Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = wildfire combustion rates

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 6860 KiB  
Article
Potential of a Light Combined Harvester/Forwarder to Reduce Wildfire Risk in Mediterranean Forests: Comparison with Current Work System
by Martino Rogai, Gerard Alcoverro and Gianni Picchi
Forests 2025, 16(4), 652; https://doi.org/10.3390/f16040652 - 9 Apr 2025
Viewed by 986
Abstract
In the last decades the impact of wildfires on forest ecosystem and human assets has steadily increased. Forest operations can help to reduce the spread rate and intensity of wildfires by limiting the biomass available for combustion. Fuel removal is mainly done with [...] Read more.
In the last decades the impact of wildfires on forest ecosystem and human assets has steadily increased. Forest operations can help to reduce the spread rate and intensity of wildfires by limiting the biomass available for combustion. Fuel removal is mainly done with preventive silviculture works which, in the Mediterranean basin, typically feature a negative economic balance. The introduction of small-sized forest machines may enhance efficiency and safety of such operations. The study compares the performance of the common motor-manual work system with an innovative machine performing both harvesting and forwarding of biomass. The study took place in a post-fire regenerated Pinus halepensis Mill. area with high fuel accumulation. Three plots were selected to represent the main development stages of this type of forest, respectively with a density of about 1700, 5000 and 9600 trees∙ha−1. The machine showed a clear advantage over the manual system with the lower and intermediate trees density, where the capacity to valorize the biomass reduced the overall balance per hectare respectively to 19% and 50% of the alternative. This allows to cover the whole operation with the local public subsidy, unlike the manual system. With the higher density, the overall balance is unfavorable for both work systems and different solutions should be tested. Full article
(This article belongs to the Section Forest Operations and Engineering)
Show Figures

Figure 1

21 pages, 5986 KiB  
Article
Assessing the Role of Forest Grazing in Reducing Fire Severity: A Mitigation Strategy
by Raffaella Lovreglio, Julian Lovreglio, Gabriele Giuseppe Antonio Satta, Marco Mura and Antonio Pulina
Fire 2024, 7(11), 409; https://doi.org/10.3390/fire7110409 - 8 Nov 2024
Cited by 3 | Viewed by 2170
Abstract
This study investigates the role of prescribed grazing as a sustainable fire prevention strategy in Mediterranean ecosystems, with a focus on Sardinia, an area highly susceptible to wildfires. Using FlamMap simulation software, we modeled fire behavior across various grazing and environmental conditions to [...] Read more.
This study investigates the role of prescribed grazing as a sustainable fire prevention strategy in Mediterranean ecosystems, with a focus on Sardinia, an area highly susceptible to wildfires. Using FlamMap simulation software, we modeled fire behavior across various grazing and environmental conditions to assess the impact of grazing on fire severity indicators such as flame length, rate of spread, and fireline intensity. Results demonstrate that grazing can reduce fire severity by decreasing combustible biomass, achieving reductions of 25.9% in fire extent in wet years, 60.9% in median years, and 45.8% in dry years. Grazed areas exhibited significantly lower fire intensity, particularly under high canopy cover. These findings support the integration of grazing into fire management policies, highlighting its efficacy as a nature-based solution. However, the study’s scope is limited to small biomass fuels (1-h fuels); future research should extend to larger fuel classes to enhance the generalizability of prescribed grazing as a fire mitigation tool. Full article
(This article belongs to the Special Issue Effects of Fires on Forest Ecosystems)
Show Figures

