Potential of a Light Combined Harvester/Forwarder to Reduce Wildfire Risk in Mediterranean Forests: Comparison with Current Work System
Abstract
:1. Introduction
- -
- Minimal investment and operative costs due to the non-profitable nature of the operations
- -
- Capacity to modify density and structure of forest stands while causing a minimal ground cover reduction (an increased access to light would promote grass and understory regrowth, rapidly boosting wildfire risk)
- -
- Increase the accessibility into the forest stand, enabling fast and safe intervention of firefighting teams
- -
- Work system effective in forest stands with high density and low diameter trees.
2. Materials and Methods
2.1. Study Area
- -
- Plot 1: Dense stand of tall and slender trees with a large quantity of climbing plants. Almost impenetrable by walking. Moderately steep to almost flat (23% average slope).
- -
- Plot 2: Intermediate stand with smaller trees than plot 1 and lower density of climbing plants. Moderately steep (25% average slope).
- -
- Plot 3: Very high density of thin and low trees, no presence of climbing plants but almost impenetrable by walking. Moderately steep (25.5% average slope).
2.2. Harvesting System
2.3. Trial Design
2.4. Data Collection
2.5. Harvester Work Procedure
2.6. Conversion from Forwarder to Harvester
2.7. Forwarder Work Procedure
2.8. Cost Analysis
2.9. Statistical Analysis
3. Results
3.1. Time Element Distribution
3.2. Productivity of Thinning Operation
3.3. Cost Analysis and Economic Balance
3.4. Comparison with the Traditional Method
3.5. Silvicultural Result of the Operations
4. Discussion
4.1. Time Element Distribution
4.2. Productivity of Thinning Operations
4.3. Cost Analysis and Economic Balance
4.4. Comparison with the Traditional Method
4.5. Silvicultural Result of the Operations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bowman, D.M.J.S.; Balch, J.K.; Artaxo, P.; Bond, W.J.; Carlson, J.M.; Cochrane, M.A.; D’Antonio, C.M.; DeFries, R.S.; Doyle, J.C.; Harrison, S.P.; et al. Fire in the Earth System. Science 2009, 324, 481–484. [Google Scholar] [CrossRef]
- García-Llamas, P.; Suárez-Seoane, S.; Fernández-Manso, A.; Quintano, C.; Calvo, L. Evaluation of Fire Severity in Fire Prone-Ecosystems of Spain under Two Different Environmental Conditions. J. Environ. Manag. 2020, 271, 110706. [Google Scholar] [CrossRef] [PubMed]
- Marino, E.; Montes, F.; Tomé, J.L.; Navarro, J.A.; Hernando, C. Vertical Forest Structure Analysis for Wildfire Prevention: Comparing Airborne Laser Scanning Data and Stereoscopic Hemispherical Images. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 438–449. [Google Scholar] [CrossRef]
- Xanthopoulos, G.; Caballero, D.; Galante, M.; Alexandrian, D.; Rigolot, E.; Marzano, R. Forest Fuels Management in Europe. In Proceedings of the Fuels Management-How to Measure Success, Portland, OR, USA, 28–30 March 2006. [Google Scholar]
- Marino, E.; Hernando, C.; Planelles, R.; Madrigal, J.; Guijarro, M.; Sebastián, A. Forest Fuel Management for Wildfire Prevention in Spain: A Quantitative SWOT Analysis. Int. J. Wildland Fire 2014, 23, 373–384. [Google Scholar] [CrossRef]
