G/A | 11 | 4.7 | 2 | 0.9 | |||
A/A | 0 | 0.0 | 0 | 0.0 | |||
A | 11 | 2.3 | 2 | 0.5 | 0.19 (0.04–0.86) | 0.02 |
Haplotypes | SNP | Patients with Psoriasis | Healthy Controls | Chi-Square | p-Value | ||||
---|---|---|---|---|---|---|---|---|---|
rs11191736 | rs34040810 | rs2289964 | rs11191979 | rs187304410 | |||||
Entire group | |||||||||
H1 | C | C | C | T | G | 0.671 | 0.672 | 0.005 | 0.999 |
H2 | C | C | C | C | G | 0.200 | 0.190 | 0.314 | 0.972 |
H3 | C | C | T | C | G | 0.076 | 0.085 | 0.589 | 0.951 |
H4 | C | C | T | T | G | 0.032 | 0.030 | 0.070 | 0.993 |
Rare | - | - | - | - | - | 0.021 | 0.023 | - | - |
Males | |||||||||
H1 | C | C | C | T | G | 0.645 | 0.657 | 0.118 | 1.000 |
H2 | C | C | C | C | G | 0.208 | 0.215 | 0.097 | 1.000 |
H3 | C | C | T | C | G | 0.076 | 0.084 | 0.089 | 1.000 |
H4 | C | C | T | T | G | 0.036 | 0.026 | 0.436 | 0.953 |
Rare | - | - | - | - | - | 0,035 | 0,018 | - | - |
Females | |||||||||
H1 | C | C | C | T | G | 0.701 | 0.687 | 0.233 | 1.000 |
H2 | C | C | C | C | G | 0.187 | 0.165 | 0.733 | 1.000 |
H3 | C | C | T | C | G | 0.077 | 0.089 | 0.438 | 1.000 |
H4 | C | C | T | T | G | 0.028 | 0.032 | 0.094 | 1.000 |
Rare | - | - | - | - | - | 0.007 | 0.027 | - | - |
Environmental Risk Factors | Patients with Psoriasis n (%) | Healthy Controls n (%) | p-Value * |
---|---|---|---|
Overall group | |||
Smokers (ever/never) 1 | 168 (35.4) | 148 (31.5) | 0.20 |
Alcohol abusers 2 | 105 (21.2) | 7 (3.2) | <0.0001 |
Decreased consumption of fresh fruits and vegetables 3 | 183 (38.6) | 68 (30.0) | 0.03 |
Males | |||
Smokers (ever/never) | 120 (47.6) | 106 (45.3) | 0.61 |
Alcohol abusers | 74 (29.4) | 6 (5.2) | 3.6 × 10−7 |
Decreased consumption of fresh fruits and vegetables | 93 (36.9) | 56 (46.7) | 0.07 |
Females | |||
Smokers (ever/never) | 48 (21.6) | 42 (17.8) | 0.30 |
Alcohol abusers | 31 (14.0) | 1 (1.0) | 0.0005 |
Decreased consumption of fresh fruits and vegetables | 90 (40.5) | 12 (11.2) | 7.1 × 10−8 |
mbmdr Models of SNP × Risk Factor Interactions | Entire Group 1 | Males 1 | Females 1 | |||
---|---|---|---|---|---|---|
N | % | N | % | N | % | |
Second-order models | N = 12 | N = 16 | N = 13 | |||
ALCOHOL × GSTO1 (1 SNP) | 5 | 41.7 | 5 | 31.3 | 5 | 38.5 |
ALCOHOL × GCLC (1 SNP) | 6 | 50.0 | 6 | 37.5 | 6 | 46.2 |
ALCOHOL × SMOKE | 1 | 8.3 | 1 | 6.3 | 1 | 7.7 |
GSTO1 (1 SNP) × GCLC (1 SNP) | 0 | 0.0 | 4 | 25.0 | 0 | 0.0 |
GSTO1 (1 SNP) × GSTO1 (1 SNP) | 0 | 0.0 | 0 | 0.0 | 1 | 7.7 |
Third-order models | N = 68 | N = 83 | N = 28 | |||
ALCOHOL × GSTO1 (1 SNP) × GSTO1 (1 SNP) | 10 | 14.7 | 10 | 12.0 | 8 | 28.6 |
ALCOHOL × GCLC (1 SNP) × GSTO1 (1 SNP) * | 30 | 44.1 | 45 | 54.2 | 8 | 28.6 |
ALCOHOL × GCLC (1 SNP) × GCLC (1 SNP) | 15 | 22.1 | 15 | 18.1 | 1 | 3.6 |
