Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (43)

Search Parameters:
Keywords = wildfire susceptibility mapping

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 39261 KiB  
Article
Assessing Geohazards on Lefkas Island, Greece: GIS-Based Analysis and Public Dissemination Through a GIS Web Application
by Eleni Katapodi and Varvara Antoniou
Appl. Sci. 2025, 15(14), 7935; https://doi.org/10.3390/app15147935 - 16 Jul 2025
Viewed by 76
Abstract
This research paper presents an assessment of geohazards on Lefkas Island, Greece, using Geographic Information System (GIS) technology to map risk and enhance public awareness through an interactive web application. Natural hazards such as landslides, floods, wildfires, and desertification threaten both the safety [...] Read more.
This research paper presents an assessment of geohazards on Lefkas Island, Greece, using Geographic Information System (GIS) technology to map risk and enhance public awareness through an interactive web application. Natural hazards such as landslides, floods, wildfires, and desertification threaten both the safety of residents and the island’s tourism-dependent economy, particularly due to its seismic activity and Mediterranean climate. By combining the Sendai Framework for Disaster Risk Reduction with GIS capabilities, we created detailed hazard maps that visually represent areas of susceptibility and provide critical insights for local authorities and the public. The web application developed serves as a user-friendly platform for disseminating hazard information and educational resources, thus promoting community preparedness and resilience. The findings highlight the necessity for proactive land management strategies and community engagement in disaster risk reduction efforts. This study underscores GIS’s pivotal role in fostering informed decision making and enhancing the safety of Lefkas Island’s inhabitants and visitors in the face of environmental challenges. Full article
(This article belongs to the Special Issue Emerging GIS Technologies and Their Applications)
Show Figures

Figure 1

28 pages, 10204 KiB  
Article
Wildfire Susceptibility Mapping in Greece Using Ensemble Machine Learning
by Panagiotis Symeonidis, Thanasis Vafeiadis, Dimosthenis Ioannidis and Dimitrios Tzovaras
Earth 2025, 6(3), 75; https://doi.org/10.3390/earth6030075 - 5 Jul 2025
Viewed by 343
Abstract
This study explores the use of ensemble machine learning models to develop wildfire susceptibility maps (WFSMs) in Greece, focusing on their application as regressors. We provide a continuous assessment of wildfire risk, enhancing the interpretability and accuracy of predictions. Two key metrics were [...] Read more.
This study explores the use of ensemble machine learning models to develop wildfire susceptibility maps (WFSMs) in Greece, focusing on their application as regressors. We provide a continuous assessment of wildfire risk, enhancing the interpretability and accuracy of predictions. Two key metrics were developed: Ensemble Mean and Ensemble Max. This dual-metric approach improves predictive robustness and provides critical insights for wildfire management strategies. The ensemble mode effectively handles complex, high-dimensional data, addressing challenges such as over fitting and data heterogeneity. Utilizing advanced techniques like XGBoost, GBM, LightGBM, and CatBoost regressors, our research demonstrates the potential of these methods to enhance wildfire risk estimation. The Ensemble Mean model classified 50% of the land as low risk and 21% as high risk, while the Ensemble Max model identified 38% as low risk and 33% as high risk. Notably, 83% of wildfires between 2000 and 2024 occurred in areas marked as high-risk by both models. The findings reveal that a significant proportion of wildfires occurred in areas identified as high risk by both ensemble models, underscoring their effectiveness. This approach offers significant potential to mitigate wildfires’ environmental, economic, and social impacts, enhance climate resilience, and strengthen preparedness for future wildfire events. Full article
Show Figures

