Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (712)

Search Parameters:
Keywords = wood fuel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3334 KiB  
Article
Market Research on Waste Biomass Material for Combined Energy Production in Bulgaria: A Path Toward Enhanced Energy Efficiency
by Penka Zlateva, Angel Terziev, Mariana Murzova, Nevena Mileva and Momchil Vassilev
Energies 2025, 18(15), 4153; https://doi.org/10.3390/en18154153 - 5 Aug 2025
Abstract
Using waste biomass as a raw material for the combined production of electricity and heat offers corresponding energy, economic, environmental and resource efficiency benefits. The study examines both the performance of a system for combined energy production based on the Organic Rankine Cycle [...] Read more.
Using waste biomass as a raw material for the combined production of electricity and heat offers corresponding energy, economic, environmental and resource efficiency benefits. The study examines both the performance of a system for combined energy production based on the Organic Rankine Cycle (ORC) utilizing wood biomass and the market interest in its deployment within Bulgaria. Its objective is to propose a technically and economically viable solution for the recovery of waste biomass through the combined production of electricity and heat while simultaneously assessing the readiness of industrial and municipal sectors to adopt such systems. The cogeneration plant incorporates an ORC module enhanced with three additional economizers that capture residual heat from flue gases. Operating on 2 t/h of biomass, the system delivers 1156 kW of electric power and 3660 kW of thermal energy, recovering an additional 2664 kW of heat. The overall energy efficiency reaches 85%, with projected annual revenues exceeding EUR 600,000 and a reduction in carbon dioxide emissions of over 5800 t/yr. These indicators can be achieved through optimal installation and operation. When operating at a reduced load, however, the specific fuel consumption increases and the overall efficiency of the installation decreases. The marketing survey results indicate that 75% of respondents express interest in adopting such technologies, contingent upon the availability of financial incentives. The strongest demand is observed for systems with capacities up to 1000 kW. However, significant barriers remain, including high initial investment costs and uneven access to raw materials. The findings confirm that the developed system offers a technologically robust, environmentally efficient and market-relevant solution, aligned with the goals of energy independence, sustainability and the transition to a low-carbon economy. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

22 pages, 14333 KiB  
Article
A Transient Combustion Study in a Brick Kiln Using Natural Gas as Fuel by Means of CFD
by Sergio Alonso-Romero, Jorge Arturo Alfaro-Ayala, José Eduardo Frias-Chimal, Oscar A. López-Núñez, José de Jesús Ramírez-Minguela and Roberto Zitzumbo-Guzmán
Processes 2025, 13(8), 2437; https://doi.org/10.3390/pr13082437 - 1 Aug 2025
Viewed by 241
Abstract
A brick kiln was experimentally studied to measure the transient temperature of hot gases and the compressive strength of the bricks, using pine wood as fuel, in order to evaluate the thermal performance of the actual system. In addition, a transient combustion model [...] Read more.
A brick kiln was experimentally studied to measure the transient temperature of hot gases and the compressive strength of the bricks, using pine wood as fuel, in order to evaluate the thermal performance of the actual system. In addition, a transient combustion model based on computational fluid dynamics (CFD) was used to simulate the combustion of natural gas in the brick kiln as a hypothetical case, with the aim of investigating the potential benefits of fuel switching. The theoretical stoichiometric combustion of both pine wood and natural gas was employed to compare the mole fractions and the adiabatic flame temperature. Also, the transient hot gas temperature obtained from the experimental wood-fired kiln were compared with those from the simulated natural gas-fired kiln. Furthermore, numerical simulations were carried out to obtain the transient hot gas temperature and NOx emissions under stoichiometric, fuel-rich, and excess air conditions. The results of CO2 mole fractions from stoichiometric combustion demonstrate that natural gas may represent a cleaner alternative for use in brick kilns, due to a 44.08% reduction in emissions. Contour plots of transient hot gases temperature, velocity, and CO2 emission inside the kiln are presented. Moreover, the time-dependent emissions of CO2, H2O, and CO at the kiln outlet are shown. It can be concluded that the presence of CO mole fractions at the kiln outlet suggests that the transient combustion process could be further improved. The low firing efficiency of bricks and the thermal efficiency obtained are attributed to uneven temperatures distributions inside the kiln. Moreover, hot gas temperature and NOx emissions were found to be higher under stoichiometric conditions than under fuel-rich or excess of air conditions. Therefore, this work could be useful for improving the thermal–hydraulic and emissions performance of brick kilns, as well as for future kiln design improvements. Full article
(This article belongs to the Special Issue Numerical Simulation of Flow and Heat Transfer Processes)
Show Figures

