Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = wire-based laser metal deposition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4762 KiB  
Article
Directed Energy Deposition: A Scientometric Study and Its Practical Implications
by Mehran Ghasempour-Mouziraji, Daniel Afonso, Behrouz Nemati and Ricardo Alves de Sousa
Metrics 2025, 2(3), 14; https://doi.org/10.3390/metrics2030014 - 5 Aug 2025
Viewed by 179
Abstract
Directed Energy Deposition is an additive manufacturing subgroup that uses a laser beam to melt the wire or powder to create a melt pool. In the current study, a scientometric analysis has been carried out to analyze the contribution of countries, publication type [...] Read more.
Directed Energy Deposition is an additive manufacturing subgroup that uses a laser beam to melt the wire or powder to create a melt pool. In the current study, a scientometric analysis has been carried out to analyze the contribution of countries, publication type analysis, distribution of publications over the years, keywords analysis, author analysis, cited journal, categories, institutes of publication, and report the practical implications. Firstly, the database was extracted from the Web of Science and then post-processed with CiteSpace 6.2.R4 and VOSviewer 1.6.20 software. Afterward, the associated results had been extracted and reported. It was found that China is the leader according to publication, followed by the USA and Germany, which mostly published their achievements in article and proceeding paper formats, which are increasing annually. According to the keywords, additive manufacturing, Laser Metal Deposition, and fabrication are the most commonly used. Based on the CiteSapce and VOSviewer results, Lin, Xin and Huang, Weidong are the authors with the highest publication rates. In addition, Additive Manufacturing, Materials & Design, and Materials Science and Engineering: A are the most cited journals, and regarding the categories, materials science, multidisciplinary, applied physics, and manufacturing engineering are the most commonly used DED processes. Northwestern Polytechnical University, Fraunhofer Gesellschaft, and the United States Department of Energy (DOE) have performed the most research in the field of DED. Full article
Show Figures

Figure 1

36 pages, 9902 KiB  
Article
Digital-Twin-Enabled Process Monitoring for a Robotic Additive Manufacturing Cell Using Wire-Based Laser Metal Deposition
by Alberto José Alvares, Efrain Rodriguez and Brayan Figueroa
Processes 2025, 13(8), 2335; https://doi.org/10.3390/pr13082335 - 23 Jul 2025
Viewed by 408
Abstract
Digital Twins (DTs) are transforming manufacturing by bridging the physical and digital worlds, enabling real-time insights, predictive analytics, and enhanced decision making. In Industry 4.0, DTs facilitate automation and data integration, while Industry 5.0 emphasizes human-centric, resilient, and sustainable production. However, implementing DTs [...] Read more.
Digital Twins (DTs) are transforming manufacturing by bridging the physical and digital worlds, enabling real-time insights, predictive analytics, and enhanced decision making. In Industry 4.0, DTs facilitate automation and data integration, while Industry 5.0 emphasizes human-centric, resilient, and sustainable production. However, implementing DTs in robotic metal additive manufacturing (AM) remains challenging because of the complexity of the wire-based laser metal deposition (LMD) process, the need for real-time monitoring, and the demand for advanced defect detection to ensure high-quality prints. This work proposes a structured DT architecture for a robotic wire-based LMD cell, following a standard framework. Three DT implementations were developed. First, a real-time 3D simulation in RoboDK, integrated with a 2D Node-RED dashboard, enabled motion validation and live process monitoring via MQTT (message queuing telemetry transport) telemetry, minimizing toolpath errors and collisions. Second, an Industrial IoT-based system using KUKA iiQoT (Industrial Internet of Things Quality of Things) facilitated predictive maintenance by analyzing motor loads, joint temperatures, and energy consumption, allowing early anomaly detection and reducing unplanned downtime. Third, the Meltio dashboard provided real-time insights into the laser temperature, wire tension, and deposition accuracy, ensuring adaptive control based on live telemetry. Additionally, a prescriptive analytics layer leveraging historical data in FireStore was integrated to optimize the process performance, enabling data-driven decision making. Full article
Show Figures