Figure 1

17 pages, 4695 KiB  
Article
Smoldering Ignition and Transition to Flaming Combustion of Pine Needle Fuel Beds: Effects of Bulk Density and Heat Supply
by Jiuling Yang, Jiepei Xu, Xiang Wu and Haoliang Wang
Fire 2024, 7(11), 383; https://doi.org/10.3390/fire7110383 - 26 Oct 2024
Cited by 1 | Viewed by 1549
Abstract
The smoldering of pine needle fuel beds (PNBs) has been a common subject of research because of its importance in initiating the rekindling of forest floor fires. Experimental studies of the coupling effects of the bulk density and external heat supply on smoldering [...] Read more.
The smoldering of pine needle fuel beds (PNBs) has been a common subject of research because of its importance in initiating the rekindling of forest floor fires. Experimental studies of the coupling effects of the bulk density and external heat supply on smoldering in PNBs have been scarce up to now. In this study, laboratory smoldering experiments were conducted to study the coupling effects of bulk density (30–55 kg m−3) and heat supply (ignition-off temperature Toff = 190 °C and 230 °C). Different ignition modes were observed under the same conditions, including non- ignition (NI), flaming ignition (FI), and the smoldering-to-flaming (StF) transition. The results in this study showed that the bulk density had distinct effects on different ignition modes: the increase in the bulk density facilitated the StF transition but impeded the FI. The coupling effects between the bulk density and heat supply became more intricate, especially at lower bulk densities and at a reduced heat supply. Additionally, a simple energy balance equation was established to explain the coupling effects of bulk density and heat supply on ignition behavior. The critical mass loss rate (MLR) for the StF transition ranged from 0.01 g s−1 to 0.03 g s−1, while the critical MLR for FI was 0.035 g s−1. The modified combustion efficiency (MCE) index for the StF transition decreased from approximately 79.6% to 70.1% as the density increased from 30 kg m−3 to 55 kg m−3. In contrast, the MCE for FI was approximately 90% across all the bulk densities. The StF transition delay time increased from 50 s at 30 kg m−3 to 1296 s at 55 kg m−3 when Toff = 230 °C. Further reduction in heat supply led to an increase in the delay time for the StF transition by diminishing the intensity of smoldering combustion. This work advances the fundamental understanding of how heat supply and bulk density impact smoldering ignition modes, ultimately aiding in the development of wildfire prevention strategies. Full article
(This article belongs to the Special Issue Vegetation Fires and Biomass Burning in Asia)
Show Figures

Figure 1

18 pages, 2698 KiB  
Review
Current Status and Prospects of Plant Flammability Measurements
by Minting Jian, Yi Jian, Hong Zeng, Dongyu Cao and Xinglei Cui
Fire 2024, 7(8), 266; https://doi.org/10.3390/fire7080266 - 1 Aug 2024
Cited by 3 | Viewed by 2477
Abstract
In recent years, the frequency of wildfires worldwide has been gradually increasing, posing significant threats to global ecosystems and human society. Given that plants serve as the primary fuel in natural environments, accurately assessing the flammability of plants is crucial for wildfire management [...] Read more.
In recent years, the frequency of wildfires worldwide has been gradually increasing, posing significant threats to global ecosystems and human society. Given that plants serve as the primary fuel in natural environments, accurately assessing the flammability of plants is crucial for wildfire management and fire ecology studies. Plant flammability is a multifaceted trait influenced by various physiological, physical, and chemical characteristics of plants. Currently, there is no universally accepted standard for quantifying plant flammability. By analyzing published research over the past few decades, this study found that 17.27% of studies assessed plant flammability by measuring flammability-related characteristics, such as moisture content, leaf size, bark thickness, oil content, and terpene content; a total of 34.55% of studies assessed plant flammability through burning experiments by measuring burning parameters, such as ignition time, duration of combustion, and flame spread rate. The remaining studies, approximately 50%, used a combination of burning experiments and flammability-related characteristic measurement to assess plant flammability. This study outlined the current status of plant flammability measurements, discussed the merits of each measurement method, and proposed suggestions for enhancing the assessment of plant flammability, with the aim of contributing to the standardization of plant flammability measurements. Full article
Show Figures