Figure 1

17 pages, 25082 KiB  
Article
Wildfire Mitigation and Evaluation of Firebreaks Through FlamMap Simulations in High-Susceptibility Areas of the Metropolitan District of Quito
by Juan Gabriel Mollocana-Lara, Katiuska Jajaira Obando-Proaño and Betsy Germania Córdova-Luspa
Fire 2025, 8(5), 189; https://doi.org/10.3390/fire8050189 - 8 May 2025
Viewed by 708
Abstract
Wildfires represent a growing concern worldwide, and their frequency has increased due to climate change and human activities, posing risks to biodiversity and human safety. In the Metropolitan District of Quito (DMQ), the combination of flammable vegetation and steep slopes increases the wildfire [...] Read more.
Wildfires represent a growing concern worldwide, and their frequency has increased due to climate change and human activities, posing risks to biodiversity and human safety. In the Metropolitan District of Quito (DMQ), the combination of flammable vegetation and steep slopes increases the wildfire susceptibility. Although there are no formally designated firebreaks in these areas, many natural and artificial elements, such as roads, water bodies, and rocky terrain, can effectively function as firebreaks if properly adapted. This study aimed to evaluate the wildfire behavior and assess the effectiveness of both adapted existing barriers and proposed firebreaks using FlamMap simulations. Geospatial and meteorological data were integrated to generate landscape and weather inputs for simulating wildfires in nine high-susceptibility areas within the DMQ. Fuel vegetation models were obtained by matching the national land-cover data with Scott and Burgan fuel models, and OpenStreetMap data were used to identify the firebreak locations. The simulation results show that adapting existing potential firebreaks could reduce the burned area by an average of 42.6%, and the addition of strategically placed firebreaks could further reduce it by up to 70.2%. The findings suggest that implementing a firebreak creation and maintenance program could be an effective tool for wildfire mitigation. Full article
(This article belongs to the Section Fire Science Models, Remote Sensing, and Data)
Show Figures

Figure 1

18 pages, 4841 KiB  
Article
Multi-Hazard Susceptibility Mapping Using Machine Learning Approaches: A Case Study of South Korea
by Changju Kim, Soonchan Park and Heechan Han
Remote Sens. 2025, 17(10), 1660; https://doi.org/10.3390/rs17101660 - 8 May 2025
Viewed by 779
Abstract
The frequency and magnitude of natural hazards have been steadily increasing, largely due to extreme weather events driven by climate change. These hazards pose significant global challenges, underscoring the need for accurate prediction models and systematic preparedness. This study aimed to predict multiple [...] Read more.
The frequency and magnitude of natural hazards have been steadily increasing, largely due to extreme weather events driven by climate change. These hazards pose significant global challenges, underscoring the need for accurate prediction models and systematic preparedness. This study aimed to predict multiple natural hazards in South Korea using various machine learning algorithms. The study area, South Korea (100,210 km2), was divided into a grid system with a 0.01° resolution. Meteorological, climatic, topographical, and remotely sensed data were interpolated into each grid cell for analysis. The study focused on three major natural hazards: drought, flood, and wildfire. Predictive models were developed using two machine learning algorithms: Random Forest (RF) and Extreme Gradient Boosting (XGB). The analysis showed that XGB performed exceptionally well in predicting droughts and floods, achieving ROC scores of 0.9998 and 0.9999, respectively. For wildfire prediction, RF achieved a high ROC score of 0.9583. The results were integrated to generate a multi-hazard susceptibility map. This study provides foundational data for the development of hazard management and response strategies in the context of climate change. Furthermore, it offers a basis for future research exploring the interaction effects of multi-hazards. Full article
Show Figures

