Machine Learning Model Reveals Land Use and Climate’s Role in Caatinga Wildfires: Present and Future Scenarios
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Overview
2.3. Fire Occurrence Data
2.4. Environmental and Human Predictors
2.5. Bioclimatic Predictors
2.6. Variable Selection
2.7. MaxEnt Modeling for Fire Prediction
2.8. Spatial Fire Distribution of the Baseline Model and Change Analysis
Class | Variable (Unit) | Description of Data | Resolution | Type | Source |
---|---|---|---|---|---|
Climate normals | Tavg (°C) | Annual Mean Temperature | 30 arc-seconds | Cont | Ref. [45] for the period 1971–2000 and [50] for future fire models |
ΔTdiurnal (°C) | Annual Mean Diurnal Range (Mean of monthly (max temp—min)) temp)) | 30 arc-seconds | Cont | ||
Isother (%) | Isothermality (ΔTdiurnal /ΔTannual × 100) | 30 arc-seconds | Cont | ||
Tseason (°C) | Temperature Seasonality (Standard Deviation) | 30 arc-seconds | Cont | ||
Tmax (°C) | Max Temperature of Warmest Month | 30 arc-seconds | Cont | ||
Tmin (°C) | Min Temperature of Coldest Month | 30 arc-seconds | Cont | ||
ΔTannual (°C) | Annual Temperature Range | 30 arc-seconds | Cont | ||
Twet (°C) | Mean Temperature of Wettest Quarter | 30 arc-seconds | Cont | ||
Tdry (°C) | Mean Temperature of Driest Quarter | 30 arc-seconds | Cont | ||
Twarm (°C) | Mean Temperature of Warmest Quarter | 30 arc-seconds | Cont | ||
Tcold (°C) | Mean Temperature of Coldest Quarter | 30 arc-seconds | Cont | ||
PPT (mm) | Annual Precipitation | 30 arc-seconds | Cont | ||
PPTwet Month (mm) | Precipitation of Wettest Month (max([PPTi, …, PPT12])) | 30 arc-seconds | Cont | ||
PPTdry Month (mm) | Precipitation of Driest Month (min([PPTi, …, PPT12])) | 30 arc-seconds | Cont | ||
PPTseason (%) | Precipitation Seasonality (coefficient of variation) | 30 arc-seconds | Cont | ||
PPTwet (mm) | Precipitation of Wettest Quarter | 30 arc-seconds | Cont | ||
PPTdry (mm) | Precipitation of Driest Quarter | 30 arc-seconds | Cont | ||
PPTwar (mm) | Precipitation of Warmest Quarter | 30 arc-seconds | Cont | ||
PPTcold (mm) | Precipitation of Coldest Quarter | 30 arc-seconds | Cont | ||
Land use and land cover | LULC (class) | Landsat-based classification of Caatinga Biome for 2023 | 30 m resampling for 30 arc-seconds | Cat | [51] |
Vegetation | Dis_Veget (km) | Euclidean distance calculated from a binary vegetation raster Forest Natural Formation | 30 arc-seconds | Cont | [51] |
Anthropogenic factor | Dist_Nonveg (km) | Euclidian distance calculated from a binary non vegetated area raster | 30 arc-seconds | Cont | [51] |
Dist_water (km) | Euclidian distance calculated from a binary water raster | 30 arc-seconds | Cont | [51] |
3. Results
3.1. Baseline Model of Fire Probability
3.2. Projected Future Fire Probabilities
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bowman, D.M.J.S.; Kolden, C.A.; Abatzoglou, J.T.; Johnston, F.H.; van der Werf, G.R.; Flannigan, M. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 2020, 1, 500–515. [Google Scholar] [CrossRef]
- Roces-Díaz, J.V.; Santín, C.; Martínez-Vilalta, J.; Doerr, S.H. A global synthesis of fire effects on ecosystem services of forests and woodlands. Front. Ecol. Environ. 2022, 20, 170–178. [Google Scholar] [CrossRef]
