Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (79)

Search Parameters:
Keywords = withaferin A

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1350 KiB  
Review
Emerging Therapeutic Strategies Targeting GPX4-Mediated Ferroptosis in Head and Neck Cancer
by Jaewang Lee, Youngin Seo and Jong-Lyel Roh
Int. J. Mol. Sci. 2025, 26(13), 6452; https://doi.org/10.3390/ijms26136452 - 4 Jul 2025
Viewed by 625
Abstract
Ferroptosis, a regulated form of iron-dependent lipid peroxidation-induced cell death, has emerged as a compelling therapeutic strategy to overcome treatment resistance in head and neck cancer (HNC). Glutathione peroxidase 4 (GPX4), a selenoenzyme responsible for detoxifying phospholipid hydroperoxides, plays a central role in [...] Read more.
Ferroptosis, a regulated form of iron-dependent lipid peroxidation-induced cell death, has emerged as a compelling therapeutic strategy to overcome treatment resistance in head and neck cancer (HNC). Glutathione peroxidase 4 (GPX4), a selenoenzyme responsible for detoxifying phospholipid hydroperoxides, plays a central role in blocking ferroptosis and is frequently upregulated in therapy-resistant HNC subtypes. In this review, we examine the multifaceted regulation of GPX4 expression and function, including transcriptional, post-transcriptional, epigenetic, and proteostatic mechanisms. We explore how GPX4 suppression through pharmacologic inhibitors (e.g., RSL3, withaferin A, statins), metabolic stress, or combined therapies (e.g., radiotherapy, EGFR inhibitors, immunotherapy) induces ferroptosis and resensitizes resistant tumors. We also summarize emerging biomarkers, including GPX4, ACSL4, SLC7A11, and NCOA4, that predict ferroptosis sensitivity and may guide patient selection for ferroptosis-targeted therapies. Single-cell and spatial transcriptomics reveal significant intratumoral heterogeneity in ferroptosis susceptibility, underscoring the need for precision approaches. Despite promising preclinical data, challenges such as drug delivery, toxicity, and resistance mechanisms remain. Nevertheless, the ferroptosis-GPX4 axis represents a unique vulnerability in HNC that can be therapeutically exploited. Integrating ferroptosis modulation into personalized oncology may transform outcomes for patients with refractory disease. Full article
(This article belongs to the Special Issue Pathogenesis and Treatments of Head and Neck Cancer)
Show Figures

Figure 1

50 pages, 4091 KiB  
Review
Targeting Prostate Cancer Metabolism Through Transcriptional and Epigenetic Modulation: A Multi-Target Approach to Therapeutic Innovation
by Pedro Juan Espitia-Pérez, Lyda Marcela Espitia-Perez and Mario Negrette-Guzmán
Int. J. Mol. Sci. 2025, 26(13), 6013; https://doi.org/10.3390/ijms26136013 - 23 Jun 2025
Viewed by 843
Abstract
Prostate cancer (PCa) therapy faces challenges due to tumor heterogeneity, plasticity, and progression. Metabolic reprogramming, a dynamic process, has emerged as a key focus in PCa treatment. However, conventional therapies targeting cancer-specific metabolic pathways or employing chemosensitizers are often limited by compensatory mechanisms [...] Read more.
Prostate cancer (PCa) therapy faces challenges due to tumor heterogeneity, plasticity, and progression. Metabolic reprogramming, a dynamic process, has emerged as a key focus in PCa treatment. However, conventional therapies targeting cancer-specific metabolic pathways or employing chemosensitizers are often limited by compensatory mechanisms and metabolic complexity. This review highlights the roles of transcription factors, including AR, p53, c-Myc, HIF-1, Nrf2, and PPARγ, in regulating PCa metabolism by influencing signaling pathways, enzymes, and gene expression. Multi-target compounds, particularly natural products, show potential for disrupting multiple metabolic enzymes, opening up new research possibilities. Notable examples include β-elemene, juglone, tannic acid, and withaferin A, which target critical metabolic processes through enzyme inhibition, transcription factor modulation, epigenetic changes, and protein interaction disruption. Naturally derived metabolites can elicit transversal responses in diverse metabolic pathways, particularly in p53 and MYC transcription factors. Additionally, compounds such as pentacyclic terpenoids (ursolic acid with ursane skeleton), sulforaphane, and isothiocyanate-related moieties may induce metabolic and epigenetic changes through S-adenosyl methionine (SAM) and acetyl-CoA modulation, potentially affecting new areas of research through metabolic processes. We propose a cooperative crosstalk between metabolic reprogramming and transcription factors/epigenetic modulation in PCa. This approach holds potential for expanding PCa therapeutics and opening new avenues for research. Full article
Show Figures