Figure 1

19 pages, 1186 KiB  
Article
The Genotoxic Potential of Organic Emissions from Domestic Boilers Combusting Biomass and Fossil Fuels
by Jitka Sikorova, Frantisek Hopan, Lenka Kubonova, Jiri Horak, Alena Milcova, Pavel Rossner, Antonin Ambroz, Kamil Krpec, Oleksandr Molchanov and Tana Zavodna
Toxics 2025, 13(8), 619; https://doi.org/10.3390/toxics13080619 - 25 Jul 2025
Viewed by 186
Abstract
Solid fuels are still widely used in household heating in Europe and North America. Emissions from boilers are released in proximity to people. Therefore, there is a need to minimise the toxicity of emissions affecting human health to the greatest extent possible. This [...] Read more.
Solid fuels are still widely used in household heating in Europe and North America. Emissions from boilers are released in proximity to people. Therefore, there is a need to minimise the toxicity of emissions affecting human health to the greatest extent possible. This study compares the genotoxic potential of the emissions of four boilers of modern and old design (automatic, gasification, down-draft, over-fire) operating at reduced output to simulate the real-life combustion fed by various fossil and renewable solid fuels (hard coal, brown coal, brown coal briquettes, wood pellets, wet and dry spruce). Organic emissions were tested for genotoxic potential by analysing bulky DNA adducts and 8-oxo-dG adduct induction. There was no consistent genotoxic pattern among the fuels used within the boilers. Genotoxicity was strongly correlated with polycyclic aromatic hydrocarbon (PAH) content, and even stronger correlation was observed with particulate matter (PM). In all measured variables (PM, PAHs, genotoxicity), the technology of the boilers was a more important factor in determining the genotoxic potential than the fuels burned. The highest levels of both bulky and 8-oxo-dG DNA adducts were induced by organics originating from the over-fire boiler, while the automatic boiler exhibited genotoxic potential that was ~1000- and 100-fold lower, respectively. Full article
(This article belongs to the Section Human Toxicology and Epidemiology)
Show Figures

Graphical abstract

24 pages, 3226 KiB  
Article
The Environmental Impacts of Façade Renovation: A Case Study of an Office Building
by Patrik Štompf, Rozália Vaňová and Stanislav Jochim
Sustainability 2025, 17(15), 6766; https://doi.org/10.3390/su17156766 - 25 Jul 2025
Viewed by 442
Abstract
Renovating existing buildings is a key strategy for achieving the EU’s climate targets, as over 75% of the current building stock is energy inefficient. This study evaluates the environmental impacts of three façade renovation scenarios for an office building at the Technical University [...] Read more.
Renovating existing buildings is a key strategy for achieving the EU’s climate targets, as over 75% of the current building stock is energy inefficient. This study evaluates the environmental impacts of three façade renovation scenarios for an office building at the Technical University in Zvolen (Slovakia) using a life cycle assessment (LCA) approach. The aim is to quantify and compare these impacts based on material selection and its influence on sustainable construction. The analysis focuses on key environmental indicators, including global warming potential (GWP), abiotic depletion (ADE, ADF), ozone depletion (ODP), toxicity, acidification (AP), eutrophication potential (EP), and primary energy use (PERT, PENRT). The scenarios vary in the use of insulation materials (glass wool, wood fibre, mineral wool), façade finishes (cladding vs. render), and window types (aluminium vs. wood–aluminium). Uncertainty analysis identified GWP, AP, and ODP as robust decision-making categories, while toxicity-related results showed lower reliability. To support integrated and transparent comparison, a composite environmental index (CEI) was developed, aggregating characterisation, normalisation, and mass-based results into a single score. Scenario C–2, featuring an ETICS system with mineral wool insulation and wood–aluminium windows, achieved the lowest environmental impact across all categories. In contrast, scenarios with traditional cladding and aluminium windows showed significantly higher impacts, particularly in fossil fuel use and ecotoxicity. The findings underscore the decisive role of material selection in sustainable renovation and the need for a multi-criteria, context-sensitive approach aligned with architectural, functional, and regional priorities. Full article
Show Figures

