Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (448)

Search Parameters:
Keywords = world river basins

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 5841 KiB  
Article
Creating Micro-Habitat in a Pool-Weir Fish Pass with Flexible Hydraulic Elements: Insights from Field Experiments
by Mehmet Salih Turker and Serhat Kucukali
Water 2025, 17(15), 2294; https://doi.org/10.3390/w17152294 - 1 Aug 2025
Viewed by 152
Abstract
The placement of hydraulic elements in existing pool-type fishways to make them more suitable for Cyprinid fish is an issue of increasing interest in fishway research. Hydrodynamic characteristics and fish behavior at the representative pool of the fishway with bottom orifices and notches [...] Read more.
The placement of hydraulic elements in existing pool-type fishways to make them more suitable for Cyprinid fish is an issue of increasing interest in fishway research. Hydrodynamic characteristics and fish behavior at the representative pool of the fishway with bottom orifices and notches were assessed at the Dagdelen hydropower plant in the Ceyhan River Basin, Türkiye. Three-dimensional velocity measurements were taken in the pool of the fishway using an Acoustic Doppler velocimeter. The measurements were taken with and without a brush block at two different vertical distances from the bottom, which were below and above the level of bristles tips. A computational fluid dynamics (CFD) analysis was conducted for the studied fishway. The numerical model utilized Large Eddy Simulation (LES) combined with the Darcy–Forchheimer law, wherein brush blocks were represented as homogenous porous media. Our results revealed that the relative submergence of bristles in the brush block plays a very important role in velocity and Reynolds shear stress (RSS) distributions. After the placement of the submerged brush block, flow velocity and the lateral RSS component were reduced, and a resting area was created behind the brush block below the bristles’ tips. Fish movements in the pool were recorded by underwater cameras under real-time operation conditions. The heatmap analysis, which is a 2-dimensional fish spatial presence visualization technique for a specific time period, showed that Capoeta damascina avoided the areas with high turbulent fluctuations during the tests, and 61.5% of the fish presence intensity was found to be in the low Reynolds shear regions in the pool. This provides a clear case for the real-world ecological benefits of retrofitting existing pool-weir fishways with such flexible hydraulic elements. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

27 pages, 18522 KiB  
Article
Summer Cooling Effect of Rivers in the Yangtze Basin, China: Magnitude, Threshold and Mechanisms
by Pan Xiong, Dongjie Guan, Yanli Su and Shuying Zeng
Land 2025, 14(8), 1511; https://doi.org/10.3390/land14081511 - 22 Jul 2025
Viewed by 249
Abstract
Under the dual pressures of global climate warming and rapid urbanization, the Yangtze River Basin, as the world’s largest urban agglomeration, is facing intensifying thermal environmental stress. Although river ecosystems demonstrate significant thermal regulation functions, their spatial thresholds of cooling effects and multiscale [...] Read more.
Under the dual pressures of global climate warming and rapid urbanization, the Yangtze River Basin, as the world’s largest urban agglomeration, is facing intensifying thermal environmental stress. Although river ecosystems demonstrate significant thermal regulation functions, their spatial thresholds of cooling effects and multiscale driving mechanisms have remained to be systematically elucidated. This study retrieved land surface temperature (LST) using the split window algorithm and quantitatively analyzed the changes in the river cold island effect and its driving mechanisms in the Yangtze River Basin by combining multi-ring buffer analysis and the optimal parameter-based geographical detector model. The results showed that (1) forest land is the main land use type in the Yangtze River Basin, with built-up land having the largest area increase. Affected by natural, socioeconomic, and meteorological factors, the summer temperatures displayed a spatial pattern of “higher in the east than the west, warmer in the south than the north”. (2) There are significant differences in the cooling magnitude among different land types. Forest land has the maximum daytime cooling distance (589 m), while construction land has the strongest cooling magnitude (1.72 °C). The cooling effect magnitude is most pronounced in upstream areas of the basin, reaching 0.96 °C. At the urban agglomeration scale, the Chengdu–Chongqing urban agglomeration shows the greatest temperature reduction of 0.90 °C. (3) Elevation consistently demonstrates the highest explanatory power for LST spatial variability. Interaction analysis shows that the interaction between socioeconomic factors and elevation is generally the strongest. This study provides important spatial decision support for formulating basin-scale ecological thermal regulation strategies based on refined spatial layout optimization, hierarchical management and control, and a “natural–societal” dual-dimensional synergistic regulation system. Full article
Show Figures