Figure 1

22 pages, 1582 KiB  
Review
Preclinical Evidence of Withania somnifera and Cordyceps spp.: Neuroprotective Properties for the Management of Alzheimer’s Disease
by Gabriele Tancreda, Silvia Ravera and Isabella Panfoli
Int. J. Mol. Sci. 2025, 26(11), 5403; https://doi.org/10.3390/ijms26115403 - 4 Jun 2025
Viewed by 910
Abstract
Alzheimer’s disease (AD) is considered one of the main pathologies of our time, whose incidence and prevalence are suggested to be strongly underestimated. AD presents as a complex neurodegenerative condition characterized by marked neuroinflammation and a significant decline in the cognitive and mnemonic [...] Read more.
Alzheimer’s disease (AD) is considered one of the main pathologies of our time, whose incidence and prevalence are suggested to be strongly underestimated. AD presents as a complex neurodegenerative condition characterized by marked neuroinflammation and a significant decline in the cognitive and mnemonic functions of affected patients. Recognized AD pathological hallmarks include amyloid beta plaque and neurofibrillary tangle formation, synaptic dysfunction with considerable apoptosis of cholinergic and dopaminergic neurons, and high levels of oxidative stress and neuroinflammation. The available pharmacological treatments are represented by acetylcholinesterase inhibitors to treat the mild to moderate form of the disease and N-methyl-D-aspartate inhibitors alone or in combination with the previously cited ones in the late stage of the neurodegenerative condition. Furthermore, emerging drug therapies such as monoclonal antibodies are promising agents in AD management. Although scientific evidence highlights these chemicals as effective in slowing down disease progression, significant limitations behind their employment derive from the notable dose-dependent side effects and the single-target mechanism of action. In this context, two well-studied phytotherapeutics, W. somnifera (W. somnifera) and fungi belonging to the genus Cordyceps, have gained attention for their chemical composition regarding their neuroprotective and anti-inflammatory effects. Ashwagandha (obtained principally from the roots of W. somnifera) is an adaptogen that relieves stress and anxiety. It contains several ergostane-type steroidal lactones—such as withanolides and withaferin A—and various alkaloids, contributing to its antioxidant and neuroprotective effects. Likewise, cordycepin is the main bioactive principle found in Cordyceps fungi. This natural nucleoside has been reported to possess therapeutic potential as an anti-cancer, immunomodulatory, and anti-inflammatory agent, with some studies suggesting a beneficial role in AD treatment. The purpose of the present review is to investigate the pharmacological properties of W. somnifera and Cordyceps species in the context of AD treatment and explore the therapeutic potential of the constitutive bioactive molecules in preclinical models mimicking this neurodegenerative condition. Full article
Show Figures

Graphical abstract

21 pages, 1523 KiB  
Article
Anticancer Effects of Withanolides: In Silico Prediction of Pharmacological Properties
by Gustavo Werneck de Souza e Silva, André Mesquita Marques and André Luiz Franco Sampaio
Molecules 2025, 30(11), 2457; https://doi.org/10.3390/molecules30112457 - 4 Jun 2025
Viewed by 733
Abstract
Withanolides are a class of naturally occurring C-28 ergostane steroidal lactones with an abundance of biological activities, and their members are promising candidates for antineoplastic drug development. The ADMET properties of withanolides are still largely unknown, and in silico predictions can play a [...] Read more.
Withanolides are a class of naturally occurring C-28 ergostane steroidal lactones with an abundance of biological activities, and their members are promising candidates for antineoplastic drug development. The ADMET properties of withanolides are still largely unknown, and in silico predictions can play a crucial role highlighting these characteristics for drug development, shortening time and resources spent on the development of a drug lead. In this work, ADMET properties of promising antitumoral withanolides were assessed. Each chemical structure was submitted to the prediction tools: SwissADME, pkCSM–pharmacokinetics, admetSAR v2.0, and Molinspiration Cheminformatics. The results indicate a good gastrointestinal absorption rate, inability to cross the blood–brain barrier, CYP3A4 metabolization, without inhibition of other P450 cytochromes, high interaction with nuclear receptors, and a low toxicity. It was also predicted for the inhibition of pharmacokinetics transporters and some ecotoxicity. This demonstrates a viability for oral drug development, with low probabilities of side effects. Full article
(This article belongs to the Special Issue Natural Products with Pharmaceutical Activities)
Show Figures

