Black Carbon as a Source of Trace Elements and Nutrients in Ice Sheet of King George Island, Antarctica
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methology
2.3. Chemical Analyses
2.4. Statistical Analysis
3. Results and Discussion
3.1. The Content of Trace Metals in Studied Cryoconites
3.2. The Content of Key Nutrients from Studied Cryoconites
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hirdman, D.; Sodemann, H.; Eckhardt, S.; Burkhart, J.F.; Jefferson, A.; Mefford, T.; Quinn, P.K.; Sharma, S.; Ström, J.; Stohl, A. Source identification of short-lived air pollutants in the Arctic using statistical analysis of measurement data and particle dispersion model output. Atmos. Chem. Phys. 2010, 10, 669–693. [Google Scholar] [CrossRef] [Green Version]
- Schnell, R.C. Arctic haze and the Arctic Gas and Aerosol Sampling Program (AGASP). Geophys. Resear. Lett. 1984, 11, 361–364. [Google Scholar] [CrossRef]
- Clarke, A.D.; Noone, K.J. Soot in the Arctic snowpack: A cause for perturbations in radiative transfer. Atmos. Environ. (1967) 1985, 19, 2045–2053. [Google Scholar] [CrossRef]
- Quinn, P.K.; Bates, T.S.; Baum, E.; Bond, T.; Burkhart, J.F.; Fiore, A.M.; Flanner, M.; Garrett, T.J.; Koch, D.; McConnell, J.; et al. The Impact of Short-Lived Pollutants on Arctic Climate. AMAP Technical Report No. 1 (2008); Arctic Monitoring and Assessment Programme (AMAP): Oslo, Norway, 2010; p. 32. [Google Scholar]
- AMAP. AMAP Assessment 2015: Black Carbon and Ozone as Arctic Climate Forcers; Arctic Monitoring and Assessment Programme (AMAP): Oslo, Norway, 2015; p. 116. [Google Scholar]
- Derksen, C.; Brown, R. Spring snow cover extent reductions in the 2008–2012 period exceeding climate model projections. Geophys. Resear. Lett. 2012, 39. [Google Scholar] [CrossRef] [Green Version]
- Brown, R.D.; Mote, P.W. The Response of Northern Hemisphere Snow Cover to a Changing Climate*. J. Clim. 2009, 22, 2124–2145. [Google Scholar] [CrossRef]
- Stroeve, J.C.; Serreze, M.C.; Holland, M.M.; Kay, J.E.; Malanik, J.; Barrett, A.P. The Arctic’s rapidly shrinking sea ice cover: A research synthesis. Clim. Chang. 2012, 110, 1005–1027. [Google Scholar] [CrossRef] [Green Version]
- Hansen, J.; Nazarenko, L. Soot climate forcing via snow and ice albedos. Proc. Natl. Acad. Sci. USA 2004, 101, 423. [Google Scholar] [CrossRef] [Green Version]
- Bond, T.C.; Doherty, S.J.; Fahey, D.W.; Forster, P.M.; Berntsen, T.; DeAngelo, B.J.; Flanner, M.G.; Ghan, S.; Kärcher, B.; Koch, D.; et al. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Resear. Atmos. 2013, 118, 5380–5552. [Google Scholar] [CrossRef]
- The Arctic Council. Expert Group on Black Carbon and Methane-Summary of Progress and Recommendations 2019; p. 88. Available online: https://globalmethane.org/challenge/arctic.html (accessed on 15 November 2020).