Figure 1

20 pages, 4741 KiB  
Article
The Effect of Microbial Degradation on the Combustibility and Potential Fire Behaviour of Pinus koraiensis Needles
by Baozhong Li, Mingyu Wang, Jibin Ning, Yunlin Zhang, Guang Yang, Lixuan Wang, Daotong Geng, Fei Wu and Hongzhou Yu
Forests 2024, 15(7), 1206; https://doi.org/10.3390/f15071206 - 12 Jul 2024
Viewed by 1397
Abstract
Flammable litter such as Pinus koraiensis needle accumulation increases the risk of wildfire. In the event of a high-intensity fire, forest resources can be severely damaged. To reduce the occurrence of forest fires, it is important to reduce loads and modify structures. This [...] Read more.
Flammable litter such as Pinus koraiensis needle accumulation increases the risk of wildfire. In the event of a high-intensity fire, forest resources can be severely damaged. To reduce the occurrence of forest fires, it is important to reduce loads and modify structures. This study conducted 270 indoor degradation experiments to determine physicochemical properties of Pinus koraiensis during the combustion degradation process. Combustion degradation treatment variables were constructed with different durations, Trichoderma fungi, and doses. The results show that the physicochemical properties of flammable litter changed significantly after degradation, with a maximum degradation rate of 11. The degradation rate was affected by time and microbial agents, but there was no significant difference between different doses. Principal component analysis was used to determine overall combustibility, and it was found that a dose of 4 mL of Trichoderma harzianum had the best effect on degradation for 42 days, reducing combustibility by 203%. It was found that the 6ml composite mould had the best inhibitory effect on fire spread rate, reaching the lowest value. After 42 days, the flame intensity of 4 mL Trichoderma harzianum reached its lowest value of 57.17 kw/m, which represents a decrease of 54% compared to the initial value. Similarly, the flame’s length reached its lowest value of 4.91 cm, which represents a decrease of 31% compared to the same period last year. The aim of this study is to establish the relationship between time, microbial agents, dosage, flammable physical and chemical properties, overall flammability, and potential fire behaviour. The values of the goodness-of-fit index and the comparative fit index are both >0.98, and the values of the standardised root mean square residual and the approximate root mean square error are both <0.05. This study has a positive effect on accelerating the decomposition of combustibles, reducing the content of flammable components, reducing flammability and potential fire behaviour, and reducing the risk of forest fires. It is of great significance for strengthening natural resource management and forest ecological conservation. Full article
(This article belongs to the Section Natural Hazards and Risk Management)
Show Figures

Figure 1

14 pages, 3566 KiB  
Article
Effect of Climate Evolution on the Dynamics of the Wildfires in Greece
by Nikolaos Iliopoulos, Iasonas Aliferis and Michail Chalaris
Fire 2024, 7(5), 162; https://doi.org/10.3390/fire7050162 - 6 May 2024
Cited by 1 | Viewed by 2736
Abstract
Understanding the potential effects of climate change on forest fire behavior and the resulting release of combustion products is critical for effective mitigation strategies in Greece. This study utilizes data from the MAGICC 2.4 (Model for the Assessment of Greenhouse Gas-Induced Climate Change) [...] Read more.
Understanding the potential effects of climate change on forest fire behavior and the resulting release of combustion products is critical for effective mitigation strategies in Greece. This study utilizes data from the MAGICC 2.4 (Model for the Assessment of Greenhouse Gas-Induced Climate Change) climate model and the SCENGEN 2.4 (SCENarioGENerator) database to assess these impacts. By manipulating various model parameters such as climate sensitivity, scenario, time period, and global climate models (GCMs) within the SCENGEN 2.4 database, we analyzed climatic trends affecting forest fire generation and evolution. The results reveal complex and nuanced findings, indicating a need for further investigation. Case studies are conducted using the FARSITE 4 (Fire Area Simulator) model, incorporating meteorological changes derived from climate trends. Simulations of two fires in East Attica, accounting for different fuel and meteorological conditions, demonstrate an increase in the rate of combustion product release. This underscores the influence of changing meteorological parameters on forest fire dynamics and highlights the importance of proactive measures to mitigate future risks. Our findings emphasize the urgency of addressing climate change impacts on wildfire behavior to safeguard environmental and public health in Greece. Full article
(This article belongs to the Special Issue Effects of Climate Change on Fire Danger)
Show Figures