Figure 1

17 pages, 3241 KiB  
Article
Withaferin A Rescues Brain Network Dysfunction and Cognitive Deficits in a Mouse Model of Alzheimer’s Disease
by Linhan Yang, Yang Zou, Jihua Fan, Pu Yin, Han Qin, Zhen Li, Fengjuan Wu, Xingyi Li, Huaijin Teng, Yun Zhang, Xiaowei Chen and Sunny C. Li
Pharmaceuticals 2025, 18(6), 816; https://doi.org/10.3390/ph18060816 - 29 May 2025
Viewed by 714
Abstract
Background: Alzheimer’s disease (AD) is the most common dementia, characterized by significant cognitive impairments and neural network dysfunction. Currently, multiple therapeutic strategies are being developed to design effective anti-AD drugs. Among them, Withaferin A (WA), a natural steroidal lactone extracted from Withania somnifera [...] Read more.
Background: Alzheimer’s disease (AD) is the most common dementia, characterized by significant cognitive impairments and neural network dysfunction. Currently, multiple therapeutic strategies are being developed to design effective anti-AD drugs. Among them, Withaferin A (WA), a natural steroidal lactone extracted from Withania somnifera leaves, has been shown to reduce amyloid-β (Aβ) peptide levels in vitro. However, its potential to improve cognitive function in AD remains unclear. Methods: In this study, 5xFAD mice were administered WA (2 mg/kg intraperitoneally every 2 days) for 14 days, and its neuroprotective effects were evaluated through behavioral tests, wide-field imaging, immunohistochemistry, and ELISA. Results: WA significantly improved short-term memory, as evidenced by enhanced performance in the Novel Object Recognition Test (NORT) (p < 0.001, n = 10), Novel Location Recognition Test (NLRT) (p < 0.01, n = 14), and Three-Chamber Social Test (TCST) (p < 0.001, n = 8). WA also ameliorated long-term memory deficits in the Morris Water Maze Test (MWMT) (p < 0.05, n = 7). Furthermore, cortical wide-field Ca2+ imaging revealed that WA treatment rescued slow-wave impairments by enhancing long-range coherence (0.8363 ± 0.0185, p < 0.01, n = 8) and reducing the frequency of slow-wave activity (0.6578 ± 0.0512 Hz, p < 0.01, n = 8). Additionally, WA treatment significantly reduced Aβ plaque deposition in both cortical and hippocampal regions. Conclusions: These findings suggest that WA may be a promising therapeutic agent for AD, exerting neuroprotective effects. Full article
Show Figures

Figure 1

18 pages, 804 KiB  
Review
Herbal Medicine in Breast Cancer Therapy: Mechanisms, Evidence, and Future Perspectives
by Hsien-Chang Wu, Chung-Che Tsai, Po-Chih Hsu and Chan-Yen Kuo
Curr. Issues Mol. Biol. 2025, 47(5), 362; https://doi.org/10.3390/cimb47050362 - 15 May 2025
Cited by 1 | Viewed by 1785
Abstract
Breast cancer remains a leading global cause of cancer-related mortality among women, requiring the development of safer and more effective therapeutic strategies. Herbal medicines have gained increasing attention as complementary approaches due to their multi-targeted actions, more limited toxicities, and the potential ability [...] Read more.
Breast cancer remains a leading global cause of cancer-related mortality among women, requiring the development of safer and more effective therapeutic strategies. Herbal medicines have gained increasing attention as complementary approaches due to their multi-targeted actions, more limited toxicities, and the potential ability to overcome resistance associated with conventional treatments. This review highlights the antitumor properties and underlying mechanisms of several well-studied herbal compounds, including curcumin, resveratrol, epigallocatechin gallate, withaferin A, thymoquinone, baicalin, berberine, Oldenlandia diffusa, and Salvia miltiorrhiza. These phytochemicals exert antitumor effects by inducing apoptosis, inhibiting cell proliferation and metastasis, modulating immune responses, and sensitizing tumor cells to chemotherapy and radiotherapy. Furthermore, many of these agents regulate key signaling pathways, such as nuclear factor kappa-light-chain-enhancer of activated B cells, phosphatidylinositol 3-kinase/AKT, p53, signal transducer and activator of transcription 3, and extracellular signal-regulated kinases 1/2, and the tumor microenvironment. Despite promising preclinical and early clinical evidence, challenges remain regarding the bioavailability, standardization, and large-scale clinical validation of these phytochemicals. This review underscores the therapeutic potential of herbal medicines in breast cancer treatment and advocates for further research to facilitate their integration into evidence-based oncology practice. Full article
(This article belongs to the Special Issue Natural Compounds: An Adjuvant Strategy in Cancer Management)
Show Figures