- Kelly, L.T.; Giljohann, K.M.; Duane, A.; Aquilué, N.; Archibald, S.; Batllori, E.; Bennett, A.F.; Buckland, S.T.; Canelles, Q.; Clarke, M.F.; et al. Fire and biodiversity in the Anthropocene. Science 2020, 370, eabb0355. [Google Scholar] [CrossRef] [PubMed]
- Harper, A.R.; Doerr, S.H.; Santin, C.; Froyd, C.A.; Sinnadurai, P. Prescribed fire and its impacts on ecosystem services in the UK. Sci. Total. Environ. 2018, 624, 691–703. [Google Scholar] [CrossRef] [PubMed]
- Rocha, R.; Sant’anna, A.A. Winds of fire and smoke: Air pollution and health in the Brazilian Amazon. World Dev. 2022, 151, 105722. [Google Scholar] [CrossRef]
- Thomas, D.; Butry, D.; Gilbert, S.; Webb, D.; Fung, J. The Costs and Losses of Wildfires: A Literature Review. NIST Spec. Publ. 2017, 1215, 1–72. [Google Scholar]
- Bowman, D.M.; O’Brien, J.A.; Goldammer, J.G. Pyrogeography and the Global Quest for Sustainable Fire Management. Annu. Rev. Environ. Resour. 2013, 38, 57–80. [Google Scholar] [CrossRef]
- Cunningham, C.X.; Williamson, G.J.; Bowman, D.M.J.S. Increasing frequency and intensity of the most extreme wildfires on Earth. Nat. Ecol. Evol. 2024, 8, 1420–1425. [Google Scholar] [CrossRef]
- Bowman, D.M.J.S.; Balch, J.K.; Artaxo, P.; Bond, W.J.; Carlson, J.M.; Cochrane, M.A.; D’Antonio, C.M.; DeFries, R.S.; Doyle, J.C.; Harrison, S.P.; et al. Fire in the Earth System. Science 2009, 324, 481–484. [Google Scholar] [CrossRef] [PubMed]
- Bowman, D.M.J.S.; Balch, J.; Artaxo, P.; Bond, W.J.; Cochrane, M.A.; D’antonio, C.M.; DeFries, R.; Johnston, F.H.; Keeley, J.E.; Krawchuk, M.A.; et al. The human dimension of fire regimes on Earth. J. Biogeogr. 2011, 38, 2223–2236. [Google Scholar] [CrossRef] [PubMed]
- Moritz, M.A.; Parisien, M.-A.; Batllori, E.; Krawchuk, M.A.; Van Dorn, J.; Ganz, D.J.; Hayhoe, K. Climate change and disruptions to global fire activity. Ecosphere 2012, 3, 1–22. [Google Scholar] [CrossRef]
- Barlow, J.; Berenguer, E.; Carmenta, R.; França, F. Clarifying Amazonia’s burning crisis. Glob. Chang. Biol. 2020, 26, 319–321. [Google Scholar] [CrossRef] [PubMed]
- Duane, A.; Castellnou, M.; Brotons, L. Towards a comprehensive look at global drivers of novel extreme wildfire events. Clim. Chang. 2021, 165, 1–21. [Google Scholar] [CrossRef]
- da Silva, J.M.C.; Leal, I.R.; Tabarelli, M. Caatinga: The Largest Tropical Dry Forest Region in South America; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- de Oliveira, M.L.; dos Santos, C.A.; de Oliveira, G.; Silva, M.T.; da Silva, B.B.; Cunha, J.E.d.B.; Ruhoff, A.; Santos, C.A. Remote sensing-based assessment of land degradation and drought impacts over terrestrial ecosystems in Northeastern Brazil. Sci. Total. Environ. 2022, 835, 155490. [Google Scholar] [CrossRef] [PubMed]
- Martins, S.F.S.; dos Santos, A.M.; da Silva, C.F.A.; Rudke, A.P.; Alvarado, S.T.; Melo, J.L.d.S. The drivers of fire in the Caatinga Biome in Brazil. For. Ecol. Manag. 2024, 572, 122260. [Google Scholar] [CrossRef]
- Alencar, A.A.C.; Arruda, V.L.S.; da Silva, W.V.; Conciani, D.E.; Costa, D.P.; Crusco, N.; Duverger, S.G.; Ferreira, N.C.; Franca-Rocha, W.; Hasenack, H.; et al. Long-Term Landsat-Based Monthly Burned Area Dataset for the Brazilian Biomes Using Deep Learning. Remote Sens. 2022, 14, 2510. [Google Scholar] [CrossRef]