Figure 1

20 pages, 14945 KiB  
Article
Estimating Climate-Sensitive Wildfire Risk and Tree Mortality Models for Use in Broad-Scale U.S. Forest Carbon Projections
by Raju Pokharel, Gregory Latta and Sara B. Ohrel
Forests 2023, 14(2), 302; https://doi.org/10.3390/f14020302 - 3 Feb 2023
Cited by 1 | Viewed by 2536
Abstract
This study utilizes forest inventory and climate attributes as the basis for estimating models of wildfire risk and associated biomass loss (tree mortality) and then demonstrates how they can be applied in calculating CO2 emissions related to the incidence of wildfires from [...] Read more.
This study utilizes forest inventory and climate attributes as the basis for estimating models of wildfire risk and associated biomass loss (tree mortality) and then demonstrates how they can be applied in calculating CO2 emissions related to the incidence of wildfires from U.S. forests. First, we use the full set of over 150,000 FIA plots of national forest inventory and climatic parameters to estimate models of the annual probability of wildfire occurrence and loss of live tree biomass. Then, maps of the spatial allocation of both the model-derived probability of wildfire occurrences and tree mortality are presented at the national level. The probability of wildfire occurrences and tree mortality were defined by a complex non-linear association of climatic conditions and forest ownerships, available aboveground biomass, and the age of the stand. Then, we provide an example of how these models can estimate potential CO2 emissions from wildfires by using FIA inventory data. We estimated 6.10, 16.65, 22.75, and 31.01 million metric tons of annual CO2 emissions with low, medium, high, and catastrophic combustion rates, respectively, from forests due to wildfire in the continental U.S. The wildfire risk and biomass loss due to tree mortality maps can be used by landowners, managers, public agencies, and other stakeholders in identifying high-risk wildfire zones and the potential CO2 emissions. These equations can also help estimate fire risk and associated CO2 emissions for future climate conditions to provide insight into climate change-related wildfire occurrences. Full article
(This article belongs to the Special Issue Modeling National and Global Forest Product Markets and Trade)
Show Figures

Figure 1

22 pages, 5458 KiB  
Article
Long-Term Effects of Fire Severity and Climatic Factors on Post-Forest-Fire Vegetation Recovery
by Bin Hao, Xu Xu, Fei Wu and Lei Tan
Forests 2022, 13(6), 883; https://doi.org/10.3390/f13060883 - 6 Jun 2022
Cited by 32 | Viewed by 5425
Abstract
As a major disturbance to forest ecosystems, wildfires pose a serious threat to the ecological environment. Monitoring post-fire vegetation recovery is critical to quantifying the effects of wildfire on ecosystems and conducting forest resource management. Most previous studies have analyzed short-term (less than [...] Read more.
As a major disturbance to forest ecosystems, wildfires pose a serious threat to the ecological environment. Monitoring post-fire vegetation recovery is critical to quantifying the effects of wildfire on ecosystems and conducting forest resource management. Most previous studies have analyzed short-term (less than five years) post-fire recovery and limited the driving factors to temperature and precipitation. The lack of long-term and multi-faceted observational analyses has limited our understanding of the long-term effects of fire on vegetation recovery. This study utilized multi-source remote sensing data for a long time series analysis of post-fire vegetation recovery in China based on Google Earth Engine (GEE) cloud computing platform. Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Normalized Burn Ratio (NBR), and Normalized Difference Moisture Index (NDMI) were selected to quantify the low, moderate, and high severity of burned areas. Ridge Regression Model (RRM) was used to analyze the relationship between 15 driving factors and the vegetation regeneration process. The results show that it took at least 7–10 years for the vegetation index to recover to the pre-fire level after a forest fire. The recovery rate of high severity combustion areas was the fastest within the first two years. From the results of Ridge Regression, it came out that the overall fitting degree of the model with NDVI as the dependent variable was superior than that with EVI. The four variables of temperature, precipitation, soil temperature, and soil moisture were able to explain the change in more detail in vegetation indices. Our study enriches the research cases of global forest fires and vegetation recovery, provides a scientific basis for the sustainable development of forest ecosystems in China, and provides insight into environmental issues and resource management. Full article
(This article belongs to the Special Issue New Insights into Remote Sensing of Vegetation Structural Parameters)
Show Figures