Figure 1

29 pages, 16950 KiB  
Article
Wildfire Risk Assessment in Ambato, Ecuador: Drought Impacts, Fuel Dynamics, and Wildland–Urban Interface Vulnerability
by Andrés Hidalgo, Luis Contreras-Vásquez, Verónica Nuñez and Bolivar Paredes-Beltran
Fire 2025, 8(4), 130; https://doi.org/10.3390/fire8040130 - 27 Mar 2025
Viewed by 1161
Abstract
Wildfires represent an increasing threat to ecosystems and communities, driven by climate change, fuel dynamics, and human activities. In Ambato, Ecuador, a city in the Andean highlands, these risks are exacerbated by prolonged droughts, vegetation dryness, and urban expansion into fire-prone areas within [...] Read more.
Wildfires represent an increasing threat to ecosystems and communities, driven by climate change, fuel dynamics, and human activities. In Ambato, Ecuador, a city in the Andean highlands, these risks are exacerbated by prolonged droughts, vegetation dryness, and urban expansion into fire-prone areas within the Wildland–Urban Interface (WUI). This study integrates climatic, ecological, and socio-economic data from 2017 to 2023 to assess wildfire risks, employing advanced geospatial tools, thematic mapping, and machine learning models, including Multinomial Logistic Regression (MLR), Random Forest, and XGBoost. By segmenting the study area into 1 km2 grid cells, microscale risk variations were captured, enabling classification into five categories: ‘Very Low’, ‘Low’, ‘Moderate’, ‘High’, and ‘Very High’. Results indicate that temperature anomalies, reduced fuel moisture, and anthropogenic factors such as waste burning and unregulated land-use changes significantly increase fire susceptibility. Predictive models achieved accuracies of 76.04% (MLR), 77.6% (Random Forest), and 76.5% (XGBoost), effectively identifying high-risk zones. The highest-risk areas were found in Izamba, Pasa, and San Fernando, where over 884.9 ha were burned between 2017 and 2023. The year 2020 recorded the most severe wildfire season (1500 ha burned), coinciding with extended droughts and COVID-19 lockdowns. Findings emphasize the urgent need for enhanced land-use regulations, improved firefighting infrastructure, and community-driven prevention strategies. This research provides a replicable framework for wildfire risk assessment, applicable to other Andean regions and beyond. By integrating data-driven methodologies with policy recommendations, this study contributes to evidence-based wildfire mitigation and resilience planning in climate-sensitive environments. Full article
Show Figures

Figure 1

25 pages, 19380 KiB  
Article
GIS-Based Spatial Modeling of Soil Erosion and Wildfire Susceptibility Using VIIRS and Sentinel-2 Data: A Case Study of Šar Mountains National Park, Serbia
by Uroš Durlević, Tanja Srejić, Aleksandar Valjarević, Bojana Aleksova, Vojislav Deđanski, Filip Vujović and Tin Lukić
Forests 2025, 16(3), 484; https://doi.org/10.3390/f16030484 - 10 Mar 2025
Cited by 3 | Viewed by 1682
Abstract
Soil erosion and wildfires are frequent natural disasters that threaten the environment. Identifying and zoning susceptible areas are crucial for the implementation of preventive measures. The Šar Mountains are a national park with rich biodiversity and various climate zones. Therefore, in addition to [...] Read more.
Soil erosion and wildfires are frequent natural disasters that threaten the environment. Identifying and zoning susceptible areas are crucial for the implementation of preventive measures. The Šar Mountains are a national park with rich biodiversity and various climate zones. Therefore, in addition to protecting the local population from natural disasters, special attention must be given to preserving plant and animal species and their habitats. The first step in this study involved collecting and organizing the data. The second step applied geographic information systems (GIS) and remote sensing (RS) to evaluate the intensity of erosion using the erosion potential model (EPM) and the wildfire susceptibility index (WSI). The EPM involved the analysis of four thematic maps, and a new index for wildfires was developed, incorporating nine natural and anthropogenic factors. This study introduces a novel approach by integrating the newly developed WSI with the EPM, offering a comprehensive framework for assessing dual natural hazards in a single region using advanced geospatial tools. The third step involved obtaining synthetic maps and comparing the final results with satellite images and field research. For the Šar Mountains (Serbia), high and very high susceptibility to wildfires was identified in 21.3% of the total area. Regarding soil erosion intensity, about 8.2% of the area is affected by intensive erosion, while excessive erosion is present in 2.2% of the study area. The synthetic hazard maps provide valuable insights into the dynamics of the erosive process and areas susceptible to wildfires. The final results can be useful for decision-makers, spatial planners, and emergency management services in implementing anti-erosion measures and improving forest management in the study area. Full article
Show Figures