Graphical abstract

14 pages, 5792 KiB  
Article
Weld Formation and Characteristics of Hot-Wire Laser Welding in Aluminum Alloy Narrow-Gap Joints
by Jukkapun Greebmalai, Shun Sadasue, Keita Marumoto, Eakkachai Warinsiriruk and Motomichi Yamamoto
Metals 2025, 15(7), 809; https://doi.org/10.3390/met15070809 - 18 Jul 2025
Viewed by 263
Abstract
This study joins a 20 mm thick 5000-series aluminum alloy using hot-wire insertion combined with narrow-gap laser welding to evaluate the feasibility and welding characteristics of this technique. The findings indicate that weld formation is primarily influenced by the laser energy density and [...] Read more.
This study joins a 20 mm thick 5000-series aluminum alloy using hot-wire insertion combined with narrow-gap laser welding to evaluate the feasibility and welding characteristics of this technique. The findings indicate that weld formation is primarily influenced by the laser energy density and material deposition rate. A strategy for improving weld beads is introduced incorporating a reoriented laser spot during the final pass on narrow-gap joints. This approach improves penetration and produces defect-free joints. The optimal processing conditions result in complete joint formation with four welding passes. Microstructural analysis reveals that the aluminum matrix morphology evolves according to the local thermal history during welding. Measurements show that the weld region is slightly harder than the base metal, whereas slightly lower hardness is observed at the fusion line and inter-pass boundaries, which correlates with the microstructure result. Full article
(This article belongs to the Special Issue Advanced Laser Welding and Joining of Metallic Materials)
Show Figures

Figure 1

14 pages, 4905 KiB  
Article
Experimental Study of Process Parameter Effects on Internal Defects in Titanium Coaxial Wire-Based Laser Metal Deposition
by Remy Mathenia, Braden McLain, Todd Sparks and Frank Liou
Metals 2025, 15(5), 499; https://doi.org/10.3390/met15050499 - 30 Apr 2025
Viewed by 532
Abstract
Wire-based laser metal deposition is an additive manufacturing process that can be used in the efficient manufacturing of complex structures. This paper utilizes a three-beam coaxial laser wire system to explore the effect of process parameters on the resultant deposition density. The reduction [...] Read more.
Wire-based laser metal deposition is an additive manufacturing process that can be used in the efficient manufacturing of complex structures. This paper utilizes a three-beam coaxial laser wire system to explore the effect of process parameters on the resultant deposition density. The reduction in or elimination of defects is important to the mechanical properties of the additively manufactured material and the widespread adoption of additive manufacturing processes. In this work, two-bead-wide walls were deposited under varying experimental conditions, including the traverse feed rate and workpiece illumination proportion. A method for calculating the bead pitch and layer height increment based on the geometry of the deposited material was developed. The deposited samples were micro-CT-scanned to characterize internal defects at a high resolution. The volume of the detected defects was measured and compared to the total sample volume to calculate a defect rate for each run of the experiment. The traverse feed rate and defocusing level were found to have a significant impact on the output defect rate. As these process parameters were increased, the defect rate decreased. Across the experimental levels, the defect volume percentage was reduced from 1.021% to 0.062%. This reduction in internal defect size enhances the material’s mechanical performance and ensures its suitability for aerospace applications. Full article
Show Figures