Figure 1

17 pages, 11168 KiB  
Article
pH-Responsive Gold Nanoparticle/PVP Nanoconjugate for Targeted Delivery and Enhanced Anticancer Activity of Withaferin A
by Velmurugan Sekar, Amutha Santhanam and Paulraj Arunkumar
Processes 2025, 13(5), 1290; https://doi.org/10.3390/pr13051290 - 23 Apr 2025
Cited by 1 | Viewed by 691
Abstract
The development of advanced high-capacity nanoparticle-based drug loading, precise targeting, low toxicity, and excellent biocompatibility is critical for improving cancer therapeutics. Withaferin A, a natural steroidal lactone derived from Physalis minima, exhibits potential biological activity and holds promise as a therapeutic agent. [...] Read more.
The development of advanced high-capacity nanoparticle-based drug loading, precise targeting, low toxicity, and excellent biocompatibility is critical for improving cancer therapeutics. Withaferin A, a natural steroidal lactone derived from Physalis minima, exhibits potential biological activity and holds promise as a therapeutic agent. In this study, a novel nanoconjugate (NC) was developed using gold nanoparticles (AuNPs) functionalized with polyvinylpyrrolidone (PVP), Withaferin A drug, and folic acid for targeted drug delivery in cancer treatment. The AuNPs–PVP–Withaferin A–FA nanoconjugate was synthesized through a layer-by-layer assembly process and was confirmed using UV–visible and FTIR spectroscopy. The hydrodynamic radius, surface charge, and morphology of the NC were characterized using dynamic light scattering (DLS), zeta potential analysis, and electron microscopy, respectively. The nanoformulation demonstrated a pH-responsive drug release, with 92% of Withaferin A released at pH 5, mimicking the tumor microenvironment. In vitro cytotoxicity studies conducted on MCF-7 cells using MTT assays, dual dye staining, and protein expression analysis revealed that the nanoconjugate effectively induced apoptosis in cancer cells. These outcomes emphasize the prospect AuNPs–PVP–Withaferin A–FA nanoconjugate as a targeted and efficient Withaferin A delivery system for cancer therapy, leveraging the inherent anticancer properties of Withaferin A. Full article
(This article belongs to the Special Issue Composite Materials Processing, Modeling and Simulation)
Show Figures