Figure 1

21 pages, 2044 KiB  
Review
Systematic Review of Post-Wildfire Landslides
by Stephen Akosah and Ivan Gratchev
GeoHazards 2025, 6(1), 12; https://doi.org/10.3390/geohazards6010012 - 3 Mar 2025
Cited by 1 | Viewed by 1864
Abstract
This systematic literature review aims to review studies on post-wildfire landslides. A thorough search of Web of Science, Scopus, and other online library sources identified 1580 research publications from 2003 to 2024. Following PRISMA protocols, 75 publications met the inclusion criteria. The analysis [...] Read more.
This systematic literature review aims to review studies on post-wildfire landslides. A thorough search of Web of Science, Scopus, and other online library sources identified 1580 research publications from 2003 to 2024. Following PRISMA protocols, 75 publications met the inclusion criteria. The analysis revealed a growing interest in research trends over the past two decades, with most publications being from 2021 to 2024. This study is divided into categories: (1) systematic review methods, (2) geographical distributions and research trends, and (3) the exploitation of post-wildfire landslides in terms of susceptibility mapping, monitoring, mitigation, modeling, and stability studies. The review revealed that post-wildfire landslides are primarily found in terrains that have experienced wildfires or bushfires and immediately occur after rainfall or a rainstorm—primarily within 1–5 years—which can lead to multiple forms of destruction, including the loss of life and infrastructure. Advanced technologies, including high-resolution remote sensing and machine learning models, have been used to map and monitor post-wildfire landslides, providing some mitigation strategies to prevent landslide risks in areas affected by wildfires. The review highlights the future research prospects for post-wildfire landslides. The outcome of this review is expected to enhance our understanding of the existing information. Full article
Show Figures

Figure 1

25 pages, 4972 KiB  
Article
Machine Learning Model Reveals Land Use and Climate’s Role in Caatinga Wildfires: Present and Future Scenarios
by Rodrigo N. Vasconcelos, Mariana M. M. de Santana, Diego P. Costa, Soltan G. Duverger, Jefferson Ferreira-Ferreira, Mariana Oliveira, Leonardo da Silva Barbosa, Carlos Leandro Cordeiro and Washington J. S. Franca Rocha
Fire 2025, 8(1), 8; https://doi.org/10.3390/fire8010008 - 26 Dec 2024
Cited by 2 | Viewed by 1663
Abstract
Wildfires significantly impact ecosystems, economies, and biodiversity, particularly in fire-prone regions like the Caatinga biome in Northeastern Brazil. This study integrates machine learning with climate and land use data to model current and future fire dynamics in the Caatinga. Using MaxEnt, fire probability [...] Read more.
Wildfires significantly impact ecosystems, economies, and biodiversity, particularly in fire-prone regions like the Caatinga biome in Northeastern Brazil. This study integrates machine learning with climate and land use data to model current and future fire dynamics in the Caatinga. Using MaxEnt, fire probability maps were generated based on historical fire scars from Landsat imagery and environmental predictors, including bioclimatic variables and human influences. Future projections under SSP1-2.6 (low-emission) and SSP5-8.5 (high-emission) scenarios were also analyzed. The baseline model achieved an AUC of 0.825, indicating a strong predictive performance. Key drivers of fire risk included the mean temperature of the driest quarter (with an importance of 14.1%) and isothermality (12.5%). Temperature-related factors were more influential than precipitation, which played a secondary role in shaping fire dynamics. Anthropogenic factors, such as proximity to farming and urban areas, also contributed to fire susceptibility. Under the optimistic scenario, low-fire-probability areas expanded to 29.129 Mha, suggesting a reduced fire risk with climate mitigation. However, high-risk zones persisted in the Western Caatinga. The pessimistic scenario projected an alarming expansion of very-high-risk areas to 12.448 Mha, emphasizing the vulnerability of the region under severe climate conditions. These findings underline the importance of temperature dynamics and human activities in shaping fire regimes. Future research should incorporate additional variables, such as vegetation recovery and socio-economic factors, to refine predictions. This study provides critical insights for targeted fire management and land use planning, promoting the sustainable conservation of the Caatinga under changing climatic conditions. Full article
Show Figures