Figure 1

26 pages, 10666 KiB  
Article
Processability and Material Behavior of NiTi Shape Memory Alloys Using Wire Laser-Directed Energy Deposition (WL-DED)
by Hediyeh Dabbaghi, Nasrin Taheri Andani, Mohammad Pourshams, Mahyar Sojoodi, Behrang Poorganji and Mohammad Elahinia
J. Manuf. Mater. Process. 2025, 9(1), 15; https://doi.org/10.3390/jmmp9010015 - 6 Jan 2025
Cited by 3 | Viewed by 1807
Abstract
Utilizing additive manufacturing (AM) techniques with shape memory alloys (SMAs) like NiTi shows great promise for fabricating highly flexible and functionally superior 3D metallic structures. Compared to methods relying on powder feedstocks, wire-based additive manufacturing processes provide a viable alternative, addressing challenges such [...] Read more.
Utilizing additive manufacturing (AM) techniques with shape memory alloys (SMAs) like NiTi shows great promise for fabricating highly flexible and functionally superior 3D metallic structures. Compared to methods relying on powder feedstocks, wire-based additive manufacturing processes provide a viable alternative, addressing challenges such as chemical composition instability, material availability, higher feedstock costs, and limitations on part size while simplifying process development. This study presented a novel approach by thoroughly assessing the printability of Ni-rich Ni55.94Ti (Wt. %) SMA using the wire laser-directed energy deposition (WL-DED) technique, addressing the existing knowledge gap regarding the laser wire-feed metal additive manufacturing of NiTi alloys. For the first time, the impact of processing parameters—specifically laser power (400–1000 W) and transverse speed (300–900 mm/min)—on single-track fabrication using NiTi wires in the WL-DED process was examined. An optimal range of process parameters was determined to achieve high-quality prints with minimal defects, such as wire dripping, stubbing, and overfilling. Building upon these findings, we printed five distinct cubes, demonstrating the feasibility of producing nearly porosity-free specimens. Notably, this study investigated the effect of energy density on the printed part density, impurity pick-up, transformation temperature, and hardness of the manufactured NiTi cubes. The results from the cube study demonstrated that varying energy densities (46.66–70 J/mm3) significantly affected the quality of the deposits. Lower to intermediate energy densities achieved high relative densities (>99%) and favorable phase transformation temperatures. In contrast, higher energy densities led to instability in melt pool shape, increased porosity, and discrepancies in phase transformation temperatures. These findings highlighted the critical role of precise parameter control in achieving functional NiTi parts and offer valuable insights for advancing AM techniques in fabricating larger high-quality NiTi components. Additionally, our research highlighted important considerations for civil engineering applications, particularly in the development of seismic dampers for energy dissipation in structures, offering a promising solution for enhancing structural performance and energy management in critical infrastructure. Full article
Show Figures

Figure 1

39 pages, 1816 KiB  
Review
Progress in Additive Manufacturing of High-Entropy Alloys
by Bin Chen
Materials 2024, 17(23), 5917; https://doi.org/10.3390/ma17235917 - 3 Dec 2024
Cited by 7 | Viewed by 3600
Abstract
High-entropy alloys (HEAs) have drawn substantial attention on account of their outstanding properties. Additive manufacturing (AM), which has emerged as a successful approach for fabricating metallic materials, allows for the production of complex components based on three-dimensional (3D) computer-aided design (CAD) models. This [...] Read more.
High-entropy alloys (HEAs) have drawn substantial attention on account of their outstanding properties. Additive manufacturing (AM), which has emerged as a successful approach for fabricating metallic materials, allows for the production of complex components based on three-dimensional (3D) computer-aided design (CAD) models. This paper reviews the advancements in the AM of HEAs, encompassing a variety of AM techniques, including selective laser melting (SLM), selective laser sintering (SLS), selective electron beam melting (SEBM), directed energy deposition (DED), binder jetting (BJT), direct ink writing (DIW), and additive friction stir deposition (AFSD). Additionally, the study discusses the powders and wires utilized in AM, the post-processing of AM-processed HEAs, as well as the mechanical and corrosion properties of these alloys. The unique ultra-fine and non-equilibrium microstructures achieved through AM result in superior mechanical properties of HEAs, like improved strength and ductility. However, research regarding certain aspects of HEA AM, such as fatigue properties and creep deformation behavior, is still relatively scarce. Future research should focus on overcoming the existing limitations and exploring the potential of HEAs in various applications. Full article
(This article belongs to the Special Issue Advances in Multicomponent Alloy Design, Simulation and Properties)
Show Figures