Figure 1

21 pages, 2592 KiB  
Article
Combustion of Aboveground Wood from Live Trees in Megafires, CA, USA
by Mark E. Harmon, Chad T. Hanson and Dominick A. DellaSala
Forests 2022, 13(3), 391; https://doi.org/10.3390/f13030391 - 27 Feb 2022
Cited by 12 | Viewed by 9592
Abstract
Biomass combustion is a major biogeochemical process, but uncertain in magnitude. We examined multiple levels of organization (twigs, branches, trees, stands, and landscapes) in large, severe forest fires to see how combustion rates for live aboveground woody parts varied with tree species, size, [...] Read more.
Biomass combustion is a major biogeochemical process, but uncertain in magnitude. We examined multiple levels of organization (twigs, branches, trees, stands, and landscapes) in large, severe forest fires to see how combustion rates for live aboveground woody parts varied with tree species, size, and fire severity in Ponderosa pine (Pinus ponderosa Dougl. ex Laws.) and mixed conifer-dominated forests of the Sierra Nevada, California, USA. In high severity fire patches, most combustion loss was from branches < 2 cm diameter; in low to moderate severity patches, most was from bole charring. Combustion rates decreased as fire severity declined and with increasing tree size. Pinus species had little branch combustion, leading them to have ≈50% the combustion rate of other taxa. Combustion rates could be 100% for small branch segments and up to 57% for small tree aboveground woody biomass in high severity fire patches. However, combustion rates are very low overall at the stand (0.1%–3.2%) and landscape level (0.6%–1.8%), because large trees with low combustion rates comprise the majority of biomass, and high severity fire patches are less than half of the area burned. Our findings of low live wood combustion rates have important implications for policies related to wildfire emissions and forest management. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

16 pages, 5520 KiB  
Article
Fire Diurnal Cycle Derived from a Combination of the Himawari-8 and VIIRS Satellites to Improve Fire Emission Assessments in Southeast Australia
by Yueming Zheng, Jian Liu, Hongdeng Jian, Xiangtao Fan and Fuli Yan
Remote Sens. 2021, 13(15), 2852; https://doi.org/10.3390/rs13152852 - 21 Jul 2021
Cited by 18 | Viewed by 3480
Abstract
The violent and persistent wildfires that broke out along the southeast coast of Australia in 2019 caused a large number of pollutant emissions, which seriously affected air quality and the global climate. The existing two methods for estimating combustion emissions based on burned [...] Read more.
The violent and persistent wildfires that broke out along the southeast coast of Australia in 2019 caused a large number of pollutant emissions, which seriously affected air quality and the global climate. The existing two methods for estimating combustion emissions based on burned area and fire radiative power mainly use a medium resolution imaging spectrometer (MODIS) on the Aqua and Terra satellites. However, the low temporal resolution of MODIS and insensitivity to small fires lead to deviation in the estimation of fire emissions. In order to solve this problem, the Visible Infrared Imaging Radiometer Suite (VIIRS) with better performance is adopted in this paper, combined with the fire diurnal cycle information obtained by geostationary satellite Himawari-8, to explore the spatio-temporal model of biomass combustion emissions. Using this, a high-spatial- and -temporal-resolution fire emission inventory was generated for southeastern Australia from November 2019 to January 2020, which aims to fully consider the highly dynamic nature of fires and small fires (low FRP) that are much lower than the MODIS burned area or active fire detection limit, with emphasis on dry matter burned (DMB). We found that during the study period, the fire gradually moved from north to south, and the diurnal cycle of the fire in the study area changed greatly. The peak time of the fire gradually delayed as the fire moved south. Our inventory shows that the DMB in southeast Australia during the study period was about 146 Tg, with major burned regions distributed along the Great Dividing Range, with December 2019 being the main burning period. The total DMB we calculated is 0.5–3.1 times that reported by the GFAS (Global Fire Assimilation System) and 1.5 to 4 times lower than that obtained using the traditional “Burned Area Based Method (FINN)”. We believe that the GFAS may underestimate the results by ignoring a large number of small fires, and that the excessive combustion rate used in the FINN may be a source of overestimation. Therefore, we conclude that the combination of high-temporal-resolution and high-spatial-resolution satellites can improve FRE estimation and may also allow further verification of biomass combustion estimates from different inventories, which are far better approaches for fire emission estimation. Full article
Show Figures