Graphical abstract

26 pages, 5129 KiB  
Article
HEC-RAS-Based Evaluation of Water Supply Reliability in the Dry Season of a Cold-Region Reservoir in Mudanjiang, Northeast China
by Peng-Fei Lu, Chang-Lei Dai, Yuan-Ming Wang, Xiao Yang and Xin-Yu Wang
Sustainability 2025, 17(14), 6302; https://doi.org/10.3390/su17146302 - 9 Jul 2025
Viewed by 331
Abstract
Under the influence of global climate change, water conservancy projects located in the high-latitude cold regions of the world are facing severe challenges. This study addresses the contradiction between water supply stability and ecological flow during the dry season in cold regions. Taking [...] Read more.
Under the influence of global climate change, water conservancy projects located in the high-latitude cold regions of the world are facing severe challenges. This study addresses the contradiction between water supply stability and ecological flow during the dry season in cold regions. Taking Linhai Reservoir as the core, it integrates the HEC-RAS hydrodynamic model with multi-source data such as basin topography, hydro-meteorological data, and water conservancy project parameters to construct a multi-scenario water supply scheduling model during the dry season. The aim is to provide scientific recommendations for different reservoir operation strategies in response to varying frequencies of upstream inflow, based on simulations conducted after the reservoir’s completion. Taking into account winter runoff reduction characteristics and engineering parameters, we simulated the relationships between water level and flow, ecological flow requirements, and urban water shortages. The results indicate that in both flood and normal years, dynamic coordination of storage and discharge can achieve a daily water supply of 120,000 cubic meters, with 100% compliance for the ecological flow rate. For mild and moderate drought years, additional water diversion becomes necessary to achieve 93.5% and 89% supply reliability, respectively. During severe and extreme droughts, significantly reduced reservoir inflows lower ecological compliance rates, necessitating emergency measures, such as utilizing dead storage capacity and exploring alternative water sources. The study proposes operational strategies tailored to different drought intensities: initiating storage adjustments in September for mild droughts and implementing peak-shifting measures by mid-October for extreme droughts. These approaches enhance storage efficiency and mitigate ice blockage risks. This research supports the water supply security and river ecological health of urban and rural areas in Mudanjiang City and Hailin City and provides a certain scientific reference basis for the multi-objective coordinated operation of reservoirs in the same type of high-latitude cold regions. Full article
Show Figures

Figure 1

24 pages, 4645 KiB  
Article
The Impact of Climate Change and Water Consumption on the Inflows of Hydroelectric Power Plants in the Central Region of Brazil
by Filipe Otávio Passos, Benedito Cláudio da Silva, José Wanderley Marangon de Lima, Marina de Almeida Barbosa, Pedro Henrique Gomes Machado and Rafael Machado Martins
Climate 2025, 13(7), 140; https://doi.org/10.3390/cli13070140 - 4 Jul 2025
Viewed by 419
Abstract
There is a consensus that climate change has affected society. The increase in temperature and reduction in precipitation for some regions of the world have had implications for the intensity and frequency of extreme events. This scenario is worrying for various sectors of [...] Read more.
There is a consensus that climate change has affected society. The increase in temperature and reduction in precipitation for some regions of the world have had implications for the intensity and frequency of extreme events. This scenario is worrying for various sectors of water use, such as hydroelectric power generation and agriculture. Reduced flows in river basins, coupled with increased water consumption, can significantly affect energy generation and food production. Within this context, this paper presents an analysis of climate change impacts in a large basin of Brazil between the Amazon and Cerrado biomes, considering the effects of water demands. Inflow projections were generated for seven power plant reservoirs in the Tocantins–Araguaia river basin, using projections from five climate models. The results indicate significant reductions in flows, with decreases of more than 50% in the average flow. For minimum flows, there are indications of reductions of close to 85%. The demand for water, although growing, represents a smaller part of the effects, but should not be disregarded, since it impacts the dry periods of the rivers and can generate conflicts with energy production. Full article
(This article belongs to the Section Climate and Economics)
Show Figures