Figure 1

16 pages, 6980 KiB  
Article
Machine Vision to Provide Quantitative Analysis of Meltpool Stability for a Coaxial Wire Directed Energy Deposition Process
by Braden McLain, Remy Mathenia, Todd Sparks and Frank Liou
Materials 2024, 17(21), 5311; https://doi.org/10.3390/ma17215311 - 31 Oct 2024
Cited by 2 | Viewed by 882
Abstract
Wire-based additive manufacturing (AM) is at the forefront of complex metal fabrication because of its scalability for large components, potential for high deposition rates, and ease of use. A common goal of wire directed energy deposition (DED) is preserving a stable process throughout [...] Read more.
Wire-based additive manufacturing (AM) is at the forefront of complex metal fabrication because of its scalability for large components, potential for high deposition rates, and ease of use. A common goal of wire directed energy deposition (DED) is preserving a stable process throughout deposition. If too little energy is put into the deposition, the wire will stub into the substrate and begin oscillating, creating turbulence within the meltpool. If too much energy exists, the wire will overheat, causing surface tension to take over and create liquid drips as opposed to a solid bead. This paper proposes a computer vision technique to work as both a state detection and event detection system for wire stability. The model utilizes intensity variations along with frame-to-frame difference calculations to determine process stability. Because the proposed model does not rely on machine learning techniques, it is possible for an individual to interpret and adjust as they see fit. The first part of this paper describes creation and implementation of the model. The model’s capability was then evaluated using a 1D laser power experiment, which generated a wide range of stability states across varying powers. The model’s accuracy was evaluated through 3D geometry data gathered from the experimentally deposited beads. The model proved to be both capable and accurate and has potential to be used as a real-time control system with future work. Full article
(This article belongs to the Special Issue Research on Laser Welding and Laser Additive Manufacturing)
Show Figures

Figure 1

15 pages, 2706 KiB  
Article
A Study of Directionality Effects in Three-Beam Coaxial Titanium Wire-Based Laser Metal Deposition
by Remy Mathenia, Braden McLain, Todd Sparks and Frank Liou
Materials 2024, 17(13), 3201; https://doi.org/10.3390/ma17133201 - 30 Jun 2024
Cited by 2 | Viewed by 1305
Abstract
Coaxial wire-based laser metal deposition is a versatile and efficient additive process that can achieve a high deposition rate in the manufacturing of complex structures. In this paper, a three-beam coaxial wire system is studied, with particular attention given to the effects of [...] Read more.
Coaxial wire-based laser metal deposition is a versatile and efficient additive process that can achieve a high deposition rate in the manufacturing of complex structures. In this paper, a three-beam coaxial wire system is studied, with particular attention given to the effects of the deposition direction and laser beam orientation on the resulting bead geometry symmetry. With the three-beam laser delivery, the laser spot pattern is not always symmetric with respect to the deposition direction. Single titanium beads are deposited in different directions and at varying deposition rates, and the bead profile is quantitatively scored for multiple symmetry measures. Through an analysis of variance, the deposition direction and deposition rate were found to be insignificant with respect to the resulting bead symmetry for the developed measures. The bead symmetry and geometry are important factors in determining if a build is free of critical defects, and in this study, it is shown that the three-beam coaxial wire deposition setup is a directionally independent process. Full article
(This article belongs to the Special Issue Rising Stars in Additive Manufacturing)
Show Figures

Figure 1

21 pages, 33254 KiB  
Article
Modelling and Prediction of Process Parameters with Low Energy Consumption in Wire Arc Additive Manufacturing Based on Machine Learning
by Haitao Zhang, Xingwang Bai, Honghui Dong and Haiou Zhang
Metals 2024, 14(5), 567; https://doi.org/10.3390/met14050567 - 11 May 2024
Cited by 8 | Viewed by 2797
Abstract
Wire arc additive manufacturing (WAAM) has attracted increasing interest in industry and academia due to its capability to produce large and complex metallic components at a high deposition rate. One of the basic tasks in WAAM is to determine appropriate process parameters, which [...] Read more.
Wire arc additive manufacturing (WAAM) has attracted increasing interest in industry and academia due to its capability to produce large and complex metallic components at a high deposition rate. One of the basic tasks in WAAM is to determine appropriate process parameters, which will directly affect the morphology and quality of the weld bead. However, the selection of process parameters relies heavily on empirical data from trial-and-error experiments, which results in significant time and cost expenditures. This paper employed different machine learning models, including SVR, BPNN, and XGBoost, to predict process parameters for WAAM. Furthermore, the SVR model was optimized by the Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) algorithms. A 3D laser scanner was employed to obtain the weld bead’s point cloud, and the weld bead size was extracted using the point cloud processing algorithm as the training data. The K-fold cross-validation strategy was applied to train and validate machine learning models. The comparison results showed that PSO–SVR predicted process parameters with the highest precision, with the RMSE, R2, and MAE being 1.1670, 0.9879, and 0.8310, respectively. Based on the process parameters produced by PSO–SVR, an optimal process parameter combination was chosen by taking into comprehensive consideration the impacts of power consumption and efficiency. The effectiveness of the process parameter optimization method was proved through three groups of validation experiments, with the energy consumption of the first two groups decreasing by 10.68% and 11.47%, respectively. Full article
Show Figures