- Viegas, L.M.D.; Sales, L.; Hipólito, J.; Amorim, C.; de Pereira, E.J.; Ferreira, P.; Folta, C.; Ferrante, L.; Fearnside, P.; Malhado, A.C.M.; et al. We’re building it up to burn it down: Fire occurrence and fire-related climatic patterns in Brazilian biomes. PeerJ 2022, 10, e14276. [Google Scholar] [CrossRef]
- Junior, J.A.S.; Pacheco, A.D.P. Fire Analysis in the Caatinga Environment from Landsat-8 Images, Enhanced Vegetation Index and Analysis by the Main Components. Cienc. Florest. 2021, 31, 417–439. [Google Scholar] [CrossRef]
- de Araújo, F.M.; Ferreira, L.G.; Arantes, A.E. Distribution Patterns of Burned Areas in the Brazilian Biomes: An Analysis Based on Satellite Data for the 2002–2010 Period. Remote Sens. 2012, 4, 1929–1946. [Google Scholar] [CrossRef]
- Lucas, F.M.F.; Araujo, E.C.G.; Fiedler, N.C.; Santana, J.A.d.S.; Tetto, A.F. Perspective: Scientific gaps on forest fires in Brazilian protected areas. For. Ecol. Manag. 2023, 529, 120739. [Google Scholar] [CrossRef]
- Bezerra, J.S.; Arroyo-Rodríguez, V.; Tavares, J.M.; Leal, A.; Leal, I.R.; Tabarelli, M. Drastic impoverishment of the soil seed bank in a tropical dry forest exposed to slash-and-burn agriculture. For. Ecol. Manag. 2022, 513, 120185. [Google Scholar] [CrossRef]
- Althoff, T.D.; Menezes, R.S.C.; de Carvalho, A.L.; Pinto, A.d.S.; Santiago, G.A.C.F.; Ometto, J.P.H.B.; von Randow, C.; Sampaio, E.V.d.S.B. Climate change impacts on the sustainability of the firewood harvest and vegetation and soil carbon stocks in a tropical dry forest in Santa Teresinha Municipality, Northeast Brazil. For. Ecol. Manag. 2016, 360, 367–375. [Google Scholar] [CrossRef]
- de Moraes, C.A.; de Oliveira, M.A.; Behling, H. Late Holocene climate dynamics and human impact inferred from vegetation and fire history of the Caatinga, in Northeast Brazil. Rev. Palaeobot. Palynol. 2020, 282, 104299. [Google Scholar] [CrossRef]
- Sayedi, S.S.; Abbott, B.W.; Vannière, B.; Leys, B.; Colombaroli, D.; Gil Romera, G.; Słowiński, M.; Aleman, J.C.; Blarquez, O.; Feurdean, A.; et al. Assessing changes in global fire regimes. Fire Ecol. 2024, 20, 1–22. [Google Scholar] [CrossRef]
- Jones, M.W.; Abatzoglou, J.T.; Veraverbeke, S.; Andela, N.; Lasslop, G.; Forkel, M.; Smith, A.J.P.; Burton, C.; Betts, R.A.; van der Werf, G.R.; et al. Global and Regional Trends and Drivers of Fire Under Climate Change. Rev. Geophys. 2022, 60, e2020RG000726. [Google Scholar] [CrossRef]
- Le Page, Y.; Morton, D.; Hartin, C.; Bond-Lamberty, B.; Pereira, J.M.C.; Hurtt, G.; Asrar, G. Synergy between land use and climate change increases future fire risk in Amazon forests. Earth Syst. Dyn. 2017, 8, 1237–1246. [Google Scholar] [CrossRef]
- Krawchuk, M.A.; Moritz, M.A.; Parisien, M.-A.; Van Dorn, J.; Hayhoe, K. Global Pyrogeography: The Current and Future Distribution of Wildfire. PLoS ONE 2009, 4, e5102. [Google Scholar] [CrossRef] [PubMed]
- Collins, L.; Griffioen, P.; Newell, G.; Mellor, A. The utility of Random Forests for wildfire severity mapping. Remote Sens. Environ. 2018, 216, 374–384. [Google Scholar] [CrossRef]
- Abid, F. A Survey of Machine Learning Algorithms Based Forest Fires Prediction and Detection Systems. Fire Technol. 2021, 57, 559–590. [Google Scholar] [CrossRef]