Figure 1

24 pages, 4485 KiB  
Article
Spatiotemporal Evolution and Proximity Dynamics of “Three-Zone Spaces” in Yangtze River Basin Counties from 2000 to 2020
by Jiawuhaier Aishanjiang, Xiaofen Li, Fan Qiu, Yichen Jia, Kai Li and Junnan Xia
Land 2025, 14(7), 1380; https://doi.org/10.3390/land14071380 - 30 Jun 2025
Viewed by 286
Abstract
As the world’s third-longest river supporting 40% of China’s population, the Yangtze River Basin exemplifies the critical challenges of balancing riparian development and ecological resilience for major fluvial systems globally. This study analyzed the spatiotemporal evolution, proximity dynamics to the Yangtze River, and [...] Read more.
As the world’s third-longest river supporting 40% of China’s population, the Yangtze River Basin exemplifies the critical challenges of balancing riparian development and ecological resilience for major fluvial systems globally. This study analyzed the spatiotemporal evolution, proximity dynamics to the Yangtze River, and driving mechanisms of the “three types of spaces” (urban, agricultural, and ecological) in 130 counties along the Yangtze River mainstem from 2000 to 2020, utilizing an integrated approach incorporating land use transfer matrices, centroid-based distance metrics and GeoDetector models. Key findings reveal: (1) Urban space exhibited significant irreversible expansion while agricultural space continued to shrink, with ecological space maintaining overall stability but showing high-frequency bidirectional conversion with agricultural areas in localized zones. (2) Spatial proximity analysis demonstrated contrasting patterns—eastern riparian counties showed urban spatial agglomeration towards the river, whereas most mid-western regions experienced urban expansion away from the watercourse, with marked regional disparities in agricultural and ecological spatial changes. (3) Driving mechanism analysis identified topography as the dominant natural factor influencing ecological space evolution, while socioeconomic factors exerted stronger impacts on proximity variations of agricultural and urban spaces, with natural–socioeconomic interactive effects showing the most significant explanatory power. These spatial dynamics reflect universal trade-offs between economic development and ecosystem conservation in large river basins worldwide. We advocate differentiated spatial governance strategies, including rigorous riparian ecological redlines, eco-agricultural models in agricultural retreat zones, and proximity-based real-time monitoring for ecological early warning. The integrated methodology and spatial governance framework offer transferable solutions for sustainable management of major fluvial systems under rapid urbanization pressure. These findings provide scientific evidence and implementable pathways for coordinating socioeconomic development with ecosystem resilience in the Yangtze River Economic Belt. Full article
Show Figures

Figure 1

19 pages, 2523 KiB  
Article
Settlement Behavior Analysis of Adjacent Existing Buildings Induced by Foundation Pit Construction in River Basin
by Yanlu Zhao, Mingrui Cao, Zhigang Guo, Lifeng Zhang and Erdi Abi
Buildings 2025, 15(12), 1991; https://doi.org/10.3390/buildings15121991 - 10 Jun 2025
Viewed by 293
Abstract
The Yellow River Basin features a unique geographical environment with challenges like seawater erosion and soft soil. In this context, the construction of foundation pits can significantly impact the settlement of adjacent structures. Grounded in a real-world project, this study employs the finite [...] Read more.
The Yellow River Basin features a unique geographical environment with challenges like seawater erosion and soft soil. In this context, the construction of foundation pits can significantly impact the settlement of adjacent structures. Grounded in a real-world project, this study employs the finite element software Midas GTS to construct a 3D interaction model between foundation pit excavation and nearby buildings. Through this model, we analyze the settlement patterns of adjacent buildings influenced by variables such as foundation soil strength, slope gradient, and construction sequence. By integrating orthogonal experimental design and range analysis, we identify the sensitive factors affecting the settlement deformation and stability of foundation pits. Our analysis reveals that among the factors significantly influencing settlement deformation at the foundation pit base, groundwater levels and internal friction angles are the most critical. Slope gradient and soil cohesion also play substantial roles, whereas the compressive modulus of soil shows relatively less impact. However, a comparison with actual engineering data indicates that groundwater factors considerably affect slope deformation, underscoring the necessity for stringent control of groundwater level fluctuations. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