Figure 1

18 pages, 8991 KiB  
Article
Effects of Laser Defocusing on Bead Geometry in Coaxial Titanium Wire-Based Laser Metal Deposition
by Remy Mathenia, Aaron Flood, Braden McLain, Todd Sparks and Frank Liou
Materials 2024, 17(4), 889; https://doi.org/10.3390/ma17040889 - 15 Feb 2024
Cited by 8 | Viewed by 1728
Abstract
Coaxial wire-based laser metal deposition is a versatile and efficient additive process that can achieve a high deposition rate in the manufacturing of complex structures. In this paper, a three-beam coaxial wire system is studied, with particular attention to the effects of deposition [...] Read more.
Coaxial wire-based laser metal deposition is a versatile and efficient additive process that can achieve a high deposition rate in the manufacturing of complex structures. In this paper, a three-beam coaxial wire system is studied, with particular attention to the effects of deposition height and laser defocusing on the resulting bead geometry. As the deposition standoff distance changes, so does the workpiece illumination proportion, which describes the ratio of energy going directly into the feedstock wire and into the substrate. Single titanium beads are deposited at varying defocus levels and deposition rates and the bead aspect ratio is measured and analyzed. Over the experimental settings, the defocusing level and deposition rate were found to have a significant effect on the resulting bead aspect ratio. As the defocusing level is increased away from the beam convergence plane, the spot size increases and the deposited track is wider and flatter. Process parameters can be used to tune the deposited material to a desired aspect ratio. In coaxial wire deposition, defocusing provides an adjustment mechanism to the distribution of heat between the wire and substrate and has an important impact on the resulting deposit. Full article
(This article belongs to the Special Issue Design and Application of Additive Manufacturing: Volume II)
Show Figures

Graphical abstract

13 pages, 11013 KiB  
Article
Effects of Oxidized Metal Powders on Pore Defects in Powder-Fed Direct Energy Deposition
by Jong-Youn Son, Ki-Yong Lee, Seung Hwan Lee and Chang-Hwan Choi
Micromachines 2024, 15(2), 243; https://doi.org/10.3390/mi15020243 - 6 Feb 2024
Cited by 2 | Viewed by 2543
Abstract
Laser-based additive manufacturing processes, particularly direct energy deposition (DED), have gained prominence for fabricating complex, functionally graded, or customized parts. DED employs a high-powered heat source to melt metallic powder or wire, enabling precise control of grain structures and the production of high-strength [...] Read more.
Laser-based additive manufacturing processes, particularly direct energy deposition (DED), have gained prominence for fabricating complex, functionally graded, or customized parts. DED employs a high-powered heat source to melt metallic powder or wire, enabling precise control of grain structures and the production of high-strength objects. However, common defects, such as a lack of fusion and pores between layers or beads, can compromise the mechanical properties of the printed components. This study focuses on investigating the recurrent causes of pore defects in the powder-fed DED process, with a specific emphasis on the influence of oxidized metal powders. This research explores the impact of intentionally oxidizing metal powders of hot work tool steel H13 by exposing them to regulated humidity and temperature conditions. Scanning electron microscopy images and energy-dispersive X-ray spectroscopy results demonstrate the clumping of powders and the deposition of iron oxides in the oxidized powders at elevated temperatures (70 °C for 72 h). Multi-layered depositions of the oxidized H13 powders on STD61 substrate do not show significant differences in cross sections among specimens, suggesting that oxidation does not visibly form large pores. However, fine pores, detected through CT scanning, are observed in depositions of oxidized powders at higher temperatures. These fine pores, typically less than 250 µm in diameter, are irregularly distributed throughout the deposition, indicating a potential degradation in mechanical properties. The findings highlight the need for careful consideration of oxidation effects in optimizing process parameters for enhanced additive manufacturing quality. Full article
(This article belongs to the Special Issue Laser Additive Manufacturing of Metallic Materials)
Show Figures