ALCOHOL × SMOKE × GSTO1 (1 SNP) | 5 | 7.4 | 5 | 6.0 | 5 | 17.9 |
ALCOHOL × SMOKE × GCLC (1 SNP) | 6 | 8.8 | 6 | 7.2 | 6 | 21.4 |
Other models | 2 | 2.9 | 2 | 2.4 | 0 | 0.0 |
Fourth-order models | N = 239 | N = 148 | N = 19 | |||
ALCOHOL × GSTO1 (3 SNPs) | 10 | 4.2 | 9 | 6.1 | 0 | 0.0 |
ALCOHOL × GSTO1 (2 SNPs) × GCLC (1 SNP) ** | 60 | 25.1 | 53 | 35.8 | 0 | 0.0 |
ALCOHOL × GCLC (2 SNPs) × GSTO1 (1 SNP) | 95 | 39.7 | 6 | 4.1 | 1 | 5.3 |
ALCOHOL × GCLC (3 SNPs) | 20 | 8.4 | 14 | 9.5 | 0 | 0.0 |
ALCOHOL × SMOKE × GCLC (2 SNPs) | 10 | 4.2 | 12 | 8.1 | 1 | 5.3 |
ALCOHOL × SMOKE × GCLC (1 SNP) × GSTO1 (1 SNP) ** | 30 | 12.6 | 36 | 24.3 | 12 | 63.2 |
ALCOHOL × SMOKE × GSTO1 (2 SNPs) * | 10 | 4.2 | 10 | 6.8 | 5 | 26.3 |
Other models | 4 | 1.7 | 8 | 5.4 | 0 | 0.0 |
mbmdr Models of SNP × Risk Factor Interactions | NH | β-H | WH | NL | β-L | WL | Pperm | |
---|---|---|---|---|---|---|---|---|
Second-order models | ||||||||
1 | ALCOHOL × GSTO1 rs34040810 | 2 | 0.322 | 34.87 | 1 | −0.322 | 34.87 | <0.0001 |
2 | ALCOHOL × GSTO1 rs11191736 | 1 | 0.299 | 26.12 | 1 | −0.313 | 30.68 | <0.0001 |
3 | ALCOHOL × GSTO1 rs187304410 | 1 | 0.300 | 27.14 | 1 | −0.292 | 29.57 | <0.0001 |
4 | ALCOHOL × GCLC rs648595 | 3 | 0.308 | 29.57 | 1 | −0.259 | 14.33 | <0.0001 |
5 | ALCOHOL × GCLC rs542914 | 3 | 0.308 | 29.57 | 2 | −0.183 | 14.68 | <0.0001 |
Third-order models | ||||||||
1 | ALCOHOL × GCLC rs524553 × GSTO1 rs34040810 | 2 | 0.297 | 25.88 | 3 | −0.322 | 34.30 | <0.0001 |
2 | ALCOHOL × GCLC rs542914 × GSTO1 rs34040810 | 4 | 0.322 | 34.30 | 2 | −0.203 | 18.31 | <0.0001 |
3 | ALCOHOL × GSTO1 rs34040810 × GSTO1 rs11191736 | 1 | 0.299 | 26.12 | 1 | −0.323 | 33.91 | <0.0001 |
4 | ALCOHOL × GSTO1 rs11191979 × GSTO1 rs34040810 | 4 | 0.317 | 33.31 | 2 | −0.267 | 27.36 | <0.0001 |
5 | ALCOHOL × GSTO1 rs2289964 × GSTO1 rs34040810 | 3 | 0.316 | 32.45 | 1 | −0.172 | 12.53 | <0.0001 |
Fourth-order models | ||||||||
1 | ALCOHOL × GCLC rs648595 × GCLC rs542914 × GSTO1 rs11191979 | 4 | 0.301 | 16.69 | 6 | −0.303 | 38.90 | <0.0001 |
2 | ALCOHOL × GCLC rs524553 × GSTO1 rs34040810 × GSTO1 rs11191736 | 2 | 0.288 | 22.76 | 3 | −0.322 | 33.34 | <0.0001 |
3 | ALCOHOL × GCLC rs542914 × GSTO1 rs2289964 × GSTO1 rs34040810 | 5 | 0.313 | 29.13 | 3 | −0.167 | 11.98 | <0.0001 |
4 | ALCOHOL × GSTO1 rs187304410 × GSTO1 rs34040810 × GSTO1 rs11191736 | 1 | 0.292 | 23.98 | 1 | −0.292 | 28.65 | <0.0001 |
5 | ALCOHOL × SMOKE × GCLC rs542914 × GSTO1 rs11191979 | 5 | 0.291 | 26.44 | 4 | −0.279 | 28.03 | <0.0001 |
mbmdr Models of SNP × Risk Factor Interactions | NH | β-H | WH | NL | β-L | WL | Pperm | |
---|---|---|---|---|---|---|---|---|
Second-order models | ||||||||