Figure 1

23 pages, 22589 KiB  
Article
Landslide Prediction Validation in Western North Carolina After Hurricane Helene
by Sophia Lin, Shenen Chen, Ryan A. Rasanen, Qifan Zhao, Vidya Chavan, Wenwu Tang, Navanit Shanmugam, Craig Allan, Nicole Braxtan and John Diemer
Geotechnics 2024, 4(4), 1259-1281; https://doi.org/10.3390/geotechnics4040064 - 14 Dec 2024
Cited by 2 | Viewed by 2408
Abstract
Hurricane Helene triggered 1792 landslides across western North Carolina and has caused damage to 79 bridges to date. Helene hit western North Carolina days after a low-pressure system dropped up to 254 mm of rain in some locations of western North Carolina (e.g., [...] Read more.
Hurricane Helene triggered 1792 landslides across western North Carolina and has caused damage to 79 bridges to date. Helene hit western North Carolina days after a low-pressure system dropped up to 254 mm of rain in some locations of western North Carolina (e.g., Asheville Regional Airport). The already waterlogged region experienced devastation as significant additional rainfall occurred during Helene, where some areas, like Asheville, North Carolina received an additional 356 mm of rain (National Weather Service, 2024). In this study, machine learning (ML)-generated multi-hazard landslide susceptibility maps are compared to the documented landslides from Helene. The landslide models use the North Carolina landslide database, soil survey, rainfall, USGS digital elevation model (DEM), and distance to rivers to create the landslide variables. From the DEM, aspect factors and slope are computed. Because recent research in western North Carolina suggests fault movement is destabilizing slopes, distance to fault was also incorporated as a predictor variable. Finally, soil types were used as a wildfire predictor variable. In total, 4794 landslides were used for model training. Random Forest and logistic regression machine learning algorithms were used to develop the landslide susceptibility map. Furthermore, landslide susceptibility was also examined with and without consideration of wildfires. Ultimately, this study indicates heavy rainfall and debris-laden floodwaters were critical in triggering both landslides and scour, posing a dual threat to bridge stability. Field investigations from Hurricane Helene revealed that bridge damage was concentrated at bridge abutments, with scour and sediment deposition exacerbating structural vulnerability. We evaluated the assumed flooding potential (AFP) of damaged bridges in the study area, finding that bridges with lower AFP values were particularly vulnerable to scour and submersion during flood events. Differentiating between landslide-induced and scour-induced damage is essential for accurately assessing risks to infrastructure. The findings emphasize the importance of comprehensive hazard mapping to guide infrastructure resilience planning in mountainous regions. Full article
Show Figures

Figure 1

21 pages, 5986 KiB  
Article
Assessing the Role of Forest Grazing in Reducing Fire Severity: A Mitigation Strategy
by Raffaella Lovreglio, Julian Lovreglio, Gabriele Giuseppe Antonio Satta, Marco Mura and Antonio Pulina
Fire 2024, 7(11), 409; https://doi.org/10.3390/fire7110409 - 8 Nov 2024
Cited by 3 | Viewed by 2102
Abstract
This study investigates the role of prescribed grazing as a sustainable fire prevention strategy in Mediterranean ecosystems, with a focus on Sardinia, an area highly susceptible to wildfires. Using FlamMap simulation software, we modeled fire behavior across various grazing and environmental conditions to [...] Read more.
This study investigates the role of prescribed grazing as a sustainable fire prevention strategy in Mediterranean ecosystems, with a focus on Sardinia, an area highly susceptible to wildfires. Using FlamMap simulation software, we modeled fire behavior across various grazing and environmental conditions to assess the impact of grazing on fire severity indicators such as flame length, rate of spread, and fireline intensity. Results demonstrate that grazing can reduce fire severity by decreasing combustible biomass, achieving reductions of 25.9% in fire extent in wet years, 60.9% in median years, and 45.8% in dry years. Grazed areas exhibited significantly lower fire intensity, particularly under high canopy cover. These findings support the integration of grazing into fire management policies, highlighting its efficacy as a nature-based solution. However, the study’s scope is limited to small biomass fuels (1-h fuels); future research should extend to larger fuel classes to enhance the generalizability of prescribed grazing as a fire mitigation tool. Full article
(This article belongs to the Special Issue Effects of Fires on Forest Ecosystems)
Show Figures