Figure 1

30 pages, 9382 KiB  
Review
A Review of the Residual Stress Generation in Metal Additive Manufacturing: Analysis of Cause, Measurement, Effects, and Prevention
by Nabin Bastola, Muhammad P. Jahan, Nithin Rangasamy and Chandra Sekhar Rakurty
Micromachines 2023, 14(7), 1480; https://doi.org/10.3390/mi14071480 - 24 Jul 2023
Cited by 72 | Viewed by 12682
Abstract
Metal additive manufacturing (AM) is capable of producing complex parts, using a wide range of functional metals that are otherwise very difficult to make and involve multiple manufacturing processes. However, because of the involvement of thermal energy in the fabrication of metallic AM [...] Read more.
Metal additive manufacturing (AM) is capable of producing complex parts, using a wide range of functional metals that are otherwise very difficult to make and involve multiple manufacturing processes. However, because of the involvement of thermal energy in the fabrication of metallic AM parts, residual stress remains one of the major concerns in metal AM. This residual stress has negative effects on part quality, dimensional accuracy, and part performance. This study aims to carry out a comprehensive review and analysis of different aspects of residual stress, including the causes and mechanisms behind the generation of residual stress during metal AM, the state-of-the-art measurement techniques for measuring residual stress, various factors influencing residual stress, its effect on part quality and performance, and ways of minimizing or overcoming residual stress in metal AM parts. Residual stress formation mechanisms vary, based on the layer-by-layer deposition mechanism of the 3D printing process. For example, the residual stress formation for wire-arc additive manufacturing is different from that of selective laser sintering, direct energy deposition, and powder bed fusion processes. Residual stress formation mechanisms also vary based on the scale (i.e., macro, micro, etc.) at which the printing is performed. In addition, there are correlations between printing parameters and the formation of residual stress. For example, the printing direction, layer thickness, internal structure, etc., influence both the formation mechanism and quantitative values of residual stress. The major effect residual stress has on the quality of a printed part is in the distortion of the part. In addition, the dimensional accuracy, surface finish, and fatigue performance of printed parts are influenced by residual stress. This review paper provides a qualitative and quantitative analysis of the formation, distribution, and evolution of residual stress for different metal AM processes. This paper also discusses and analyzes both in situ and ex situ measurement techniques for measuring residual stress. Microstructural evolution and its effect on the formation of residual stress are analyzed. Various pre- and post-processing techniques used to countermeasure residual stress are discussed in detail. Finally, this study aims to present both a qualitative and quantitative analysis of the existing data and techniques in the literature related to residual stress, as well as to provide a critical analysis and guidelines for future research directions, to prevent or overcome residual stress formation in metal AM processes. Full article
(This article belongs to the Special Issue Feature Reviews in Micromachines 2023)
Show Figures

Figure 1

19 pages, 4892 KiB  
Article
Design and Investigation of a Novel Local Shielding Gas Concept for Laser Metal Deposition with Coaxial Wire Feeding
by Christian Bernauer, Lukas Meinzinger, Avelino Zapata, Xiao Fan Zhao, Siegfried Baehr and Michael F. Zaeh
Appl. Sci. 2023, 13(8), 5121; https://doi.org/10.3390/app13085121 - 20 Apr 2023
Cited by 8 | Viewed by 3862
Abstract
Laser metal deposition with coaxial wire feeding is a directed energy deposition process in which a metal wire is fed to a laser-induced melt pool. Oxidation occurring during the process is a major challenge as it significantly influences the mechanical properties of the [...] Read more.
Laser metal deposition with coaxial wire feeding is a directed energy deposition process in which a metal wire is fed to a laser-induced melt pool. Oxidation occurring during the process is a major challenge as it significantly influences the mechanical properties of the produced part. Therefore, an inert gas atmosphere is required in the high temperature process zone, whereby local shielding offers significant cost advantages over an inert gas chamber. In this work, a novel local shielding gas nozzle was developed based on basic methods of fluid mechanics. A gas flow-optimized prototype incorporating internal cooling channels was additively manufactured by laser-powder bed fusion and tested for its effectiveness via deposition experiments. Using the developed local shielding gas concept, an unwanted mixing with the atmosphere due to turbulence was avoided and an oxide-free deposition was achieved when processing a stainless steel ER316LSi wire. Furthermore, the effects of the shielding gas flow rate were investigated, where a negative correlation with the melt pool temperature as well as the weld bead width was demonstrated. Finally, a solid cuboid was successfully built up without oxide inclusions. Overheating of the nozzle due to reflected laser radiation could be avoided by the internal cooling system. The concept, which can be applied to most commercially available coaxial wire deposition heads, represents an important step for the economical application of laser metal deposition. Full article
Show Figures