1 | ALCOHOL × SMOKE | 3 | 0.285 | 22.22 | 1 | −0.285 | 22.22 | <0.0001 |
2 | ALCOHOL × GSTO1 rs187304410 | 1 | 0.319 | 14.02 | 2 | −0.319 | 14.02 | <0.0001 |
3 | ALCOHOL × GSTO1 rs34040810 | 1 | 0.317 | 13.42 | 1 | −0.288 | 11.62 | <0.0001 |
4 | ALCOHOL × GSTO1 rs11191736 | 1 | 0.327 | 12.65 | 1 | −0.291 | 10.29 | <0.0001 |
5 | ALCOHOL × GSTO1 rs2289964 | 2 | 0.323 | 14.27 | 1 | −0.159 | 6.21 | <0.0001 |
Third-order models | ||||||||
1 | ALCOHOL × SMOKE × GSTO1 rs2289964 | 3 | 0.263 | 15.51 | 2 | −0.289 | 22.82 | <0.0001 |
2 | ALCOHOL × SMOKE × GSTO1 rs187304410 | 3 | 0.285 | 22.22 | 2 | −0.285 | 22.22 | <0.0001 |
3 | ALCOHOL × SMOKE × GSTO1 rs34040810 | 3 | 0.282 | 21.52 | 1 | −0.270 | 20.04 | <0.0001 |
4 | ALCOHOL × SMOKE × GCLC rs17883901 | 3 | 0.261 | 16.24 | 2 | −0.187 | 10.81 | <0.0001 |
5 | ALCOHOL × SMOKE × GCLC rs542914 | 3 | 0.320 | 14.56 | 1 | −0.236 | 8.39 | <0.0001 |
Fourth-order models | ||||||||
1 | ALCOHOL × SMOKE × GCLC rs2397147 × GSTO1 rs2289964 | 2 | 0.292 | 8.24 | 3 | −0.238 | 22.18 | <0.0001 |
2 | ALCOHOL × SMOKE × GSTO1 rs187304410 × GSTO1 rs34040810 | 3 | 0.282 | 21.52 | 2 | −0.270 | 20.04 | <0.0001 |
3 | ALCOHOL × SMOKE × GCLC rs6933870 × GSTO1 rs187304410 | 4 | 0.342 | 21.24 | 2 | −0.166 | 9.87 | <0.0001 |
4 | ALCOHOL × SMOKE × GSTO1 rs2289964 × GSTO1 rs34040810 | 3 | 0.263 | 15.51 | 2 | −0.274 | 20.61 | <0.0001 |
5 | ALCOHOL × SMOKE × GCLC rs6933870 × GSTO1 rs34040810 | 4 | 0.340 | 20.56 | 1 | −0.165 | 9.84 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saranyuk, R.; Bushueva, O.; Efanova, E.; Solodilova, M.; Churnosov, M.; Polonikov, A. Genetic Interactions of Phase II Xenobiotic-Metabolizing Enzymes GSTO1 and GCLC in Relation to Alcohol Abuse and Psoriasis Risk. J. Xenobiot. 2025, 15, 60. https://doi.org/10.3390/jox15020060
Saranyuk R, Bushueva O, Efanova E, Solodilova M, Churnosov M, Polonikov A. Genetic Interactions of Phase II Xenobiotic-Metabolizing Enzymes GSTO1 and GCLC in Relation to Alcohol Abuse and Psoriasis Risk. Journal of Xenobiotics. 2025; 15(2):60. https://doi.org/10.3390/jox15020060
Chicago/Turabian StyleSaranyuk, Roman, Olga Bushueva, Ekaterina Efanova, Maria Solodilova, Mikhail Churnosov, and Alexey Polonikov. 2025. "Genetic Interactions of Phase II Xenobiotic-Metabolizing Enzymes GSTO1 and GCLC in Relation to Alcohol Abuse and Psoriasis Risk" Journal of Xenobiotics 15, no. 2: 60. https://doi.org/10.3390/jox15020060
APA StyleSaranyuk, R., Bushueva, O., Efanova, E., Solodilova, M., Churnosov, M., & Polonikov, A. (2025). Genetic Interactions of Phase II Xenobiotic-Metabolizing Enzymes GSTO1 and GCLC in Relation to Alcohol Abuse and Psoriasis Risk. Journal of Xenobiotics, 15(2), 60. https://doi.org/10.3390/jox15020060