Figure 1

23 pages, 15900 KiB  
Article
Predicting Fractional Shrub Cover in Heterogeneous Mediterranean Landscapes Using Machine Learning and Sentinel-2 Imagery
by El Khalil Cherif, Ricardo Lucas, Taha Ait Tchakoucht, Ivo Gama, Inês Ribeiro, Tiago Domingos and Vânia Proença
Forests 2024, 15(10), 1739; https://doi.org/10.3390/f15101739 - 1 Oct 2024
Cited by 2 | Viewed by 1757
Abstract
Wildfires pose a growing threat to Mediterranean ecosystems. This study employs advanced classification techniques for shrub fractional cover mapping from satellite imagery in a fire-prone landscape in Quinta da França (QF), Portugal. The study area is characterized by fine-grained heterogeneous land cover and [...] Read more.
Wildfires pose a growing threat to Mediterranean ecosystems. This study employs advanced classification techniques for shrub fractional cover mapping from satellite imagery in a fire-prone landscape in Quinta da França (QF), Portugal. The study area is characterized by fine-grained heterogeneous land cover and a Mediterranean climate. In this type of landscape, shrub encroachment after land abandonment and wildfires constitutes a threat to ecosystem resilience—in particular, by increasing the susceptibility to more frequent and large fires. High-resolution mapping of shrub cover is, therefore, an important contribution to landscape management for fire prevention. Here, a 20 cm resolution land cover map was used to label 10 m Sentinel-2 pixels according to their shrub cover percentage (three categories: 0%, >0%–50%, and >50%) for training and testing. Three distinct algorithms, namely Support Vector Machine (SVM), Artificial Neural Networks (ANNs), and Random Forest (RF), were tested for this purpose. RF excelled, achieving the highest precision (82%–88%), recall (77%–92%), and F1 score (83%–88%) across all categories (test and validation sets) compared to SVM and ANN, demonstrating its superior ability to accurately predict shrub fractional cover. Analysis of confusion matrices revealed RF’s superior ability to accurately predict shrub fractional cover (higher true positives) with fewer misclassifications (lower false positives and false negatives). McNemar’s test indicated statistically significant differences (p value < 0.05) between all models, consolidating RF’s dominance. The development of shrub fractional cover maps and derived map products is anticipated to leverage key information to support landscape management, such as for the assessment of fire hazard and the more effective planning of preventive actions. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