Figure 1

12 pages, 1540 KiB  
Article
Consumables Usage and Carbon Dioxide Emissions in Logging Operations
by Dariusz Pszenny and Tadeusz Moskalik
Forests 2025, 16(7), 1197; https://doi.org/10.3390/f16071197 - 20 Jul 2025
Viewed by 261
Abstract
In this study, we comprehensively analyzed material consumption (fuel, hydraulic oil, lubricants, and AdBlue fluid) and estimated carbon dioxide emissions during logging operations. This study was carried out in the northeastern part of Poland. Four harvesters and four forwarders representing two manufacturers (John [...] Read more.
In this study, we comprehensively analyzed material consumption (fuel, hydraulic oil, lubricants, and AdBlue fluid) and estimated carbon dioxide emissions during logging operations. This study was carried out in the northeastern part of Poland. Four harvesters and four forwarders representing two manufacturers (John Deere-Deere & Co., Moline, USA, and Komatsu Forest AB, Umeå, Sweden) were analyzed to compare their operational efficiency and constructional influences on overall operating costs. Due to differences in engine emission standards, approximate greenhouse gas emissions were estimated. The results indicate that harvesters equipped with Stage V engines have lower fuel consumption, while large forwarders use more consumables than small ones per hour and cubic meter of harvested and extracted timber. A strong positive correlation was observed between total machine time and fuel consumption (r = 0.81), as well as between machine time and total volume of timber harvested (r = 0.72). Older and larger machines showed about 40% higher combustion per unit of wood processed. Newer machines meeting higher emission standards (Stage V) generally achieved lower CO2 and other GHG emissions compared to older models. Machines with Stage V engines emitted about 2.07 kg CO2 per processing of 1 m3 of wood, while machines with older engine types emitted as much as 4.35 kg CO2 per 1 m3—roughly half as much. These differences are even more pronounced in the context of nitrogen oxide (NOx) emissions: the estimated NOx emissions for the older engine types were as high as ~85 g per m3, while those for Stage V engines were only about 5 g per m3 of harvested wood. Continuing the study would need to expand the number of machines analyzed, as well as acquire more detailed performance data on individual operators. A tool that could make this possible would be fleet monitoring services offered by the manufacturers of the surveyed harvesters and forwards, such as Smart Forestry or Timber Manager. Full article
(This article belongs to the Section Forest Operations and Engineering)
Show Figures

Figure 1

21 pages, 3359 KiB  
Article
Carbonisation of Quercus spp. Wood: Temperature, Yield and Energy Characteristics
by Juan Carlos Contreras-Trejo, Artemio Carrillo-Parra, Maginot Ngangyo-Heya, José Guadalupe Rutiaga-Quiñones, Jorge Armando Chávez-Simental and José Rodolfo Goche-Télles
Processes 2025, 13(7), 2302; https://doi.org/10.3390/pr13072302 - 19 Jul 2025
Viewed by 423
Abstract
Energy production is a global concern, encouraging the search for sustainable alternatives such as charcoal, a promising solid biofuel. This study evaluated the effects of temperature and carbonisation time on charcoal produced from Quercus wood. Carbonisation was carried out at 550 °C for [...] Read more.
Energy production is a global concern, encouraging the search for sustainable alternatives such as charcoal, a promising solid biofuel. This study evaluated the effects of temperature and carbonisation time on charcoal produced from Quercus wood. Carbonisation was carried out at 550 °C for 30 min, 700 °C for 30 min and under two progressive heating profiles: one starting at 550 °C for 30 min and increasing to 700 °C for a further 30 min, and another starting at 300 °C for 2 h and rising to 1000 °C for 10 min. Mass and volumetric yield, bulk density, proximate analysis, calorific value, energy yield and fuel ratio were determined. The results showed that carbonisation temperature affected charcoal properties. Mass and volumetric yields were highest at 550 °C (30.10% and 4.81 m3 t−1) in Q. convallata and Q. urbanii. At higher temperatures, bulk density (0.56 g cm−3), fixed carbon (91.51%) and calorific value (32.82 MJ kg−1) increased in Q. urbanii. Lower temperatures led to lower moisture levels (2.46%) and a higher energy yield (48.02%). Overall, temperatures above 700 °C improved energy properties, while those below 550 °C favoured higher yields. Species’ characteristics also influenced charcoal quality. These findings offer valuable insights into optimising the carbonisation of Quercus species and supporting the development of more efficient, sustainable charcoal production methods. Full article
(This article belongs to the Special Issue Research on Conversion and Utilization of Waste Biomass)
Show Figures