19 pages, 2859 KiB  
Article
Produced Water Use for Hydrogen Production: Feasibility Assessment in Wyoming, USA
by Cilia Abdelhamid, Abdeldjalil Latrach, Minou Rabiei and Kalyan Venugopal
Energies 2025, 18(11), 2756; https://doi.org/10.3390/en18112756 - 26 May 2025
Cited by 1 | Viewed by 609
Abstract
This study evaluates the feasibility of repurposing produced water—an abundant byproduct of hydrocarbon extraction—for green hydrogen production in Wyoming, USA. Analysis of geospatial distribution and production volumes reveals that there are over 1 billion barrels of produced water annually from key basins, with [...] Read more.
This study evaluates the feasibility of repurposing produced water—an abundant byproduct of hydrocarbon extraction—for green hydrogen production in Wyoming, USA. Analysis of geospatial distribution and production volumes reveals that there are over 1 billion barrels of produced water annually from key basins, with a general total of dissolved solids (TDS) ranging from 35,000 to 150,000 ppm, though Wyoming’s sources are often at the lower end of this spectrum. Optimal locations for hydrogen production hubs have been identified, particularly in high-yield areas like the Powder River Basin, where the top 2% of fields contribute over 80% of the state’s produced water. Detailed water-quality analysis indicates that virtually all of the examined sources exceed direct electrolyzer feed requirements (e.g., <2000 ppm TDS, <0.1 ppm Fe/Mn for target PEM systems), necessitating pre-treatment. A review of advanced treatment technologies highlights viable solutions, with estimated desalination and purification costs ranging from USD 0.11 to USD 1.01 per barrel, potentially constituting 2–6% of the levelized cost of hydrogen (LCOH). Furthermore, Wyoming’s substantial renewable-energy potential (3000–4000 GWh/year from wind and solar) could sustainably power electrolysis, theoretically yielding approximately 0.055–0.073 million metric tons (MMT) of green hydrogen annually (assuming 55 kWh/kg H2), a volume constrained more by energy availability than water supply. A preliminary economic analysis underscores that, while water treatment (2–6% LCOH) and transportation (potentially > 10% LCOH) are notable, electricity pricing (50–70% LCOH) and electrolyzer CAPEX (20–40% LCOH) are dominant cost factors. While leveraging produced water could reduce freshwater consumption and enhance hydrogen production sustainability, further research is required to optimize treatment processes and assess economic viability under real-world conditions. This study emphasizes the need for integrated approaches combining water treatment, renewable energy, and policy incentives to advance a circular economy model for hydrogen production. Full article
(This article belongs to the Special Issue Advances in Hydrogen Energy IV)
Show Figures

Figure 1

16 pages, 3402 KiB  
Article
Trends, Patterns, and Persistence of Rainfall, Streamflow, and Flooded Area in the Upper Paraguay Basin (Brazil)
by Maria Eduarda Moraes Sarmento Coelho, Henrique Marinho Leite Chaves and Maria Rita Fonseca
Water 2025, 17(10), 1549; https://doi.org/10.3390/w17101549 - 21 May 2025
Viewed by 697
Abstract
The Pantanal, considered the world’s largest floodplain, exhibits hydrological and ecological dynamics that are intrinsically linked to water inflows from the surrounding highlands. While the impacts of large-scale climatic phenomena and land-use changes on hydrological variables within the Upper Paraguay River Basin (UPRB) [...] Read more.
The Pantanal, considered the world’s largest floodplain, exhibits hydrological and ecological dynamics that are intrinsically linked to water inflows from the surrounding highlands. While the impacts of large-scale climatic phenomena and land-use changes on hydrological variables within the Upper Paraguay River Basin (UPRB) are acknowledged, their combined effects remain unknown. Recent reductions in precipitation and river discharge have adversely affected both environmental and socioeconomic aspects of the Cerrado (Brazilian Savannah) and Pantanal biomes in Brazil, raising concerns about the long-term sustainability of these important ecosystems. This study analyzes a 37-year hydrological time series (1986–2023) of rainfall, streamflow, and flooded area in three contributing basins of the Pantanal (Jauru—JB; Taquari—TB; and Miranda—MB), and reveals distinct hydrological trends influenced by different climate systems. Significant decreasing trends in rainfall and streamflow were observed in the northern JB and TB, contrasted by increasing trends in the southern MB. Consequently, a declining trend in downstream flooded areas within the Pantanal floodplain was identified. Long-term memory processes (Hurst phenomena) were identified in the time series of the Pantanal flooded area and also in the Paraguay river stage data. These findings indicate a persistent and aggregated reduction in the Pantanal’s hydrologic variables, adversely affecting its water-dependent ecology and economic activities, such as ranching, fishing, and navigation. This study underscores the necessity of adaptative management strategies to tackle the impacts of water surface loss, increased fire risks, and climate variability in the UPRB. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