Figure 1

12 pages, 7127 KiB  
Article
The Potential Effect of Pests on Forest Fire: Flammability of Mongolian Pine Bark with Resinosis on Boles
by Yuetai Weng, Guang Yang, Lifan Zhang, Xueying Di, Hongzhou Yu, Jibin Ning, Yu Xue, Zhan Shu and Dongdong Han
Forests 2021, 12(3), 365; https://doi.org/10.3390/f12030365 - 19 Mar 2021
Cited by 3 | Viewed by 3443
Abstract
Wildfires and pests are natural disturbance agents in many forest ecosystems that often contribute to ecological succession, nutrient cycling, and forest species composition. Mongolian pine (Pinus sylvestris var. mongolica) is a coniferous species that plays an important role as an ecological [...] Read more.
Wildfires and pests are natural disturbance agents in many forest ecosystems that often contribute to ecological succession, nutrient cycling, and forest species composition. Mongolian pine (Pinus sylvestris var. mongolica) is a coniferous species that plays an important role as an ecological barrier, and is widely spread in northern China. Its wood is loose; its branches, leaves, and cones contain a high level of resin and volatile oils that make the species highly flammable and the stands dominated by the species are very vulnerable to fire. Recently, resinosis on boles of Pinus sylvestris became an epidemic in China. To explore the potential effects of pests on fire, we compared the flammability of Mongolian pine barks with or without resinosis on boles using a cone calorimeter and several combustion analyses. We found that the barks from boles with resinosis had a greater oil content than the healthy trees. The study also indicated that the ignition times of the barks from boles with and without resinosis were 6.00 s (±1.73) and 22.67 s (±1.15), respectively, and that the heat release rate curves were parabolic, with peaks 225.19 and 75.27 kW/m2, respectively, for the two bark types. Additionally, because resinosis was on the low- to mid-bole of infested trees, the barks from boles with resinosis tended to be ignited much easier than those without resinosis. This clearly evidenced that pests could affect fire severity and behavior by increasing forest flammability. More information about the role that pests play in the different forest cover types is needed to increase our understanding of fire danger and to develop sound forest management policies. Full article
(This article belongs to the Special Issue Fire Effects on Fuel and Vegetation: Linking Process to Pattern)
Show Figures

Figure 1

12 pages, 1363 KiB  
Article
Black Carbon as a Source of Trace Elements and Nutrients in Ice Sheet of King George Island, Antarctica
by Vyacheslav Polyakov, Evgeny Abakumov and Bulat Mavlyudov
Geosciences 2020, 10(11), 465; https://doi.org/10.3390/geosciences10110465 - 18 Nov 2020
Cited by 14 | Viewed by 3471
Abstract
Enormous deglaciation in the polar and mountainous regions of the Earth is associated not only with large-scale climatic changes but also with the global transfer of black carbon (BC) microparticles, which accumulate on the surface of glaciers and lead to changes in albedo [...] Read more.
Enormous deglaciation in the polar and mountainous regions of the Earth is associated not only with large-scale climatic changes but also with the global transfer of black carbon (BC) microparticles, which accumulate on the surface of glaciers and lead to changes in albedo and the rate of degradation of ice. BC is the product of an incomplete combustion of fossil fuels, volcanic eruptions, and wildfires. The accumulation of organogenic microparticles leads to the formation of cryoconites, which are dust made of a combination of small rock particles and the result of anthropogenic activities (fossil fuel combustion) that play a special role in deglaciation. Here, we describe the content of trace metals and nutrients in accumulation of the BC from glaciers of Fildes Peninsula, King George Island, Western Antarctica. The analysis of trace metals concentrations showed that most of the studied elements (Cr, Pb, Zn, Ni) have a volcanic origin; at the same time, Cd and Cu have been accumulated as a result of anthropogenic activity. The content of nutrients in BC are most similar with Technosols, which forms near the scientific station at King George Island. The particles of BC can be translocated into organisms, which could pose a significant risk for living organisms and humans. Full article
(This article belongs to the Section Biogeosciences)
Show Figures