Figure 1

18 pages, 522 KiB  
Article
Rural Entrepreneurs and Forest Futures: Pathways to Emission Reduction and Sustainable Energy
by Ephraim Daka
Sustainability 2025, 17(14), 6526; https://doi.org/10.3390/su17146526 - 16 Jul 2025
Viewed by 257
Abstract
Rural areas around the world are increasingly dealing with energy and environmental challenges. These challenges are particularly acute in developing countries, where persistent reliance on traditional energy sources—such as wood fuel—intersects with concerns about forest conservation and energy sustainability. While wood fuel use [...] Read more.
Rural areas around the world are increasingly dealing with energy and environmental challenges. These challenges are particularly acute in developing countries, where persistent reliance on traditional energy sources—such as wood fuel—intersects with concerns about forest conservation and energy sustainability. While wood fuel use is often portrayed as unsustainable, it is important to acknowledge that much of it remains ecologically viable and socially embedded. This study explores the role of rural entrepreneurs in shaping low-carbon transitions at the intersection of household energy practices and environmental stewardship. Fieldwork was carried out in four rural Zambian communities in 2016 and complemented by 2024 follow-up reports. It examines the connections between household energy choices, greenhouse gas emissions, and forest resource dynamics. Findings reveal that over 60% of rural households rely on charcoal for cooking, with associated emissions estimated between 80 and 150 kg CO2 per household per month. Although this is significantly lower than the average per capita carbon footprint in industrialized countries, such emissions are primarily biogenic in nature. While rural communities contribute minimally to global climate change, their practices have significant local environmental consequences. This study draws attention to the structural constraints as well as emerging opportunities within Zambia’s rural energy economy. It positions rural entrepreneurs not merely as policy recipients but as active agents of innovation, environmental monitoring, and participatory resource governance. A model is proposed to support sustainable rural energy transitions by aligning forest management with context-sensitive emissions strategies. Full article
Show Figures

Figure 1

20 pages, 2421 KiB  
Article
Selective Microwave Pretreatment of Biomass Mixtures for Sustainable Energy Production
by Raimonds Valdmanis and Maija Zake
Energies 2025, 18(14), 3677; https://doi.org/10.3390/en18143677 - 11 Jul 2025
Viewed by 221
Abstract
Methods for the improvement of regional lignocellulosic resources (wood and agriculture waste) were studied and analyzed using blends with optimized compositions and a selective pretreatment of the blends using microwaves to enhance their thermochemical conversion and energy production efficiency. A batch-size pilot device [...] Read more.
Methods for the improvement of regional lignocellulosic resources (wood and agriculture waste) were studied and analyzed using blends with optimized compositions and a selective pretreatment of the blends using microwaves to enhance their thermochemical conversion and energy production efficiency. A batch-size pilot device was used to provide the thermochemical conversion of biomass blends of different compositions, analyzing the synergy of the effects of thermal and chemical interaction between the components on the yield and thermochemical conversion of volatiles, responsible for producing heat energy at various stages of flame formation. To control the thermal decomposition of the biomass, improving the flame characteristics and the produced heat, a selective pretreatment of blends using microwaves (2.45 GHz) was achieved by varying the temperature of microwave pretreatment. Assessing correlations between changes in the main characteristics of pretreated blends (elemental composition and heating value) on the produced heat and composition of products suggests that selective MW pretreatment of biomass blends activates synergistic effects of thermal and chemical interaction, enhancing the yield and combustion of volatiles with a correlating increase in produced heat energy, thus promoting the wider use of renewable biomass resources for sustainable energy production by limiting the use of fossil fuels for heat-energy production and the formation of GHG emissions. Full article
(This article belongs to the Special Issue Wood-Based Bioenergy: 2nd Edition)
Show Figures