Figure 1

22 pages, 5669 KiB  
Perspective
Metal Wire Additive Manufacturing: A Comparison between Arc Laser and Laser/Arc Heat Sources
by Giuseppe Casalino, Mojtaba Karamimoghadam and Nicola Contuzzi
Inventions 2023, 8(2), 52; https://doi.org/10.3390/inventions8020052 - 1 Mar 2023
Cited by 25 | Viewed by 8969
Abstract
In this paper, the authors introduce the reader to the state of the art of Metal Wire Additive Manufacturing (MWAM) and provide a comparison between Wire Arc Additive Manufacturing (WAAM), Wire Laser Additive Manufacturing (WLAM), and Laser Arc Hybrid Wire Deposition (LAHWD) based [...] Read more.
In this paper, the authors introduce the reader to the state of the art of Metal Wire Additive Manufacturing (MWAM) and provide a comparison between Wire Arc Additive Manufacturing (WAAM), Wire Laser Additive Manufacturing (WLAM), and Laser Arc Hybrid Wire Deposition (LAHWD) based on their characteristics and potential future applications, since MWAM is expected to have a promising future in various areas, such as aerospace, automotive, biomedical, and energy fields. A detailed discussion of the benefits and drawbacks of each Metal Wire Additive Manufacturing process can help to improve our understanding of the unique characteristics of metal wire application. Therefore, this paper offers a comprehensive analysis that can serve as a reference for upcoming industrial projects and research initiatives, with the aim of helping industries choose the most appropriate WAM technique for their specific applications. Full article
(This article belongs to the Collection Feature Innovation Papers)
Show Figures

Figure 1

20 pages, 2205 KiB  
Review
Wire Arc Additive Manufacturing (WAAM) for Aluminum-Lithium Alloys: A Review
by Paula Rodríguez-González, Elisa María Ruiz-Navas and Elena Gordo
Materials 2023, 16(4), 1375; https://doi.org/10.3390/ma16041375 - 6 Feb 2023
Cited by 23 | Viewed by 7920
Abstract
Out of all the metal additive manufacturing (AM) techniques, the directed energy deposition (DED) technique, and particularly the wire-based one, are of great interest due to their rapid production. In addition, they are recognized as being the fastest technique capable of producing fully [...] Read more.
Out of all the metal additive manufacturing (AM) techniques, the directed energy deposition (DED) technique, and particularly the wire-based one, are of great interest due to their rapid production. In addition, they are recognized as being the fastest technique capable of producing fully functional structural parts, near-net-shape products with complex geometry and almost unlimited size. There are several wire-based systems, such as plasma arc welding and laser melting deposition, depending on the heat source. The main drawback is the lack of commercially available wire; for instance, the absence of high-strength aluminum alloy wires. Therefore, this review covers conventional and innovative processes of wire production and includes a summary of the Al-Cu-Li alloys with the most industrial interest in order to foment and promote the selection of the most suitable wire compositions. The role of each alloying element is key for specific wire design in WAAM; this review describes the role of each element (typically strengthening by age hardening, solid solution and grain size reduction) with special attention to lithium. At the same time, the defects in the WAAM part limit its applicability. For this reason, all the defects related to the WAAM process, together with those related to the chemical composition of the alloy, are mentioned. Finally, future developments are summarized, encompassing the most suitable techniques for Al-Cu-Li alloys, such as PMC (pulse multicontrol) and CMT (cold metal transfer). Full article
(This article belongs to the Special Issue Design and Post Processing for Metal Additive Manufacturing)
Show Figures

Figure 1

Back to TopTop