- García-Jiménez, R.; Palmero-Iniesta, M.; Espelta, J.M. Contrasting Effects of Fire Severity on the Regeneration of Pinus Halepensis Mill. And Resprouter Species in Recently Thinned Thickets. Forests 2017, 8, 55. [Google Scholar] [CrossRef]
- Corona, P.; Ascoli, D.; Barbati, A.; Bovio, G.; Colangelo, G.; Elia, M.; Garfì, V.; Iovino, F.; Lafortezza, R.; Leone, V.; et al. Integrated Forest Management to Prevent Wildfires under Mediterranean Environments. Ann. Silvic. Res. 2015, 39, 1–22. [Google Scholar] [CrossRef]
- Jäghagen, K.; Lageson, H. Timber Quality after Thinning from above and below in Stands of Pinus Sylvestris. Scand. J. For. Res. 1996, 11, 336–342. [Google Scholar] [CrossRef]
- Mederski, P.S. A Comparison of Harvesting Productivity and Costs in Thinning Operations with and without Midfield. For. Ecol. Manag. 2006, 224, 286–296. [Google Scholar] [CrossRef]
- Engler, B.; Hartmann, G.; Mederski, P.S.; Bont, L.G.; Picchi, G.; Alcoverro, G.; Purfürst, T.; Schweier, J. Impact of Forest Operations in Four Biogeographical Regions in Europe: Finding the Key Drivers for Future Development. Curr. For. Rep. 2024, 10, 337–359. [Google Scholar] [CrossRef]
- Barros, A.M.G.; Pereira, J.M.C. Wildfire Selectivity for Land Cover Type: Does Size Matter? PLoS ONE 2014, 9, e84760. [Google Scholar] [CrossRef]
- Pausas, J.G.; Vallejo, V.R. The Role of Fire in European Mediterranean Ecosystems. In Remote Sensing of Large Wildfires; Springer Nature: Berlin, Germany, 1999; pp. 3–16. [Google Scholar] [CrossRef]
- Elia, M.; Lovreglio, R.; Ranieri, N.A.; Sanesi, G.; Lafortezza, R. Cost-Effectiveness of Fuel Removals in Mediterranean wildland-Urban Interfaces Threatened by Wildfires. Forests 2016, 7, 149. [Google Scholar] [CrossRef]
- Tanentzap, A.J.; Bazely, D.R.; Lafortezza, R. Diversity-Invasibility Relationships across Multiple Scales in Disturbed Forest Understoreys. Biol. Invasions 2010, 12, 2105–2116. [Google Scholar] [CrossRef]
- Lafortezza, R.; Sanesi, G.; Chen, J. Large-Scale Effects of Forest Management in Mediterranean Landscapes of Europe. IForest 2013, 6, 342. [Google Scholar] [CrossRef]
- Birot, Y. Living with Wildfires: What Science Can Tell Us a Contribution to the Science-Policy Dialogue; European Forest Institute: Joensuu, Finland, 2009; ISBN 978-952-5453-30-0. Available online: https://www.cabidigitallibrary.org/doi/full/10.5555/20093126408 (accessed on 8 April 2025).
- San-Miguel-Ayanz, J.; Moreno, J.M.; Camia, A. Analysis of Large Fires in European Mediterranean Landscapes: Lessons Learned and Perspectives. For. Ecol. Manag. 2013, 294, 11–22. [Google Scholar] [CrossRef]
- Proto, A.R.; Macrì, G.; Visser, R.; Harrill, H.; Russo, D.; Zimbalatti, G. Factors Affecting Forwarder Productivity. Eur. J. For. Res. 2018, 137, 143–151. [Google Scholar] [CrossRef]
- Spinelli, R.; Lombardini, C.; Magagnotti, N. The Effect of Mechanization Level and Harvesting System on the Thinning Cost of Mediterranean Softwood Plantations. Silva Fenn. 2014, 48, 1003. [Google Scholar] [CrossRef]
- Klepac, J.F.; Rummer, R.B. Smallwood Logging Production and Costs—Mechanized vs Manual. In Proceedings of the 2002 ASAE Annual Meeting, Chicago, IL, USA, 28–31 July 2002. [Google Scholar] [CrossRef]