Figure 1

21 pages, 2754 KiB  
Article
Repurposing Torrefied Biomass as a Novel Feedstock for Microbial Bioprocessing—A Proof-of-Concept of Low-Cost Biosurfactant Production
by Anjana Hari, Vahur Rooni, Udayakumar Veerabagu, Shiplu Sarker, Alar Konist and Timo Kikas
Polymers 2025, 17(13), 1808; https://doi.org/10.3390/polym17131808 - 29 Jun 2025
Viewed by 401
Abstract
Torrefaction is a thermochemical pretreatment in which biomass is heated at 200–300 °C for 30–60 min in an inert atmosphere. Torrefaction has been previously used to improve the fuel properties of lignocellulosic biomass; however, the use of torrefaction for bioenergy generation represents a [...] Read more.
Torrefaction is a thermochemical pretreatment in which biomass is heated at 200–300 °C for 30–60 min in an inert atmosphere. Torrefaction has been previously used to improve the fuel properties of lignocellulosic biomass; however, the use of torrefaction for bioenergy generation represents a low-value final product as well as the dead end of the biomass value chain. Herein, we demonstrate the proof-of-concept for the utilisation of torrefaction as a pretreatment to convert low-value wood waste into biosurfactants, a high-value specialty biochemical. Wood waste was torrefied at 225 °C, 250 °C, 275 °C, and 300 °C and physicochemically characterised using proximate and ultimate analyses, FTIR, XRD, TGA–DTG, and SEM–EDX to assess its suitability as fermentation feedstock. Aspen waste torrefied at temperatures less than 250 °C was directly utilised by Burkholderia thailandensis DSM 13276 via semi-solid-state fermentation to yield biosurfactants, and 225 °C was selected for further experiments as it resulted in the production of biosurfactants which reduced the surface tension of the production medium to 36.8 mN/m and had an emulsification index of 64.1%. Tension and emulsification activities decreased with the increase in torrefaction temperature. The biosurfactant derived from torrefaction at 225 °C formed highly stable emulsions with diesel oil (lasting >40 days), in addition to low interfacial tension, suggesting potential applications in diesel bioremediation. This integrated, chemical-free strategy offers an alternative application for torrefied wood waste as well as a feasible solution for the cost-effective chemical-free production of biosurfactants, incorporating circular economy principles. Full article
Show Figures

Graphical abstract

16 pages, 3075 KiB  
Article
Softwood-Based Biochar in the Design of Cement-Blended Binders with Advanced Properties
by Jaroslav Pokorný, Radek Ševčík, Lucie Zárybnická, Jiří Šál and Luboš Podolka
Buildings 2025, 15(11), 1949; https://doi.org/10.3390/buildings15111949 - 4 Jun 2025
Viewed by 405
Abstract
Biomass residues from the agricultural industry, logging and wood processing activities have become a valuable fuel source. If processed under pyrolysis combustion, several products are generated. Bio-oil and gases are essential alternatives to fossil coal-based fuels for energy and electricity production, whose need [...] Read more.
Biomass residues from the agricultural industry, logging and wood processing activities have become a valuable fuel source. If processed under pyrolysis combustion, several products are generated. Bio-oil and gases are essential alternatives to fossil coal-based fuels for energy and electricity production, whose need is constantly growing. Biochar, the porous carbon-based lightweight product, often ends up as a soil fertilizer. However, it can be applied in other industrial sectors, e.g., in plastics production or in modifying cementitious materials intended for construction needs. This work dealt with the application of small amounts of softwood-based biochar up to 2.0 wt.% on hydration kinetics and a wide range of physical and mechanical properties, such as water transport characteristics and flexural and compressive strengths of modified cement pastes. In the comparison with reference specimens, the biochar incorporation into cement pastes brought benefits like the reduction of open porosity, improvement of strength properties, and decreased capillary water absorption of 7-day and 28-day-cured cement pastes. Moreover, biochar-dosed cement pastes showed an increase in heat evolution during the hydration process, accompanied by higher consumption of clinker minerals. Considering all examined characteristics, the optimal dosage of softwood-derived biochar of 1.0 wt.% of Portland cement can be recommended. Full article
Show Figures