21 pages, 12917 KiB  
Article
Impact of Land Use Change on Carbon Storage Dynamics in the Lijiang River Basin, China: A Complex Network Model Approach
by Xinran Zhou, Jinye Wang, Liang Tang, Wen He and Hui Li
Land 2025, 14(5), 1042; https://doi.org/10.3390/land14051042 - 10 May 2025
Cited by 1 | Viewed by 608
Abstract
As a typical karst landform region, the Lijiang River Basin, located in Southwest China, is characterized by both soil erosion and ecological fragility. The transformation of land use, driven by long-term intensive human activities, has exacerbated the degradation of ecosystem services, threatening the [...] Read more.
As a typical karst landform region, the Lijiang River Basin, located in Southwest China, is characterized by both soil erosion and ecological fragility. The transformation of land use, driven by long-term intensive human activities, has exacerbated the degradation of ecosystem services, threatening the region’s carbon sink function. To clarify the coupling mechanism between land use and land cover change (LUCC) and carbon storage, this paper integrates complex network theory with the PLUS-InVEST model framework. Based on land use data from five periods, i.e., 2001, 2006, 2011, 2016, and 2021, the key transformation types are identified, and the evolution of carbon storage from 2021 to 2041 is simulated under three scenarios, namely, inertial scenario, ecological protection scenario, and urban development scenario. The paper finds that (1) land use transformation in the basin exhibits spatial heterogeneity and network complexity, as evidenced by a significant negative correlation between the node clustering coefficient and the average path length, revealing that land type transitions possess small-world network characteristics. (2) The forested land experienced a net decrease of 196.73 km2 from 2001 to 2021, driving a 3.03% decline in carbon storage. This highlights the inhibitory effect of unregulated urban expansion on carbon sink capacity. (3) Scenario simulations indicate that the carbon storage under the ecological protection scenario will be 1.0% higher than under the inertial scenario and 1.5% higher than under the urban development scenario. These suggest that restricting impervious land expansion and promoting forest and grassland restoration can enhance carbon sink capacity. Therefore, this paper provides a quantitative basis for optimizing territorial spatial planning and coordinating the “dual carbon” goals in karst regions. Full article
(This article belongs to the Section Land Systems and Global Change)
Show Figures

Figure 1

18 pages, 45342 KiB  
Article
Multi-Scale Ecological Restoration Strategies to Enhance Water Conservation in Ruoergai on the Qinghai–Tibet Plateau
by Shiliang Liu, Yuhong Dong, Yongxiu Sun and Qingbo Wang
Plants 2025, 14(7), 1085; https://doi.org/10.3390/plants14071085 - 1 Apr 2025
Cited by 2 | Viewed by 636
Abstract
The Ruoergai Wetland is the highest and largest plateau peat swamp wetland in the world, providing more than 30% of the water for the upper reaches of the Yellow River. It performs vital regulatory functions in maintaining the quality and stability of the [...] Read more.
The Ruoergai Wetland is the highest and largest plateau peat swamp wetland in the world, providing more than 30% of the water for the upper reaches of the Yellow River. It performs vital regulatory functions in maintaining the quality and stability of the regional ecosystem of the Yellow River Basin. It is of great significance to study the spatial and temporal variability of water conservation services as well as ecological restoration and enhancement strategies at multiple scales. Based on field research, using the InVEST model, this study quantitatively assessed water conservation for a long period at the Ruoergai Wetland, proposing a strategy to improve water conservation capacity. The results showed that both grassland (mainly alpine meadow with Kobresia Willd and Cyperus papyrus) and wetland in the study area exhibited degradation. The proportions of significantly decreased, moderately decreased, slightly decreased areas were 50.64%, 16.81%, 11.64%, respectively. There were also significant changes in water conservation capacity from 2020 to 2023, with strong spatial heterogeneity. Average water conservation per unit area ranged from 52.70 to 211.99 mm/m2, with a decreasing trend. However, in the past 10 years, the area of soil erosion decreased by about 4735 km2. Although the soil erosion situation has improved to a large extent, there is still increasing soil erosion in some areas. Based on the field investigation, the intrinsic mechanisms of water conservation in alpine wetlands were elaborated, the driving forces behind the changes in water conservation functions were described, and further ecological restoration strategies were proposed from the perspectives of engineering measures, spatial zoning, and industrial structure. Full article
(This article belongs to the Special Issue Vegetation Dynamics and Ecological Restoration in Alpine Ecosystems)
Show Figures