28 pages, 20313 KiB  
Article
SHAP-Driven Explainable Artificial Intelligence Framework for Wildfire Susceptibility Mapping Using MODIS Active Fire Pixels: An In-Depth Interpretation of Contributing Factors in Izmir, Türkiye
by Muzaffer Can Iban and Oktay Aksu
Remote Sens. 2024, 16(15), 2842; https://doi.org/10.3390/rs16152842 - 2 Aug 2024
Cited by 18 | Viewed by 4275
Abstract
Wildfire susceptibility maps play a crucial role in preemptively identifying regions at risk of future fires and informing decisions related to wildfire management, thereby aiding in mitigating the risks and potential damage posed by wildfires. This study employs eXplainable Artificial Intelligence (XAI) techniques, [...] Read more.
Wildfire susceptibility maps play a crucial role in preemptively identifying regions at risk of future fires and informing decisions related to wildfire management, thereby aiding in mitigating the risks and potential damage posed by wildfires. This study employs eXplainable Artificial Intelligence (XAI) techniques, particularly SHapley Additive exPlanations (SHAP), to map wildfire susceptibility in Izmir Province, Türkiye. Incorporating fifteen conditioning factors spanning topography, climate, anthropogenic influences, and vegetation characteristics, machine learning (ML) models (Random Forest, XGBoost, LightGBM) were used to predict wildfire-prone areas using freely available active fire pixel data (MODIS Active Fire Collection 6 MCD14ML product). The evaluation of the trained ML models showed that the Random Forest (RF) model outperformed XGBoost and LightGBM, achieving the highest test accuracy (95.6%). All of the classifiers demonstrated a strong predictive performance, but RF excelled in sensitivity, specificity, precision, and F-1 score, making it the preferred model for generating a wildfire susceptibility map and conducting a SHAP analysis. Unlike prevailing approaches focusing solely on global feature importance, this study fills a critical gap by employing a SHAP summary and dependence plots to comprehensively assess each factor’s contribution, enhancing the explainability and reliability of the results. The analysis reveals clear associations between factors such as wind speed, temperature, NDVI, slope, and distance to villages with increased fire susceptibility, while rainfall and distance to streams exhibit nuanced effects. The spatial distribution of the wildfire susceptibility classes highlights critical areas, particularly in flat and coastal regions near settlements and agricultural lands, emphasizing the need for enhanced awareness and preventive measures. These insights inform targeted fire management strategies, highlighting the importance of tailored interventions like firebreaks and vegetation management. However, challenges remain, including ensuring the selected factors’ adequacy across diverse regions, addressing potential biases from resampling spatially varied data, and refining the model for broader applicability. Full article
(This article belongs to the Special Issue Artificial Intelligence for Natural Hazards (AI4NH))
Show Figures

Figure 1

15 pages, 3788 KiB  
Article
Wildfire Susceptibility Prediction Based on a CA-Based CCNN with Active Learning Optimization
by Qiuping Yu, Yaqin Zhao, Zixuan Yin and Zhihao Xu
Fire 2024, 7(6), 201; https://doi.org/10.3390/fire7060201 - 16 Jun 2024
Cited by 5 | Viewed by 1405
Abstract
Wildfires cause great losses to the ecological environment, economy, and people’s safety and belongings. As a result, it is crucial to establish wildfire susceptibility models and delineate fire risk levels. It has been proven that the use of remote sensing data, such as [...] Read more.
Wildfires cause great losses to the ecological environment, economy, and people’s safety and belongings. As a result, it is crucial to establish wildfire susceptibility models and delineate fire risk levels. It has been proven that the use of remote sensing data, such as meteorological and topographical data, can effectively predict and evaluate wildfire susceptibility. Accordingly, this paper converts meteorological and topographical data into fire-influencing factor raster maps for wildfire susceptibility prediction. The continuous convolutional neural network (CCNN for short) based on coordinate attention (CA for short) can aggregate different location information into channels of the network so as to enhance the feature expression ability; moreover, for different patches with different resolutions, the improved CCNN model does not need to change the structural parameters of the network, which improves the flexibility of the network application in different forest areas. In order to reduce the annotation of training samples, we adopt an active learning method to learn positive features by selecting high-confidence samples, which contributes to enhancing the discriminative ability of the network. We use fire probabilities output from the model to evaluate fire risk levels and generate the fire susceptibility map. Taking Chongqing Municipality in China as an example, the experimental results show that the CA-based CCNN model has a better classification performance; the accuracy reaches 91.7%, and AUC reaches 0.9487, which is 5.1% and 2.09% higher than the optimal comparative method, respectively. Furthermore, if an accuracy of about 86% is desired, our method only requires 50% of labeled samples and thus saves about 20% and 40% of the labeling efforts compared to the other two methods, respectively. Ultimately, the proposed model achieves the balance of high prediction accuracy and low annotation cost and is more helpful in classifying fire high warning zones and fire-free zones. Full article
Show Figures