Figure 1

33 pages, 2600 KiB  
Review
Sawdust as a Byproduct of Wood Processing: Properties, Applications and a Reinforcing Filler in Hybrid Polymer Composites
by Tlholohelo Sylvia Sikhosana, Ntsoaki Joyce Malebo, Tladi Gideon Mofokeng, Mpho Phillip Motloung and Mokgaotsa Jonas Mochane
Polymers 2025, 17(11), 1523; https://doi.org/10.3390/polym17111523 - 29 May 2025
Viewed by 724
Abstract
There is a sizeable amount of sawdust produced from wood industries such as timber and furniture. In the past, sawdust has been utilized as a fuel source and in the manufacturing of furniture. Based on the limited use of sawdust, there is plenty [...] Read more.
There is a sizeable amount of sawdust produced from wood industries such as timber and furniture. In the past, sawdust has been utilized as a fuel source and in the manufacturing of furniture. Based on the limited use of sawdust, there is plenty of sawdust accessible from the industries. Sawdust is the material of choice due to its cost effectiveness, environmental friendliness, and biodegradability. However, if sawdust is not appropriately disposed or utilized better, it may have negative impact on the aquatic life and organic products. Hence, this review paper discusses the best possible methods or proper routes for the utilization of sawdust to benefit the environment, society, and the economy at large. Sawdust possesses superior capabilities as a reinforcing filler in various polymer matrices for advanced applications. This paper provides an in-depth discussion on sawdust hybrid composites in comparison to other natural fibres hybrid composites. The applications of various sawdust hybrid polymer composites for specific systems are also mentioned. Furthermore, the morphology and preparation of the sawdust/polymer composites and/or sawdust hybrid polymers composites are also discussed since it is well known that the properties of the natural fibre composites are affected by the preparation method and the resultant morphology. Based on the above, the current paper also plays a critical role in providing more information about waste to value added products. Full article
Show Figures

Figure 1

27 pages, 4289 KiB  
Article
Unveiling Light-Absorbing Carbonaceous Aerosols at a Regional Background Site in Southern Balkans
by Martha Seraskeri, Nestor Kontos, Miltiades I. Michalopoulos, Paraskevi Kardolama, Marina V. Karava, Iliana E. Tasiopoulou, Stylianos K. Garas, Rafaella-Eleni P. Sotiropoulou, Dimitris G. Kaskaoutis and Efthimios Tagaris
Atmosphere 2025, 16(6), 644; https://doi.org/10.3390/atmos16060644 - 26 May 2025
Viewed by 452
Abstract
This study examines the seasonality of Black Carbon (BC) and Brown Carbon (BrC) spectral absorption characteristics at a continental background site (Kozani) in southern Balkans (NW Greece). It aims to assess the seasonality and impact of different sources on light absorption properties, BC [...] Read more.
This study examines the seasonality of Black Carbon (BC) and Brown Carbon (BrC) spectral absorption characteristics at a continental background site (Kozani) in southern Balkans (NW Greece). It aims to assess the seasonality and impact of different sources on light absorption properties, BC concentrations, and the fraction of BrC absorption. Moderate-to-low BC concentrations were observed, ranging from 0.05 µg m−3 to 2.44 µg m−3 on an hourly basis (annual mean: 0.44 ± 0.27 µg m−3; median: 0.39 µg m−3) with higher levels during winter (0.53 ± 0.33), reflecting enhanced emissions from residential wood burning (RWB) for heating purposes. Atmospheric conditions are mostly clean during spring (MAM) (BC: 0.34 µg m−3), associated with increased rainfall. BC components associated with fossil fuel combustion (BCff) and biomass burning (BCbb), maximize in summer (0.36 µg m−3) and winter (0.28 µg m−3), respectively, while the absorption Ångstrôm exponent (AAE370–880) values ranged from 1.09 to 1.93 on daily basis. The annual mean total absorption coefficient (babs,520) inferred by aethalometer (AE33) was 4.09 ± 2.65 Mm−1 (median: 3.51 Mm−1), peaking in winter (5.30 ± 3.35 Mm−1). Furthermore, the contribution of BrC absorption at 370 nm, was also high in winter (36.7%), and lower during the rest of the year (17.3–29.8%). The measuring station is located at a rural background site 4 km outside Kozani City and is not directly affected by traffic and urban heating emissions. Therefore, the regional background atmosphere is composed of a significant fraction of carbonaceous aerosols from RWB in nearby villages, a characteristic feature of the Balkan’s rural environment. Emissions from the lignin-fired power plants, still operating in the region, have decreased during the last years and moderately affect the atmospheric conditions. Full article
Show Figures