Figure 1

23 pages, 3061 KiB  
Article
Microalgae Indicators of Metabolic Changes in Potamogeton perfoliatus L. Under Different Growing Conditions of Urban Territory Lakes in a Permafrost Area
by Igor V. Sleptsov, Vladislav V. Mikhailov, Viktoria A. Filippova, Sophia Barinova, Olga I. Gabysheva and Viktor A. Gabyshev
Sustainability 2025, 17(6), 2690; https://doi.org/10.3390/su17062690 - 18 Mar 2025
Viewed by 418
Abstract
Under conditions of increasing anthropogenic load, aquatic ecosystems all over the world are undergoing a transformation, expressed in the growth of eutrophication, the overgrowing of water bodies with higher vegetation of macrophytes, cyanobacterial bloom, and the increased concentrations of different pollutants in these [...] Read more.
Under conditions of increasing anthropogenic load, aquatic ecosystems all over the world are undergoing a transformation, expressed in the growth of eutrophication, the overgrowing of water bodies with higher vegetation of macrophytes, cyanobacterial bloom, and the increased concentrations of different pollutants in these objects. In the region of Eastern Siberia that we studied, located in the middle reaches of the Lena River basin, there is the city of Yakutsk—the largest city in the world built in a permafrost region. Within the city and its surroundings, there are many small lakes (less than 1 km2 in area) which over the past decades have been subject to varying degrees of pressure associated with human activity (nutrients and organic matter loads, urban landscape transformation). This study is the first to combine the metabolomic profiling of Potamogeton perfoliatus with microalgal bioindication to assess anthropogenic impacts in permafrost urban lakes, providing a novel framework for monitoring ecological resilience in extreme environments. We studied four lakes with varying degrees of anthropogenic pressure. Using a comprehensive assessment of the bioindicator properties of planktonic microalgae and the chemical parameters of water using statistical methods and principal component analysis (PCA), the lakes most susceptible to anthropogenic pressure were identified. Concentrations of pollutant elements in the tissues of the submerged macrophyte aquatic plant Potamogeton perfoliatus L., which inhabits all the lakes we studied, were estimated. Data on the content of pollutant elements in aquatic vegetation and the results of metabolomic analysis made it possible to identify the main sources of anthropogenic impact in the urbanized permafrost area. The pollution of water bodies with some key pollutants leads to Potamogeton perfoliatus’s metabolites decreasing, such as sucrose, monosaccharides (arabinose, mannose, fructose, glucose, galactose), organic acids (glyceric acid, malic acid, erythronic acid, fumaric acid, succinic acid, citric acid), fatty acids (linoleic and linolenic acids), myo-inositol, 4-coumaric acid, caffeic acid, rosmarinic acid, shikimic acid, and catechollactate, caused by pollution which may decrease the photosynthetic activity and worsen the sustainability of water ecosystems. Linkage was established between the accumulation of pollutants in plant tissues, the trophic status of the lake, and the percentage of eutrophic microalgae, which can be used in monitoring the anthropogenic load in the permafrost zone. Knowledge of the composition and concentration of secondary metabolites produced by macrophytes in permafrost lakes can be useful in organizing water resource management in terms of reducing the level of cyanobacterial blooms due to allelochemical compounds secreted by macrophytes. This new work makes possible the evaluation of the permafrost-zone small-lake anthropogenic load in the frame of a changing climate and the growing attention of the industry to Arctic resources. Full article
Show Figures