Figure 1

15 pages, 4039 KiB  
Article
A Soil Moisture and Vegetation-Based Susceptibility Mapping Approach to Wildfire Events in Greece
by Kyriakos Chaleplis, Avery Walters, Bin Fang, Venkataraman Lakshmi and Alexandra Gemitzi
Remote Sens. 2024, 16(10), 1816; https://doi.org/10.3390/rs16101816 - 20 May 2024
Cited by 4 | Viewed by 2099
Abstract
Wildfires in Mediterranean areas are becoming more frequent, and the fire season is extending toward the spring and autumn months. These alarming findings indicate an urgent need to develop fire susceptibility methods capable of identifying areas vulnerable to wildfires. The present work aims [...] Read more.
Wildfires in Mediterranean areas are becoming more frequent, and the fire season is extending toward the spring and autumn months. These alarming findings indicate an urgent need to develop fire susceptibility methods capable of identifying areas vulnerable to wildfires. The present work aims to uncover possible soil moisture and vegetation condition precursory signals of the largest and most devastating wildfires in Greece that occurred in 2021, 2022, and 2023. Therefore, the time series of two remotely sensed datasets–MAP L4 Soil Moisture (SM) and Landsat 8 NDVI, which represent vegetation and soil moisture conditions—were examined before five destructive wildfires in Greece during the study period. The results of the analysis highlighted specific properties indicative of fire-susceptible areas. NDVI in all fire-affected areas ranged from 0.13 to 0.35, while mean monthly soil moisture showed negative anomalies in the spring periods preceding fires. Accordingly, fire susceptibility maps were developed, verifying the usefulness of remotely sensed information related to soil moisture and NDVI. This information should be used to enhance fire models and identify areas at risk of wildfires in the near future. Full article
(This article belongs to the Special Issue Satellite Soil Moisture Estimation, Assessment, and Applications)
Show Figures

Figure 1

22 pages, 18976 KiB  
Article
The Dolan Fire of Central Coastal California: Burn Severity Estimates from Remote Sensing and Associations with Environmental Factors
by Iyare Oseghae, Kiran Bhaganagar and Alberto M. Mestas-Nuñez
Remote Sens. 2024, 16(10), 1693; https://doi.org/10.3390/rs16101693 - 10 May 2024
Cited by 4 | Viewed by 2294
Abstract
In 2020, wildfires scarred over 4,000,000 hectares in the western United States, devastating urban populations and ecosystems alike. The significant impact that wildfires have on plants, animals, and human environments makes wildfire adaptation, management, and mitigation strategies a critical task. This study uses [...] Read more.
In 2020, wildfires scarred over 4,000,000 hectares in the western United States, devastating urban populations and ecosystems alike. The significant impact that wildfires have on plants, animals, and human environments makes wildfire adaptation, management, and mitigation strategies a critical task. This study uses satellite imagery from Landsat to calculate burn severity and map the fire progression for the Dolan Fire of central Coastal California which occurred in August 2020. Several environmental factors, such as temperature, humidity, fuel type, topography, surface conditions, and wind velocity, are known to affect wildfire spread and burn severity. The aim of this study is the investigation of the relationship between these environmental factors, estimates of burn severity, and fire spread patterns. Burn severity is calculated and classified using the Difference in Normalized Burn Ratio (dNBR) before being displayed as a time series of maps. The Dolan Fire had a moderate severity burn with an average dNBR of 0.292. The ignition site location, when paired with the patterns of fire spread, is consistent with wind speed and direction data, suggesting fire movement to the southeast of the fire ignition site. Patterns of increased burn severity are compared with both topography (slope and aspect) and fuel type. Locations that were found to be more susceptible to high burn severity featured Long Needle Timber Litter and Mature Timber fuels, intermediate slope angles between 15 and 35°, and north- and east-facing slopes. This study has implications for the future predictive modeling of wildfires that may serve to develop wildfire mitigation strategies, manage climate change impacts, and protect human lives. Full article
(This article belongs to the Topic Application of Remote Sensing in Forest Fire)
Show Figures

Figure 1

Back to TopTop