Figure 1

26 pages, 3067 KiB  
Article
Mechanical Properties, Physical Properties and VOC Emissions of Three-Layer Particleboards with Recycled Automotive Plastics in the Core Layer
by Anna Darabošová, Tatiana Bubeníková, Iveta Čabalová, Miroslav Badida, Çağrı Olgun, Önder Tor and Mustafa Öncel
Polymers 2025, 17(11), 1438; https://doi.org/10.3390/polym17111438 - 22 May 2025
Viewed by 562
Abstract
The growing volume of plastic waste from end-of-life vehicles presents environmental concerns, driving efforts to integrate recycled plastics. This study investigates the possibility of using recycled plastic from automotive parts (painted and unpainted bumpers, fuel tanks) as a 10% filler in the core [...] Read more.
The growing volume of plastic waste from end-of-life vehicles presents environmental concerns, driving efforts to integrate recycled plastics. This study investigates the possibility of using recycled plastic from automotive parts (painted and unpainted bumpers, fuel tanks) as a 10% filler in the core layer of three-layer particleboards (P) and evaluates its impact on physical properties (water absorption—WA and thickness swelling—TS), mechanical properties (internal bonding strength—IB, modulus of rupture—MOR, modulus of elasticity—MOE and screw driving torque—SDT) and volatile organic compounds—VOC emissions. The boards were produced using conventional hot-pressing technology and analyzed according to applicable standards. Based on the results, the density of the reference (P) was 0.72 g·cm−3, while wood–plastic composites ranged from 0.70 g·cm−3 to 0.72 g·cm−3. After 24 h, WA reached 40% for reference (P) and from 36.9% (for (P) containing unpainted bumpers) to 41.9% (for (P) containing fuel tanks). TS reached 18% for (P) and from 16.8% (for (P) containing unpainted bumpers and fuel tanks) to 18.1% (for (P) containing painted bumpers). Plastic is a hydrophobic material and it is assumed that by increasing the proportion of plastic filler in the particleboards, the WA and TS of prepared boards will decrease. From the point of view of mechanical properties, values for (P) containing plastic filler were slightly lower compared to reference (P). The lowest value of IB (0.39 MPa) were reached for (P) containing painted bumpers. Plastic surface treatment could interfere with adhesion between the plastic and adhesive, weakening the bond in the core layer. For this reason, is preferable to use unpainted fillers, which provide better adhesive properties and higher structural integrity. VOC emissions from wood components consisted primarily of monoterpenes such as α-pinene, 3-carene and limonene. Adding 10% plastic to the particleboard did not increase overall VOC emissions. On the other hand, combining wood and plastic particles resulted in a reduction in overall VOC emissions. The findings confirm that recycled automotive plastics can be effectively incorporated into particleboards, maintaining standard performance while reducing reliance on virgin wood materials, making them a viable and sustainable alternative for furniture and interior applications. Full article
(This article belongs to the Special Issue Life Cycle and Utilization of Lignocellulosic Materials)
Show Figures