Figure 1

15 pages, 3018 KiB  
Article
Withaferin A Attenuates Muscle Cachexia Induced by Angiotensin II Through Regulating Pathways Activated by Angiotensin II
by Sham S. Kakar, Vasa Vemuri and Mariusz Z. Ratajczak
Cells 2025, 14(4), 244; https://doi.org/10.3390/cells14040244 - 8 Feb 2025
Viewed by 1091
Abstract
Cachexia is a multifactorial syndrome characterized by severe muscle wasting and is a debilitating condition frequently associated with cancer. Previous studies from our group revealed that withaferin A (WFA), a steroidal lactone, mitigated muscle cachexia induced by ovarian tumors in NSG mice. However, [...] Read more.
Cachexia is a multifactorial syndrome characterized by severe muscle wasting and is a debilitating condition frequently associated with cancer. Previous studies from our group revealed that withaferin A (WFA), a steroidal lactone, mitigated muscle cachexia induced by ovarian tumors in NSG mice. However, it remains unclear whether WFA’s protective effects are direct or secondary to its antitumor properties. We developed a cachectic model through continuous angiotensin II (Ang II) infusion in C57BL/6 mice to address this issue. Ang II infusion resulted in profound muscle atrophy, evidenced by significant reductions in grip strength and in the TA, GA, and GF muscle mass. Molecular analyses indicated elevated expression of inflammatory cytokines (TNFα, IL-6, MIP-2, IL-18, IL-1β), NLRP3 inflammasome, and genes associated with the UPS (MuRF1, MAFBx) and autophagy pathways (Bacl1, LC3B), along with suppression of anti-inflammatory heme oxygenase-1 (HO-1) and myogenic regulators (Pax7, Myod1). Strikingly, WFA treatment reversed these pathological changes, restoring muscle mass, strength, and molecular markers to near-normal levels. These findings demonstrate that WFA exerts direct anti-cachectic effects by targeting key inflammatory and atrophic pathways in skeletal muscle, highlighting its potential as a novel therapeutic agent for cachexia management. Full article
(This article belongs to the Section Cells of the Cardiovascular System)
Show Figures

Figure 1

19 pages, 4593 KiB  
Article
p21 Promoter Methylation Is Vital for the Anticancer Activity of Withaferin A
by Andrew Brane, Madeline Sutko and Trygve O. Tollefsbol
Int. J. Mol. Sci. 2025, 26(3), 1210; https://doi.org/10.3390/ijms26031210 - 30 Jan 2025
Viewed by 1077
Abstract
Breast cancer (BC) is a widespread malignancy that affects the lives of millions of women each year, and its resulting financial and healthcare hardships cannot be overstated. These issues, in combination with side effects and obstacles associated with the current standard of care, [...] Read more.
Breast cancer (BC) is a widespread malignancy that affects the lives of millions of women each year, and its resulting financial and healthcare hardships cannot be overstated. These issues, in combination with side effects and obstacles associated with the current standard of care, generate considerable interest in new potential targets for treatment as well as means for BC prevention. One potential preventive compound is Withaferin A (WFA), a traditional medicinal compound found in winter cherries. WFA has shown promise as an anticancer agent and is thought to act primarily through its effects on the epigenome, including, in particular, the methylome. However, the relative importance of specific genes’ methylation states to WFA function remains unclear. To address this, we utilized human BC cell lines in combination with CRISPR-dCas9 fused to DNA methylation modifiers (i.e., epigenetic editors) to elucidate the importance of specific genes’ promoter methylation states to WFA function and cancer cell viability. We found that targeted demethylation of promoters of the tumor suppressors p21 and p53 within MDA-MB-231/MCF7 cells resulted in around 1.7×/1.5× and 1.2×/1.3× increases in expression, respectively. Targeted methylation of the promoter of the oncogene CCND1 within MDA-MB-231/MCF7 cells resulted in 0.5×/0.8× decreases in gene expression. These changes to p21, p53, and CCND1 were also associated with decreases in cell viability of around 25%/50%, 5%/35%, and 12%/16%, respectively, for MDA-MB-231/MCF7 cells. When given in combination with WFA in both p53 mutant and wild type cells, we discovered that targeted methylation of the p21 promoter was able to modulate the anticancer effects of WFA, while targeted methylation or demethylation of the promoters of p53 and CCND1 had no significant effect on viability decreases from WFA treatment. Taken together, these results indicate that p21, p53, and CCND1 may be important targets for future in vivo studies that may lead to epigenetic editing therapies and that WFA may have utility in the prevention of BC through its effect on p21 promoter methylation independent of p53 function. Full article
Show Figures