- Lazdiņš, A.; Kaleja, S.; Daugaviete, M.; Zimelis, A. Productivity of Vimek 404 T5 Harvester and Vimek 610 Forwarder in Early Thinning. Agron. Res. 2016, 14, 475. [Google Scholar]
- Kärhä, K.; Poikela, A.; Palander, T. Productivity and Costs of Harwarder Systems in Industrial Roundwood Thinnings. Croat. J. For. Eng. J. Theory Appl. For. Eng. 2018, 39, 23–33. [Google Scholar]
- Petaja, G.; Butlers, A.; Okmanis, M.; Zimelis, A. Estimation of Productivity and Prime Cost of Logset 5hp Gt Harvester in Thinning; Vytautas Magnus University: Kaunas, Lithuania, 2018. [Google Scholar]
- Zimelis, A.; Kaleja, S.; Ariko, S. Evaluation of Productivity and Costs of Malwa Forest Machine in Sanitary Fellings in Latvia. In Proceedings of the Research for Rural Development, Jelgava, Latvia, 12–14 June 2020; Latvia University of Agriculture: Jelgava, Latvia, 2020; Volume 35, pp. 61–65. [Google Scholar]
- Spinelli, R.; Magagnotti, N. Performance and Cost of a New Mini-Forwarder for Use in Thinning Operations. J. For. Res. 2010, 15, 358–364. [Google Scholar] [CrossRef]
- Elia, M.; Lafortezza, R.; Lovreglio, R.; Sanesi, G. Developing Custom Fire Behavior Fuel Models for Mediterranean Wildland–Urban Interfaces in Southern Italy. Environ. Manag. 2015, 56, 754–764. [Google Scholar] [CrossRef]
- Overview, A. Influence of Forest Structure on Wildfire Behavior and the Severity of Its Effects; United States Department of Agriculture: Washington, DC, USA, 2003. [Google Scholar]
- Mendez-Cartin, A.L.; Coll, L.; Valor, T.; Torné-Solà, G.; Ameztegui, A. Post-Fire Growth of Pinus Halepensis: Shifts in the Mode of Competition along a Precipitation Gradient. For. Ecol. Manag. 2024, 554, 121693. [Google Scholar] [CrossRef]
- Ackerman, S.A.; McDermid, H.; Ackerman, P.; Terblanche, M. The Effectiveness of a Small-Scale Combination Harvester/Forwarder in Industrial Plantation First Thinning Operations. Int. J. For. Eng. 2021, 33, 56–65. [Google Scholar] [CrossRef]
- Ackerman, P.; Belbo, H.; Eliasson, L.; de Jong, A.; Lazdins, A.; Lyons, J. The COST Model for Calculation of Forest Operations Costs. Int. J. For. Eng. 2014, 25, 75–81. [Google Scholar] [CrossRef]
- Picchio, R.; Tavankar, F.; Bonyad, A.; Mederski, P.S.; Venanzi, R.; Nikooy, M. Detailed Analysis of Residual Stand Damage Due to Winching on Steep Terrains. Small-Scale For. 2019, 18, 255–277. [Google Scholar] [CrossRef]
- Szewczyk, G.; Krilek, J.; Kulak, D.; Leszczyński, K.; Pacia, T.; Sowa, J.M.; Stańczykiewicz, A. Economic Efficiency of Fully Mechanized Timber Harvesting in Coniferous Stands of the 2nd Age Class. Ann. For. Res. 2023, 66, 155–169. [Google Scholar] [CrossRef]
- TRAGSA Empresa de Transformación Agraria, S.A. GrupoTragsa. Available online: https://www.tragsa.es/en/Paginas/default.aspx (accessed on 18 December 2024).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 17 December 2024).
- Pajkoš, M.; Klvač, R.; Neruda, J.; Mishra, P.K. Comparative Time Study of Conventional Cut-to-Length and an Integrated Harvesting Method-A Case Study. Forests 2018, 9, 194. [Google Scholar] [CrossRef]
- Nurminen, T.; Korpunen, H.; Uusitalo, J. Time Consumption Analysis of the Mechanized Cut-to-Length Harvesting System. Available online: https://jukuri.luke.fi/bitstream/handle/10024/532609/time.pdf?sequence=1 (accessed on 5 April 2025).