- Mohajane, M.; Costache, R.; Karimi, F.; Pham, Q.B.; Essahlaoui, A.; Nguyen, H.; Laneve, G.; Oudija, F. Application of remote sensing and machine learning algorithms for forest fire mapping in a Mediterranean area. Ecol. Indic. 2021, 129, 107869. [Google Scholar] [CrossRef]
- Shao, Y.; Feng, Z.; Sun, L.; Yang, X.; Li, Y.; Xu, B.; Chen, Y. Mapping China’s Forest Fire Risks with Machine Learning. Forests 2022, 13, 856. [Google Scholar] [CrossRef]
- Jain, P.; Coogan, S.C.P.; Subramanian, S.G.; Crowley, M.; Taylor, S.; Flannigan, M.D. A Review of Machine Learning Applications in Wildfire Science and Management. Environ. Rev. 2020, 28, 478–505. [Google Scholar] [CrossRef]
- de Santana, M.M.M.; de Vasconcelos, R.N.; Neto, E.M.; Rocha, W.d.J.S.d.F. Machine Learning Model Reveals Land Use and Climate’s Role in Amazon Wildfires: Present and Future Scenarios. Fire 2024, 7, 338. [Google Scholar] [CrossRef]
- de Santana, M.M.M.; de Vasconcelos, R.N.; Mariano-Neto, E. Fire propensity in Amazon savannas and rainforest and effects under future climate change. Int. J. Wildland Fire 2022, 32, 149–163. [Google Scholar] [CrossRef]
- Instituto Brasileiro de Geografia e Estatística (IBGE) (Ed.) Biomas e Sistema Costeiro-Marinho do Brasil: Compatível Com a Escala 1:250,000, 1st ed.; V 45 ed.; IBGE: Rio de Janeiro, Brazil, 2019; Volume 1, ISBN 9788524045103. [Google Scholar]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Moraes, G.J.L.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef] [PubMed]
- Alves, E.D.L. Climatologia: Noções básicas e climas do Brasil. Soc. Nat. 2010, 22, 639–640. [Google Scholar] [CrossRef]
- Andrade-Lima, D. The Caatingas Dominium. Rev. Bras. Botânica 1981, 4, 149–163. [Google Scholar]
- Rocha, W.J.S.F.; Vasconcelos, R.N.; Costa, D.P.; Duverger, S.G.; Lobão, J.S.B.; Souza, D.T.M.; Herrmann, S.M.; Santos, N.A.; Rocha, R.O.F.; Ferreira-Ferreira, J.; et al. Towards Uncovering Three Decades of LULC in the Brazilian Drylands: Caatinga Biome Dynamics (1985–2019). Land 2024, 13, 1250. [Google Scholar] [CrossRef]
- Sampaio, E.V.S.B. Overview of the Brazilian Caatinga. In Seasonally Dry Tropical Forests; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Leal, I.R.; DA Silva, J.M.C.; Tabarelli, M.; Lacher, T.E. Changing the Course of Biodiversity Conservation in the Caatinga of Northeastern Brazil. Conserv. Biol. 2005, 19, 701–706. [Google Scholar] [CrossRef]
- Moro, M.F.; Nic Lughadha, E.; Filer, D.L.; de Araújo, F.S.; Martins, F.R. A catalogue of the vascular plants of the Caatinga Phytogeographical Domain: A synthesis of floristic and phytosociological surveys. Phytotaxa 2014, 160, 1–118. [Google Scholar] [CrossRef]
- Rocha, W.J.S.F.; Vasconcelos, R.N.; Duverger, S.G.; Costa, D.P.; Santos, N.A.; Rocha, R.O.F.; de Santana, M.M.M.; Alencar, A.A.C.; Arruda, V.L.S.; da Silva, W.V.; et al. Mapping Burned Area in the Caatinga Biome: Employing Deep Learning Techniques. Fire 2024, 7, 437. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Vignali, S.; Barras, A.G.; Arlettaz, R.; Braunisch, V. SDMtune: An R package to tune and evaluate species distribution models. Ecol. Evol. 2020, 10, 11488–11506. [Google Scholar] [CrossRef] [PubMed]
- Hijmans, R.J.; Phillips, S.; Leathwick, J.R.; Elith, J. Dismo Package for R; Version 1.1-4; Circles 2017; Volume 9, Available online: https://cran.r-project.org/web/packages/dismo/dismo.pdf (accessed on 15 October 2024).
- Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 2011, 17, 43–57. [Google Scholar] [CrossRef]
- Parisien, M.-A.; Snetsinger, S.; Greenberg, J.A.; Nelson, C.R.; Schoennagel, T.; Dobrowski, S.Z.; Moritz, M.A. Spatial variability in wildfire probability across the western United States. Int. J. Wildland Fire 2012, 21, 313–327. [Google Scholar] [CrossRef]
- Tatebe, H.; Ogura, T.; Nitta, T.; Komuro, Y.; Ogochi, K.; Takemura, T.; Sudo, K.; Sekiguchi, M.; Abe, M.; Saito, F.; et al. Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6. Geosci. Model Dev. 2019, 12, 2727–2765. [Google Scholar] [CrossRef]
- MAPBIOMAS Projeto MapBiomas—Coleção [7.0] Da Série Anual de Mapas de Cobertura e Uso da Terra do Brasil. Available online: https://mapbiomas.org/ (accessed on 1 November 2024).
- Vilar, L.; Gómez, I.; Martínez-Vega, J.; Echavarría, P.; Riaño, D.; Martín, M.P. Multitemporal Modelling of Socio-Economic Wildfire Drivers in Central Spain between the 1980s and the 2000s: Comparing Generalized Linear Models to Machine Learning Algorithms. PLoS ONE 2016, 11, e0161344. [Google Scholar] [CrossRef]
- Göltas, M.; Ayberk, H.; Kücük, O. Forest Fire Occurrence Modeling in Southwest Turkey Using MaxEnt Machine Learning Technique. IForest 2024, 17, 10–18. [Google Scholar] [CrossRef]
- da Rocha Miranda, J.; Juvanhol, R.S.; da Silva, R.G. Use of Maximum Entropy to Improve Validation and Prediction of Active Fires in a Brazilian Savanna Region. Ecol. Modell. 2023, 475, 110219. [Google Scholar] [CrossRef]
- de Oliveira-Júnior, J.F.; Shah, M.; Abbas, A.; Filho, W.L.F.C.; Junior, C.A.d.S.; Santiago, D.d.B.; Teodoro, P.E.; Mendes, D.; de Souza, A.; Aviv-Sharon, E.; et al. Spatiotemporal Analysis of Fire Foci and Environmental Degradation in the Biomes of Northeastern Brazil. Sustainability 2022, 14, 6935. [Google Scholar] [CrossRef]
- Ermitão, T.; Gouveia, C.M.; Bastos, A.; Russo, A.C. Vegetation Productivity Losses Linked to Mediterranean Hot and Dry Events. Remote Sens. 2021, 13, 4010. [Google Scholar] [CrossRef]
- Cunningham, C.X.; Williamson, G.J.; Nolan, R.H.; Teckentrup, L.; Boer, M.M.; Bowman, D.M.J.S. Pyrogeography in flux: Reorganization of Australian fire regimes in a hotter world. Glob. Chang. Biol. 2024, 30, e17130. [Google Scholar] [CrossRef] [PubMed]
- Loudermilk, E.L.; O’brien, J.J.; Goodrick, S.L.; Linn, R.R.; Skowronski, N.S.; Hiers, J.K. Vegetation’s influence on fire behavior goes beyond just being fuel. Fire Ecol. 2022, 18, 9. [Google Scholar] [CrossRef]
- Wasserman, T.N.; Mueller, S.E. Climate influences on future fire severity: A synthesis of climate-fire interactions and impacts on fire regimes, high-severity fire, and forests in the western United States. Fire Ecol. 2023, 19, 43. [Google Scholar] [CrossRef]
- Trancoso, R.; Syktus, J.; Salazar, A.; Thatcher, M.; Toombs, N.; Wong, K.K.-H.; Meijaard, E.; Sheil, D.; A McAlpine, C. Converting tropical forests to agriculture increases fire risk by fourfold. Environ. Res. Lett. 2022, 17, 104019. [Google Scholar] [CrossRef]