Figure 1

29 pages, 5625 KiB  
Article
Lower-Carbon Substitutes for Natural Gas for Use in Energy-Intensive Industries: Current Status and Techno-Economic Assessment in Lithuania
by Aurimas Lisauskas, Nerijus Striūgas and Adolfas Jančauskas
Energies 2025, 18(11), 2670; https://doi.org/10.3390/en18112670 - 22 May 2025
Cited by 2 | Viewed by 704
Abstract
Significant shortfalls in meeting the climate mitigation targets and volatile energy markets make evident the need for an urgent transition from fossil fuels to sustainable alternatives. However, the integration of zero-carbon fuels like green hydrogen and ammonia is an immense project and will [...] Read more.
Significant shortfalls in meeting the climate mitigation targets and volatile energy markets make evident the need for an urgent transition from fossil fuels to sustainable alternatives. However, the integration of zero-carbon fuels like green hydrogen and ammonia is an immense project and will take time and the construction of new infrastructure. It is during this transitional period that lower-carbon natural gas alternatives are essential. In this study, the industrial sectors of Lithuania are analysed based on their energy consumption. The industrial sectors that are the most energy-intensive are food, chemical, and wood-product manufacturing. Synthetic natural gas (SNG) has become a viable substitute, and biomethane has also become viable given a feedstock price of 21 EUR/MWh in the twelfth year of operation and 24 EUR/MWh in the eighth year, assuming an electricity price of 140 EUR/MWh and a natural gas price of 50 EUR/MWh. Nevertheless, the scale of investment in hydrogen production is comparable to the scale of investment in the production of other chemical elements; however, hydrogen production is constrained by its high electricity demand—about 3.8 to 4.4 kWh/Nm3—which makes it economically viable only at negative electricity prices. This analysis shows the techno-economic viability of biomethane and the SNG as transition pathways towards a low-carbon energy future. Full article
Show Figures

Graphical abstract

11 pages, 714 KiB  
Article
Chemical and Energetic Evaluation of Densified Biomass of Quercus laurina and Quercus rugosa for Bioenergy Production
by María Elena Jiménez-Mendoza, Faustino Ruiz-Aquino, José Guadalupe Rutiaga-Quiñones, Rossy Feria-Reyes, Wenceslao Santiago-García, Mario Ernesto Suárez-Mota, Ramiro Puc-Kauil and Rosalío Gabriel-Parra
Forests 2025, 16(5), 856; https://doi.org/10.3390/f16050856 - 20 May 2025
Viewed by 1120
Abstract
Fuels obtained from woody forest resources such as oaks have been traditionally used in various regions due to their availability and energy properties. In the search for sustainable bioenergy sources and the transition towards cleaner alternatives, biomass-derived fuels, such as charcoal and pellets, [...] Read more.
Fuels obtained from woody forest resources such as oaks have been traditionally used in various regions due to their availability and energy properties. In the search for sustainable bioenergy sources and the transition towards cleaner alternatives, biomass-derived fuels, such as charcoal and pellets, represent a relevant option for rural and urban communities. This study determines the chemical composition, physical and mechanical properties, and energy quality of pellets from two oak species (Quercus laurina and Q. rugosa) in San Sebastián Coatlán, Miahuatlán, Oaxaca. The chemical composition was determined in an Ankom fiber analyzer; the energetic, physical, and mechanical analysis was carried out with UNE-EN ISO and ASTM standards. On average, 56.18% and 54.63% cellulose, 17.81% and 17.87% lignin, and 13.96% and 13.78% hemicelluloses were obtained for Quercus laurina and Q. rugosa, respectively. Mechanical durability ranged from 87% to 95% for Q. laurina stump and Q. rugosa stem, respectively; for calorific value, values from 19.79 MJ Kg−1 to 20.31 MJ Kg−1 were recorded for Q. laurina stem and Q. rugosa stump, respectively. The forest biomass of both oak species is viable for pellet production. Full article
(This article belongs to the Special Issue Forest-Based Biomass for Bioenergy)
Show Figures

Figure 1

Back to TopTop