Figure 1

22 pages, 4846 KiB  
Article
The Plant Landscape of the “Conca d’Oro” of Palermo (NW Sicily, Italy) and Its Evolution
by Gianniantonio Domina, Giulio Barone, Enrico Bajona, Emilio Di Gristina, Giuseppe Venturella and Raimondo Pardi
Plants 2025, 14(6), 938; https://doi.org/10.3390/plants14060938 - 17 Mar 2025
Viewed by 1133
Abstract
The Conca d’Oro of Palermo, a plain in NW Sicily of significant historical and agricultural importance, has undergone significant landscape alterations due to agricultural strengthening and urbanization. This paper analyses the evolution of the plant landscape from early human settlements to the present [...] Read more.
The Conca d’Oro of Palermo, a plain in NW Sicily of significant historical and agricultural importance, has undergone significant landscape alterations due to agricultural strengthening and urbanization. This paper analyses the evolution of the plant landscape from early human settlements to the present by integrating historical records, cartographic analysis, and floristic surveys. Three key periods of change were identified: Roman-era deforestation for cereal cultivation, the expansion of irrigated agriculture under Arab rule, and the dominance of citrus monoculture in the 19th century. Post-World War II urban expansion led to the loss of agricultural land and natural habitats, particularly wetlands and coastal dunes. Spatial analysis revealed a drastic reduction in semi-natural areas, with agricultural land giving way to urban sprawl. Floristic studies showed the persistence of endemic plant species in fragmented natural habitats alongside the local extinction of wetlands and coastal vegetation. The Oreto River, a river with a basin that extends into the territories of the municipalities of Altofonte, Monreale, and Palermo, remains a critical biodiversity reservoir, and most other natural ecosystems have been degraded. This research provides insights into the long-term interactions between human activities and biodiversity and offers a foundation for sustainable conservation strategies in Mediterranean urban and peri-urban environments. Full article
Show Figures

Figure 1

26 pages, 27571 KiB  
Article
Nutrient Fluxes from the Kamchatka and Penzhina Rivers and Their Impact on Coastal Ecosystems on Both Sides of the Kamchatka Peninsula
by Pavel Semkin, Galina Pavlova, Vyacheslav Lobanov, Kirill Baigubekov, Yuri Barabanshchikov, Sergey Gorin, Maria Shvetsova, Elena Shkirnikova, Olga Ulanova, Anna Ryumina, Ekaterina Lepskaya, Yuliya Fedorets, Yi Xu and Jing Zhang
J. Mar. Sci. Eng. 2025, 13(3), 569; https://doi.org/10.3390/jmse13030569 - 14 Mar 2025
Viewed by 837
Abstract
Catchment areas on volcanic territories in different regions are of great interest since they are enriched with nutrients that contribute significantly to coastal ecosystems. The Kamchatka Peninsula is one of the most active volcanic regions of the world; however, to date, the chemistry [...] Read more.
Catchment areas on volcanic territories in different regions are of great interest since they are enriched with nutrients that contribute significantly to coastal ecosystems. The Kamchatka Peninsula is one of the most active volcanic regions of the world; however, to date, the chemistry of its river waters and the state of its coastal ecosystems remain understudied in connection with volcanism. The two rivers under study are the largest in this region. The Kamchatka River, unlike the Penzhina River, drains volcanic territories, including the areas of the most active volcanoes of the Klyuchevskaya group of volcanoes and the Shiveluch Volcano. The mouth of the Kamchatka River has been shown to have DIP and DIN concentrations of 2.79–3.87 and 10.0–23.8 µM, respectively, during different seasons, which are comparable to rivers in urbanized areas with sewerage and agricultural sources of nutrients. It has been established that volcanoes form high concentrations of nutrients in the catchment area of the Kamchatka River. The Penzhina River has had very low DIP and DIN concentrations of 0.2–0.8 and 0.17–0.35 µM, respectively, near the mouth during different seasons, but high concentrations of DOC, at 5.9 mg/L in spring, which may be due to seasonal thawing of permafrost. During the period of increasing river discharge, seasonal phytoplankton blooms occur in spring and summer in bays of the same name, as shown using satellite data. The biomass of zooplankton in Penzhina Bay is at a level of 100 mg/L, while in Kamchatka Gulf, it exceeds 2000 mg/L. Thus, the biomass of zooplankton in the receiving basin, which is influenced by the runoff of the Kamchatka River with a volcanic catchment area in eastern Kamchatka, is 20 times higher than in the basin, which has a small nutrient flux with the river runoff in northwestern Kamchatka. This study demonstrates the connection between nutrient fluxes from a catchment area and the formation of seasonal phytoplankton blooms and high zooplankton biomass in the coastal area. We also study seasonal, year-to-year, and climatic variability of water discharges and hydrometeorological conditions to understand how nutrient fluxes can change in the foreseeable future and influence coastal ecosystems. Full article
(This article belongs to the Special Issue Coastal Water Quality Observation and Numerical Modeling)
Show Figures