Figure 1

21 pages, 5989 KiB  
Article
Smouldering Combustion Dynamics of a Soil from a Pinus halepensis Mill. Forest. A Case Study of the Rocallaura Fires in Northeastern Spain
by Miquel Àngel Xifré-Salvadó, Núria Prat-Guitart, Marcos Francos, Xavier Úbeda and Marc Castellnou
Appl. Sci. 2020, 10(10), 3449; https://doi.org/10.3390/app10103449 - 16 May 2020
Cited by 10 | Viewed by 3558
Abstract
This study analyses the smouldering combustion on soils that took place during the wildfires that occurred in Rocallaura (Northeastern Spain). The smouldering combustion after the first event, 23 June, was the potential source of flaming fire re-ignition of the second event, 19 July [...] Read more.
This study analyses the smouldering combustion on soils that took place during the wildfires that occurred in Rocallaura (Northeastern Spain). The smouldering combustion after the first event, 23 June, was the potential source of flaming fire re-ignition of the second event, 19 July 2016. Re-ignitions are an important challenge for the firefighting system. Budget and efforts are spent on controlling these re-ignitions that can ultimately cause the collapse of the response system if the re-ignitions happen during periods of simultaneous fire events. Our objective is to contribute to better understand the dynamics of the smouldering combustion of organic soils associated with these wildfires and the impact on the Pinus halepensis Mill. forest ecosystem. Transects were established in adjacent control and post-fire zones. Laboratory analyses were conducted to determine some physical and chemical properties of both the duff and mineral soil. Using these variables, we estimate thresholds of duff ignition probability, percentage of duff consumption and smouldering combustion spread rates. Overall, we provide a set of tools for evaluating re-ignitions in forest ecosystems. We conclude that the concept of fire persistence should be a new variable for consideration in present and future analysis of fire regimes and demonstrates the significance of introducing smouldering combustion and re-ignition within the strategic framework of the wildfire hazard and integrating these phenomena into forest planning and management. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

9 pages, 1155 KiB  
Letter
Potential Underestimation of Satellite Fire Radiative Power Retrievals over Gas Flares and Wildland Fires
by Sanath Sathyachandran Kumar, John Hult, Joshua Picotte and Birgit Peterson
Remote Sens. 2020, 12(2), 238; https://doi.org/10.3390/rs12020238 - 10 Jan 2020
Cited by 12 | Viewed by 4883
Abstract
Fire Radiative Power (FRP) is related to fire combustion rates and is used to quantify the atmospheric emissions of greenhouse gases and aerosols. FRP over gas flares and wildfires can be retrieved remotely using satellites that observe in shortwave infrared (SWIR) to middle [...] Read more.
Fire Radiative Power (FRP) is related to fire combustion rates and is used to quantify the atmospheric emissions of greenhouse gases and aerosols. FRP over gas flares and wildfires can be retrieved remotely using satellites that observe in shortwave infrared (SWIR) to middle infrared (MIR) wavelengths. Heritage techniques to retrieve FRP developed for wildland fires using the MIR 4 μm radiances have been adapted for the hotter burning gas flares using the SWIR 2 μm observations. Effects of atmosphere, including smoke and aerosols, are assumed to be minimal in these algorithms because of the use of longer than visual wavelengths. Here we use Moderate Resolution Imaging Spectroradiometer (MODIS), Visible Infrared Imaging Radiometer Suite (VIIRS) and Landsat 8 observations acquired before and during emergency oil and gas flaring in eastern Saudi Arabia to show that dark, sooty smoke affects both 4 μm and 2 μm observations. While the 2 μm observations used to retrieve gas FRP may be reliable during clear atmospheric conditions, performance is severely impacted by dark smoke. Global remote sensing-based inventories of wildfire and gas flaring need to consider the possibility that soot and dark smoke can potentially lead to an underestimation of FRP over fires. Full article
Show Figures

Graphical abstract

Back to TopTop