- Strandgard, M.; Mitchell, R.; Acuna, M. Time Consumption and Productivity of a Forwarder Operating on a Slope in a Cut-to-Length Harvest System in a Pinus Radiata D. Don Pine Plantation. J. For. Sci. 2017, 63, 324–330. [Google Scholar] [CrossRef]
- Moskalik, T.; Borz, A.; Dvořák, J.; Ferencik, M.; Glushkov, S.; Muiste, P.; Lazdiņš, A.; Styranivsky, O. Timber Harvesting Methods in Eastern European Countries: A Review. J. Theory Appl. For. Eng. 2017, 38, 231–241. [Google Scholar]
- Mederski, P.S.; Venanzi, R.; Bembenek, M.; Karaszewski, Z.; Rosińska, M.; Pilarek, Z.; Luchenti, I.; Surus, M. Designing Thinning Operations in 2nd Age Class Pine Stands-Economic and Environmental Implications. Forests 2018, 9, 335. [Google Scholar] [CrossRef]
- Eriksson, M.; Lindroos, O. Productivity of Harvesters and Forwarders in CTL Operations in Northern Sweden Based on Large Follow-up Datasets. Int. J. For. Eng. 2014, 25, 179–200. [Google Scholar] [CrossRef]
- Williams, C.; Ackerman, P. Cost-Productivity Analysis of South African Pine Sawtimber Mechanised Cut-to-Length Harvesting. South. For. A J. For. Sci. 2016, 78, 267–274. [Google Scholar] [CrossRef]
- Bigot, M.; Ruch, P.; Cacot, E.; Bouvet, A.; Ulrich, E.; Pischedda, D. Test of Mechanized Logging Systems in First Thinnings of Oak and Beech Stands. In Proceedings of the FORMEC 2012: Forest Engineering-Concern, Knowledge and Accountability in Today’s Environment, Dubrovnik, Croatie, 8–12 October 2012. [Google Scholar]
- Codd, J.; Nieuwenhuis, M. A Feasibility Study on the Performance of a Harwarder in the Thinning of Small Scale Forests in Ireland. Ir. For. 2008, 65. Available online: https://journal.societyofirishforesters.ie/index.php/forestry/article/view/10008 (accessed on 8 April 2025).
- Du, Z.; Cai, X.; Bao, W.; Chen, H.; Pan, H.; Wang, X.; Zhao, Q.; Zhu, W.; Liu, X.; Jiang, Y.; et al. Short-Term vs. Long-Term Effects of Understory Removal on Nitrogen and Mobile Carbohydrates in Overstory Trees. Forests 2016, 7, 67. [Google Scholar] [CrossRef]
- Wei, L.; Fenton, N.J.; Lafleur, B.; Bergeron, Y. The Combined Role of Retention Pattern and Post-Harvest Site Preparation in Regulating Plant Functional Diversity: A Case Study in Boreal Forest Ecosystems. Forests 2019, 10, 1006. [Google Scholar] [CrossRef]
- Triches, G.P.; de Moraes, A.; Porfírio-da-Silva, V.; Lang, C.R.; Lustosa, S.B.C.; Bonatto, R.A. Damage Caused by Cattle to Eucalyptus Benthamii Trees in Pruned and Unpruned Silvopastoral Systems. Pesqui. Agropecu. Bras. 2020, 55, e01275. [Google Scholar] [CrossRef]
- Brudvig, L.A.; Damschen, E.I. Land-Use History, Historical Connectivity, and Land Management Interact to Determine Longleaf Pine Woodland Understory Richness and Composition. Ecography 2011, 34, 257–266. [Google Scholar] [CrossRef]
- Sena, K.L.; Hackworth, Z.J.; Maugans, J.; Lhotka, J.M. Twenty Years of Urban Reforestation: Overstory Development Structures Understory Plant Communities in Lexington, KY, USA. Sustainability 2023, 15, 1985. [Google Scholar] [CrossRef]
- The 56 Th International Symposium on Forest Mechanization (FORMEC). In Book of Abstracts; IEEE: New York, NY, USA, 2024.