Figure 1

26 pages, 4292 KiB  
Article
Migration and Accumulation Mechanisms of Heavy Metals in Soil from Maoniuping Rare Earth Elements Mining, Southwest China
by Sijie He, Yang Li, Liang Tang, Fang Yang, Yuan Xie, Xuemin Liu and Lei Xu
Land 2025, 14(3), 611; https://doi.org/10.3390/land14030611 - 13 Mar 2025
Cited by 1 | Viewed by 1170
Abstract
The Maoniuping Rare Earth Elements (REE) deposit, the second largest light REE deposit in the world, has been mined for decades, with serious impacts on the surrounding environment. However, the impact of mining on heavy metals in the downstream area (Nanhe River Basin) [...] Read more.
The Maoniuping Rare Earth Elements (REE) deposit, the second largest light REE deposit in the world, has been mined for decades, with serious impacts on the surrounding environment. However, the impact of mining on heavy metals in the downstream area (Nanhe River Basin) has not been systematically documented. To address this issue, this study explored the extent, transport, and accumulation of heavy metal contamination in the Nanhe River Basin through field surveys (2946 topsoil samples and four vertical soil sections) and regional geographic attributes (e.g., mining area, river, and elevation) combined with a variety of methods such as statistics, geostatistics, spatial analysis, geo-accumulation index, and potential ecological risk index. The results showed that soils in the Nanhe River Basin presented different degrees of heavy metal pollution, with Pb and Cd being the most abundant, and the soils as a whole showed moderate-heavy ecological risks. The spatial distribution and correlation of heavy metals exhibited similar distribution patterns and sources. Further analyses revealed that mining of REE in Maoniuping was the main source of heavy metal pollution in the Nanhe River Basin, with heavy metals entering the soil through runoffs. At the same time, mining activities led to the migration of heavy metals in different directions in the Nanhe watershed, i.e., about 1.3 km horizontally, 16 km longitudinally, and more than 1 m vertically. In addition, about 38.1 km2 of the watershed is contaminated by mine wastes, which is 6.6 times the size of the mining area. In order to mitigate the threat of heavy metals, the local government has implemented water diversion projects and crop conversion in the Nanhe River Basin. This study provides a reference for research on the environmental problems caused by the exploitation of REE mines and other mineral resources. Full article
(This article belongs to the Topic Environmental Geology and Engineering)
Show Figures

Figure 1

19 pages, 4251 KiB  
Article
Data-Driven Approach to Safety Control in Jacket-Launching Installation Operations
by Sheng Chen, Mingxin Li, Yankun Liu and Xu Bai
J. Mar. Sci. Eng. 2025, 13(3), 554; https://doi.org/10.3390/jmse13030554 - 13 Mar 2025
Viewed by 509
Abstract
Installing offshore wind jackets faces increasing risks from dynamic marine conditions and is challenged by trajectory deviations due to coupled hydrodynamic and environmental factors. To address the limitations of software, such as long simulation times and tedious parameter adjustments, this study develops a [...] Read more.
Installing offshore wind jackets faces increasing risks from dynamic marine conditions and is challenged by trajectory deviations due to coupled hydrodynamic and environmental factors. To address the limitations of software, such as long simulation times and tedious parameter adjustments, this study develops a rapid prediction model combining Radial Basis Function (RBF) and Backpropagation (BP) neural networks. The model is enhanced by incorporating both numerical simulation data and real-world measurement data from the launching operation. The real-world data, including the barge attitude before launching, jacket weight distribution, and actual environmental conditions, are used to refine the model and guide the development of a fully parameterized adaptive controller. This controller adjusts in real time, with its performance validated against simulation results. A case study from the Pearl River Mouth Basin was conducted, where datasets—capturing termination time, six-degrees-of-freedom motion data for the barge and jacket, and actual environmental conditions—were collected and integrated into the RBF and BP models. Numerical models also revealed that wind and wave conditions significantly affected lateral displacement and rollover risks, with certain directions leading to heightened operational challenges. On the other hand, operations under more stable environmental conditions were found to be safer, although precautions were still necessary under strong environmental loads to prevent collisions between the jacket and the barge. This approach successfully reduces weather-dependent operational delays and structural load peaks. Hydrodynamic analysis highlights the importance of directional strategies in minimizing environmental impacts. The model’s efficiency, requiring a fraction of the time compared to traditional methods, makes it suitable for real-time applications. Overall, this method provides a scalable solution to enhance the resilience of marine operations in renewable energy projects, offering both computational efficiency and high predictive accuracy. Full article
(This article belongs to the Special Issue Advances in Marine Engineering Hydrodynamics)
Show Figures

Figure 1

Back to TopTop