Figure 1

19 pages, 3859 KiB  
Article
Molecular Characterization of Cancer Preventive and Therapeutic Potential of Three Antistress Compounds, Triethylene Glycol, Withanone, and Withaferin A
by Huayue Zhang, Hyonchol Kim, Tian Yuan, Zhenya Zhang, Sunil C. Kaul and Renu Wadhwa
Int. J. Mol. Sci. 2025, 26(2), 493; https://doi.org/10.3390/ijms26020493 - 9 Jan 2025
Cited by 2 | Viewed by 1210
Abstract
The molecular link between stress and carcinogenesis and the positive outcomes of stress intervention in cancer therapy have recently been well documented. Cancer stem cells (CSCs) facilitate cancer malignancy, drug resistance, and relapse and, hence, have emerged as a new therapeutic target. Here, [...] Read more.
The molecular link between stress and carcinogenesis and the positive outcomes of stress intervention in cancer therapy have recently been well documented. Cancer stem cells (CSCs) facilitate cancer malignancy, drug resistance, and relapse and, hence, have emerged as a new therapeutic target. Here, we aimed to investigate the effect of three previously described antistress compounds (triethylene glycol, TEG; Withanone, Wi-N, and Withaferin A, Wi-A) on the stemness and differentiation characteristics of cancer cells. Breast carcinoma, glioblastoma, and neuroblastoma cells were treated with a non-toxic concentration of TEG (0.1%), Wi-N (5 µM), and Wi-A (0.1 µM) in 2D and 3D cultures. The results demonstrated that TEG, Wi-N, and Wi-A suppressed the stemness properties, which was linked with their inhibition of epithelial–mesenchymal transition (EMT) signaling. In particular, Wi-N and TEG caused a stronger reduction in the self-renewal capability of CSCs than Wi-A, as evidenced by a tumor spheroid formation assay and analyses of stemness-related genes (ALDH1, CD44, NANOG, CD133, SOX2). Furthermore, TEG and Wi-N caused the differentiation of cancer cells. Each of these was supported by (i) the upregulation of KRT18, KRT19, E-cadherin, and downregulation of vimentin in breast carcinoma; (ii) increased levels of GFAP, MAP2, and PSD-95 in astrocytoma; and (iii) increased NeuN, GAP-43, and NF200 levels in neuroblastoma. Furthermore, a reduction in cancer progression-related proteins (PI3K, N-myc) was recorded in treated cells. Our results suggest that TEG and Wi-N may be recruited to target cancer cell stemness and differentiation therapy. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

18 pages, 3525 KiB  
Article
Molecular Insights into the Inhibition of Lipid Accumulation in Hepatocytes by Unique Extracts of Ashwagandha
by Dongyang Li, Hanlin Han, Yixin Sun, Huayue Zhang, Ren Yoshitomi, Sunil C. Kaul and Renu Wadhwa
Int. J. Mol. Sci. 2024, 25(22), 12256; https://doi.org/10.3390/ijms252212256 - 14 Nov 2024
Cited by 1 | Viewed by 1987
Abstract
We investigated the effect of purified withanolides and extracts derived from Ashwagandha on steatosis, the abnormal accumulation of fat that can lead to non-alcoholic fatty liver disease (NAFLD). Collaborator of ARF (CARF, also known as CDKN2AIP, a protein that regulates hepatic lipid metabolism, [...] Read more.
We investigated the effect of purified withanolides and extracts derived from Ashwagandha on steatosis, the abnormal accumulation of fat that can lead to non-alcoholic fatty liver disease (NAFLD). Collaborator of ARF (CARF, also known as CDKN2AIP, a protein that regulates hepatic lipid metabolism, fat buildup, and liver damage) was used as an indicator. Six withanolides (Withaferin A, Withanone, Withanolide B, Withanoside IV, Withanoside V, and Withanostraminolide-12 deoxy) reversed the decrease in CARF caused by exposure to free fatty acids (FFAs) in liver-derived cells (HepG2 hepatocytes). After analyzing the effects of these withanolides on CARF mRNA and protein levels, FFA accumulation, protein aggregation, and oxidative and DNA damage stresses, we selected Withaferin A and Withanone for molecular analyses. Using the palmitic-acid-induced fatty acid accumulation stress model in Huh7 cells, we found a significant reduction in the activity of the key regulators of lipogenesis pathways, including sterol regulatory element-binding protein-1c (SREBP-1c), fatty acid synthase (FASN), and peroxisome proliferator-activated receptors (PPARγ and PPARα). This in vitro study suggests that low, non-toxic doses of Withaferin A, Withanone, or Ashwagandha extracts containing these withanolides possess anti-steatosis and antioxidative-stress properties. Further in vivo and clinical studies are required to investigate the therapeutic potential of these Ashwagandha-derived bioactive ingredients for NAFLD. Full article
(This article belongs to the Special Issue Natural Bioactives and Inflammation, 2nd Edition)
Show Figures