Plot | 1 | 2 | 3 |
---|---|---|---|
Density (trees ha−1) | 1700 | 4980 | 9620 |
Mean DBH (cm) | 16.9 | 10.2 | 5.9 |
Basal Area (m2 ha−1) | 42.7 | 47.0 | 30.7 |
Mean height (m) | 7.16 | 6.17 | 4.32 |
Mean square diameter (cm) | 17.9 | 11.0 | 6.4 |
Mean stem volume (m3 tree−1) | 0.059 | 0.033 | 0.007 |
Mean ground cover (m2∙tree−1) | 5.892 | 2.049 | 1.039 |
Factor | Specification |
---|---|
Weight (kg) | 4900 (forwarder)–5400 (harvester) |
Length (m) | 6.3 |
Width (m) | 1.94 (with 500 mm tyres) |
Height (m) | 2.85 |
Ground clearance (mm) | 400 |
Payload (kg) | 5500 |
Engine power (kW) | 55 |
Crane length (m) | 6.1 |
Processor head cutting capacity (mm) | 20 mm (min) 420 mm (max) |
Work Element | Description | |
---|---|---|
Harvesting | Felling | From moving the crane to the tree felled. It includes crane movement, sawing and machine repositioning to cut. |
Processing | From felled tree to all logs processed and delimbed. | |
Movements between blocks | Machine movements among different plots. | |
Movements between trees | Machine movements with the aim of cutting trees inside a plot. | |
Cleaning felled trees | Grabbing trees naturally fallen for processing. It ends when the machine starts processing. | |
Cleaning | Cutting shrubs, climbing plants, or other vegetation. | |
Conversion | Switch harvester and forwarder components (or vice-versa) | |
Forwarding | Loading | Loading the logs. |
Unloading | Unloading the logs. | |
Moving empty | Moving the unloaded machine from the wood piles to the plot. | |
Moving loaded | Moving the loaded machine from the plot to the wood piles. | |
Moving between logs | Moving the machine between different loading stands | |
Delay < 15 | Delays shorter than 15 min. | |
Delay > 15 | Delays longer than 15 min. |
Parameters | Value |
---|---|
Annual utilization (J) (PMH) (8 h working shifts) | 1200 |
Technology obsolescence (N) (years) | 10 |
Expected useful life (H) (PMH) | 12,000 |
Interest rate (p) (%) | 5 |
Repair cost ratio (r) (%) | 70 |
Agricultural fuel cost (€∙l) * | 1.1 |
Lubricant cost (€) | 25% of fuel cost |
Parameters | Tyres | Tracks |
---|---|---|
Annual utilization (J) (PMH) (8 h working shifts) | 1200 | 900 |
Expected useful life (H) (PMH) | 4800 | 9000 |
Interest rate (p) (%) | 5 | 5 |
Plot | 1 | 2 | 3 |
---|---|---|---|
Productive Machine Hour (PMH15) | 5:09:52 | 10:21:06 | 9:36:52 |
Productivity harvesting (m3∙PMH15−1) | 2.93 | 2.24 | 0.64 |
Productivity forwarding (m3∙PMH15−1) | 6.43 | 6.17 | 2.09 |
Extracted volume (m3∙ha−1) | 49.3 | 60.75 | 27.6 |
Total productivity (ha∙PMH15−1) | 0.041 | 0.027 | 0.018 |
Costing per Productive Machine Hours (€∙PMH15−1) | 89.60 | ||
Area treated (ha) | 0.21 | 0.28 | 0.17 |