- Park, C.Y.; Takahashi, K.; Takakura, J.; Li, F.; Fujimori, S.; Hasegawa, T.; Ito, A.; Lee, D.K. How Will Deforestation and Vegetation Degradation Affect Global Fire Activity? Earth’s Future 2021, 9, e2020EF001786. [Google Scholar] [CrossRef]
- Findell, K.L.; Berg, A.; Gentine, P.; Krasting, J.P.; Lintner, B.R.; Malyshev, S.; Santanello, J.A., Jr.; Shevliakova, E. The impact of anthropogenic land use and land cover change on regional climate extremes. Nat. Commun. 2017, 8, 989. [Google Scholar] [CrossRef] [PubMed]
- Silva, P.S.; Rodrigues, J.A.; Santos, F.L.M.; Pereira, A.A.; Nogueira, J.; DaCamara, C.C.; Libonati, R. Drivers of burned area patterns in cerrado: The case of matopiba region. ISPRS-Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, XLII-3/W12, 135–140. [Google Scholar] [CrossRef]
- de Souza, A.A.; Galvão, L.S.; Korting, T.S.; Prieto, J.D. Dynamics of savanna clearing and land degradation in the newest agricultural frontier in Brazil. GIScience Remote Sens. 2020, 57, 965–984. [Google Scholar] [CrossRef]
- Silva, P.S.; Nogueira, J.; Rodrigues, J.A.; Santos, F.L.; Pereira, J.M.; DaCamara, C.C.; Daldegan, G.A.; Pereira, A.A.; Peres, L.F.; Schmidt, I.B.; et al. Putting fire on the map of Brazilian savanna ecoregions. J. Environ. Manag. 2021, 296, 113098. [Google Scholar] [CrossRef] [PubMed]
- Pletsch, M.A.J.S.; Körting, T.S.; Morita, F.C.; Silva-Junior, C.H.L.; Anderson, L.O.; Aragão, L.E.O.C. Near Real-Time Fire Detection and Monitoring in the MATOPIBA Region, Brazil. Remote Sens. 2022, 14, 3141. [Google Scholar] [CrossRef]
- Júnior, D.V.R.; de Aguiar, V.G.; Kantamaneni, K. Mapping Fire: The Case of Matopiba. IDS Bull. 2023, 54, 107–127. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasconcelos, R.N.; de Santana, M.M.M.; Costa, D.P.; Duverger, S.G.; Ferreira-Ferreira, J.; Oliveira, M.; Barbosa, L.d.S.; Cordeiro, C.L.; Franca Rocha, W.J.S. Machine Learning Model Reveals Land Use and Climate’s Role in Caatinga Wildfires: Present and Future Scenarios. Fire 2025, 8, 8. https://doi.org/10.3390/fire8010008
Vasconcelos RN, de Santana MMM, Costa DP, Duverger SG, Ferreira-Ferreira J, Oliveira M, Barbosa LdS, Cordeiro CL, Franca Rocha WJS. Machine Learning Model Reveals Land Use and Climate’s Role in Caatinga Wildfires: Present and Future Scenarios. Fire. 2025; 8(1):8. https://doi.org/10.3390/fire8010008
Chicago/Turabian StyleVasconcelos, Rodrigo N., Mariana M. M. de Santana, Diego P. Costa, Soltan G. Duverger, Jefferson Ferreira-Ferreira, Mariana Oliveira, Leonardo da Silva Barbosa, Carlos Leandro Cordeiro, and Washington J. S. Franca Rocha. 2025. "Machine Learning Model Reveals Land Use and Climate’s Role in Caatinga Wildfires: Present and Future Scenarios" Fire 8, no. 1: 8. https://doi.org/10.3390/fire8010008
APA StyleVasconcelos, R. N., de Santana, M. M. M., Costa, D. P., Duverger, S. G., Ferreira-Ferreira, J., Oliveira, M., Barbosa, L. d. S., Cordeiro, C. L., & Franca Rocha, W. J. S. (2025). Machine Learning Model Reveals Land Use and Climate’s Role in Caatinga Wildfires: Present and Future Scenarios. Fire, 8(1), 8. https://doi.org/10.3390/fire8010008