Figure 1

30 pages, 1570 KiB  
Review
Quantifying Withanolides in Plasma: Pharmacokinetic Studies and Analytical Methods
by Alex B Speers, Axel Lozano-Ortiz and Amala Soumyanath
Nutrients 2024, 16(22), 3836; https://doi.org/10.3390/nu16223836 - 8 Nov 2024
Cited by 2 | Viewed by 3737
Abstract
Withania somnifera (common name: ashwagandha; WS) is an Ayurvedic botanical that has become popular for its reputed effects on stress and insomnia. Research into the bioactive compounds responsible for the biological effects of WS has largely focused on withanolides, a group of steroidal [...] Read more.
Withania somnifera (common name: ashwagandha; WS) is an Ayurvedic botanical that has become popular for its reputed effects on stress and insomnia. Research into the bioactive compounds responsible for the biological effects of WS has largely focused on withanolides, a group of steroidal lactones commonly found in the Solanaceae family. Until recently, however, it was unclear which, if any, withanolides were present in the plasma after the ingestion of WS products. The aim of this review is to summarize current knowledge regarding the plasma pharmacokinetics of withanolides found in WS and the analytical methods developed to detect them in plasma. Twenty studies (sixteen animal, four human) were identified in which isolated withanolides or withanolide-containing products were administered to animals or humans and quantified in plasma. Withanolides were commonly analyzed using reversed-phase liquid chromatography coupled to mass spectrometry. Plasma concentrations of withanolides varied significantly depending on the substance administered, withanolide dose, and route of administration. Plasma pharmacokinetics of withaferin A, withanolide A, withanolide B, withanoside IV, 12-deoxywithastramonolide, and withanone have been reported in rodents (Cmax range: 5.6–8410 ng/mL), while withaferin A, withanolide A, 12-deoxywithastramonolide, and withanoside IV pharmacokinetic parameters have been described in humans (Cmax range: 0.1–49.5 ng/mL). Full article
Show Figures

Graphical abstract

19 pages, 1005 KiB  
Review
Activation of Nrf2 and FXR via Natural Compounds in Liver Inflammatory Disease
by Marta Belka, Aleksandra Gostyńska-Stawna, Maciej Stawny and Violetta Krajka-Kuźniak
Int. J. Mol. Sci. 2024, 25(20), 11213; https://doi.org/10.3390/ijms252011213 - 18 Oct 2024
Cited by 13 | Viewed by 3235
Abstract
Liver inflammation is frequently linked to oxidative stress and dysregulation of bile acid and fatty acid metabolism. This review focuses on the farnesoid X receptor (FXR), a critical regulator of bile acid homeostasis, and its interaction with the nuclear factor erythroid 2-related factor [...] Read more.
Liver inflammation is frequently linked to oxidative stress and dysregulation of bile acid and fatty acid metabolism. This review focuses on the farnesoid X receptor (FXR), a critical regulator of bile acid homeostasis, and its interaction with the nuclear factor erythroid 2-related factor 2 (Nrf2), a key modulator of cellular defense against oxidative stress. The review explores the interplay between FXR and Nrf2 in liver inflammatory diseases, highlighting the potential therapeutic effects of natural FXR agonists. Specifically, compounds such as auraptene, cafestol, curcumin, fargesone A, hesperidin, lycopene, oleanolic acid, resveratrol, rutin, ursolic acid, and withaferin A are reviewed for their ability to modulate both the FXR and Nrf2 pathways. This article discusses their potential to alleviate liver inflammation, oxidative stress, and damage in diseases such as metabolic-associated fatty liver disease (MAFLD), cholestatic liver injury, and viral hepatitis. In addition, we address the molecular mechanisms driving liver inflammation, including oxidative stress, immune responses, and bile acid accumulation, while also summarizing relevant experimental models. This review emphasizes the promising therapeutic potential of targeting both the Nrf2 and FXR pathways using natural compounds, paving the way for future treatments for liver diseases. Finally, the limitations of the clinical application were indicated, and further research directions were proposed. Full article
Show Figures