Unitary cost (€∙m−3) | 44.67 | 54.52 | 183.58 |
Cost per Area (€∙ha−1) | 2257.24 | 3336.36 | 4950.89 |
Biomass value at the road site (€∙m−3) | 30.00 | ||
Biomass value at the road site (€∙ha−1) | 1516.10 | 1835.72 | 809.05 |
Economic Balance (€∙m−3) | −14.67 | −24.52 | −153.58 |
Economic Balance (€∙ha−1) | −741.14 | −1500.65 | −4141.83 |
Plot | 1 | 2 | 3 |
---|---|---|---|
Managed Area (ha) | 0.9 | 1.2 | 1.48 |
Cost (€) | 3600 | 3600 | 6525 |
Cost per Area (€∙ha−1) | >4000 | 3000 | 4409 |
Subsidy (€∙ha−1) | 2000 | 2000 | 3000 |
Total loss (€∙ha−1) | −2000 | −1000 | −1409 |
Plot | 1 | 2 | 3 |
---|---|---|---|
Trees removed per hectare (total n.) | 829 | 1807 | 3706 |
Resulting final density (trees∙ha−1) | 849 | 3112 | 6055 |
Variation in density (%) | −50 | −38 | −37 |
Mean DBH (cm) | 21.8 | 11 | 6.53 |
Variation in DBH (%) | +29 | +7.8 | +11 |
Basal Area (m2 ha−1) | 32.54 | 35.57 | 23.63 |
Variation in Basal Area (%) | −24 | −24 | −23 |
Mean height (m) | 8.73 | 5.96 | 4.52 |
Variation in mean height (%) | +22 | −3 | +5 |
Mechanized | Traditional | ||||
---|---|---|---|---|---|
Damaged trees per ha | 71 | 181 | |||
Total Wounds per ha | 80 | 258 | |||
Damage factor | % of wounds | N° wounds per hectare | % of wounds | N° wounds per hectare | |
Wound severity | Bark squeezed | 52.9 | 41 | 67.2 | 174 |
Bark removed | 31.4 | 24 | 11.9 | 31 | |
Wood damage | 15.7 | 12 | 20.9 | 54 | |
Wound Surface Area | WSA1 | 30.2 | 24 | 24.4 | 66 |
WSA2 | 35.8 | 29 | 43.3 | 112 | |
WSA3 | 26.4 | 21 | 26.9 | 69 | |
WSA4 | 7.5 | 6 | 4.5 | 12 | |
Wound Position | WP1 | 1.9 | 2 | 0 | 0 |
WP2 | 30.2 | 24 | 1.5 | 4 | |
WP3 | 45.3 | 36 | 32.8 | 85 | |
WP4 | 22.6 | 18 | 65.7 | 170 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rogai, M.; Alcoverro, G.; Picchi, G. Potential of a Light Combined Harvester/Forwarder to Reduce Wildfire Risk in Mediterranean Forests: Comparison with Current Work System. Forests 2025, 16, 652. https://doi.org/10.3390/f16040652
Rogai M, Alcoverro G, Picchi G. Potential of a Light Combined Harvester/Forwarder to Reduce Wildfire Risk in Mediterranean Forests: Comparison with Current Work System. Forests. 2025; 16(4):652. https://doi.org/10.3390/f16040652
Chicago/Turabian StyleRogai, Martino, Gerard Alcoverro, and Gianni Picchi. 2025. "Potential of a Light Combined Harvester/Forwarder to Reduce Wildfire Risk in Mediterranean Forests: Comparison with Current Work System" Forests 16, no. 4: 652. https://doi.org/10.3390/f16040652
APA StyleRogai, M., Alcoverro, G., & Picchi, G. (2025). Potential of a Light Combined Harvester/Forwarder to Reduce Wildfire Risk in Mediterranean Forests: Comparison with Current Work System. Forests, 16(4), 652. https://doi.org/10.3390/f16040652