Figure 1

19 pages, 3791 KiB  
Article
Synergistic Inhibition of Pancreatic Cancer Cell Growth and Migration by Gemcitabine and Withaferin A
by Renata Szydlak
Biomolecules 2024, 14(9), 1178; https://doi.org/10.3390/biom14091178 - 19 Sep 2024
Viewed by 1799
Abstract
Pancreatic cancer remains one of the most lethal malignancies due to its aggressive nature and resistance to conventional therapies. This study investigates the anti-proliferative, pro-apoptotic, and anti-migratory effects of Gemcitabine (GC) and Withaferin A (WFA) on pancreatic cancer cell lines PANC-1 and Hs766t. [...] Read more.
Pancreatic cancer remains one of the most lethal malignancies due to its aggressive nature and resistance to conventional therapies. This study investigates the anti-proliferative, pro-apoptotic, and anti-migratory effects of Gemcitabine (GC) and Withaferin A (WFA) on pancreatic cancer cell lines PANC-1 and Hs766t. The MTS assay revealed that both compounds effectively inhibit cell proliferation, with WFA showing a stronger effect in Hs766t cells. Flow cytometry analysis demonstrated that GC and WFA, particularly in combination, significantly induce apoptosis in both cell lines. Migration assays confirmed the potent inhibition of cell migration by both compounds, with the combination treatment being the most effective. Furthermore, actin cytoskeleton analysis indicated substantial changes in cell morphology and stiffness, suggesting that GC and WFA disrupt the structural integrity of cancer cells. Additionally, the study highlights a ROS-mediated mechanism underlying the effects of GC and WFA, as evidenced by increased ROS levels following treatment, which were attenuated by N-acetylcysteine. Importantly, NF-κB activity was significantly modulated, with WFA reducing NF-κB activation induced by GC, potentially contributing to the synergistic pro-apoptotic effect of the combination. These findings suggest that the combination of GC and WFA may offer a synergistic therapeutic approach for treating pancreatic cancer by targeting multiple aspects of tumor cell behavior. Full article
Show Figures

Figure 1

20 pages, 4232 KiB  
Article
Molecular Insights into the Anticancer Activity of Withaferin-A: The Inhibition of Survivin Signaling
by Renu Wadhwa, Jia Wang, Seyad Shefrin, Huayue Zhang, Durai Sundar and Sunil C. Kaul
Cancers 2024, 16(17), 3090; https://doi.org/10.3390/cancers16173090 - 5 Sep 2024
Cited by 3 | Viewed by 2536
Abstract
Survivin, a member of the IAP family, functions as a homodimer and inhibits caspases, the key enzymes involved in apoptosis. Several Survivin inhibitors, including YM-155, Debio1143, EM1421, LQZ-7I, and TL32711, have emerged as potential anticancer drugs awaiting validation in clinical trials. Due to [...] Read more.
Survivin, a member of the IAP family, functions as a homodimer and inhibits caspases, the key enzymes involved in apoptosis. Several Survivin inhibitors, including YM-155, Debio1143, EM1421, LQZ-7I, and TL32711, have emerged as potential anticancer drugs awaiting validation in clinical trials. Due to the high cost and adverse side effects of synthetic drugs, natural compounds with similar activity have also been in demand. In this study, we conducted molecular docking assays to evaluate the ability of Wi-A and Wi-N to block Survivin dimerization. We found that Wi-A, but not Wi-N, can bind to and prevent the homodimerization of Survivin, similar to YM-155. Therefore, we prepared a Wi-A-rich extract from Ashwagandha leaves (Wi-AREAL). Experimental analyses of human cervical carcinoma cells (HeLa and ME-180) treated with Wi-AREAL (0.05–0.1%) included assessments of viability, apoptosis, cell cycle, migration, invasion, and the expression levels (mRNA and protein) of molecular markers associated with these phenotypes. We found that Wi-AREAL led to growth arrest mediated by the upregulation of p21WAF1 and the downregulation of several proteins (CDK1, Cyclin B, pRb) involved in cell cycle progression. Furthermore, Wi-AREAL treatment activated apoptosis signaling, as evidenced by reduced PARP-1 and Bcl-2 levels, increased procaspase-3, and elevated Cytochrome C. Additionally, treating cells with a nontoxic low concentration (0.01%) of Wi-AREAL inhibited migration and invasion, as well as EMT (epithelial–mesenchymal transition) signaling. By combining computational and experimental approaches, we demonstrate the potential of Wi-A and Wi-AREAL as natural inhibitors of Survivin, which may be helpful in cancer treatment. Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Figure 1

Back to TopTop