- Jacobson, M.Z. Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature 2001, 409, 695–697. [Google Scholar] [CrossRef]
- Brown, R.; Derksen, C.; Wang, L. A multi-data set analysis of variability and change in Arctic spring snow cover extent, 1967–2008. J. Geophys. Resear. Atmos. 2010, 115. [Google Scholar] [CrossRef]
- Molina, M.; Zaelke, D.; Sarma, K.M.; Andersen, S.O.; Ramanathan, V.; Kaniaru, D. Reducing abrupt climate change risk using the Montreal Protocol and other regulatory actions to complement cuts in CO2 emissions. Proc. Natl. Acad. Sci. USA 2009, 106, 20616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hegg, D.A.; Warren, S.G.; Grenfell, T.C.; Doherty, S.J.; Larson, T.V.; Clarke, A.D. Source Attribution of Black Carbon in Arctic Snow. Environ. Sci. Technol. 2009, 43, 4016–4021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamarque, J.F.; Bond, T.C.; Eyring, V.; Granier, C.; Heil, A.; Klimont, Z.; Lee, D.; Liousse, C.; Mieville, A.; Owen, B.; et al. Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: Methodology and application. Atmos. Chem. Phys. 2010, 10, 7017–7039. [Google Scholar] [CrossRef] [Green Version]
- Tunved, P.; Ström, J.; Krejci, R. Arctic aerosol life cycle: Linking aerosol size distributions observed between 2000 and 2010 with air mass transport and precipitation at Zeppelin station, Ny-Ålesund, Svalbard. Atmos. Chem. Phys. 2013, 13, 3643–3660. [Google Scholar] [CrossRef] [Green Version]
- Stier, P.; Seinfeld, J.H.; Kinne, S.; Feichter, J.; Boucher, O. Impact of nonabsorbing anthropogenic aerosols on clear-sky atmospheric absorption. J. Geophys. Resear. Atmos. 2006, 111. [Google Scholar] [CrossRef]
- Warneke, C.; Bahreini, R.; Brioude, J.; Brock, C.A.; De Gouw, J.A.; Fahey, D.W.; Froyd, K.D.; Holloway, J.S.; Middlebrook, A.; Miller, L.; et al. Biomass burning in Siberia and Kazakhstan as an important source for haze over the Alaskan Arctic in April 2008. Geophys. Resear. Lett. 2009, 36. [Google Scholar] [CrossRef] [Green Version]
- Stone, R.S.; Sharma, S.; Herber, A.; Eleftheriadis, K.; Nelson, D.W. A characterization of Arctic aerosols on the basis of aerosol optical depth and black carbon measurements. Elem. Sci. Antropocene 2014, 000027. [Google Scholar] [CrossRef] [Green Version]
- Łokas, E.; Zaborska, A.; Kolicka, M.; Różycki, M.; Zawierucha, K. Accumulation of atmospheric radionuclides and heavy metals in cryoconite holes on an Arctic glacier. Chemosphere 2016, 160, 162–172. [Google Scholar] [CrossRef]
- Zwally, H.J.; Li, J.; Robbins, J.W.; Saba, J.L.; Yi, D.; Brenner, A.C. Mass gains of the Antarctic ice sheet exceed losses. J. Glaciol. 2017, 61, 1019–1036. [Google Scholar] [CrossRef] [Green Version]
- Shepherd, A.; Ivins, E.R.; Geruo, A.; Barletta, V.R.; Bentley, M.J.; Bettadpur, S.; Briggs, K.H.; Bromwich, D.H.; Forsberg, R.; Galin, N.; et al. A Reconciled Estimate of Ice-Sheet Mass Balance. Science 2012, 338, 1183. [Google Scholar] [CrossRef] [Green Version]
- Feldmann, J.; Levermann, A.; Mengel, M. Stabilizing the West Antarctic Ice Sheet by surface mass deposition. Sci. Adv. 2019, 5, eaaw4132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shepherd, A.; Ivins, E.; Rignot, E.; Smith, B.; Van den Broeke, M.; Velicogna, I.; Whitehouse, P.; Briggs, K.; Joughin, I.; Krinner, G.; et al. Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature 2018, 558, 219–222. [Google Scholar] [CrossRef] [Green Version]
- Dutrieux, P.; Vaughan, D.G.; Corr, H.F.J.; Jenkins, A.; Holland, P.R.; Joughin, I.; Fleming, A.H. Pine Island glacier ice shelf melt distributed at kilometre scales. Cryosphere 2013, 7, 1543–1555. [Google Scholar] [CrossRef] [Green Version]
- Dickens, W.A.; Kuhn, G.; Leng, M.J.; Graham, A.G.C.; Dowdeswell, J.A.; Meredith, M.P.; Hillenbrand, C.D.; Hodgson, D.A.; Roberts, S.J.; Sloane, H.; et al. Enhanced glacial discharge from the eastern Antarctic Peninsula since the 1700s associated with a positive Southern Annular Mode. Sci. Rep. 2019, 9, 14606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akilan, A.; Abdul Azeez, K.K.; Schuh, H.; Padhy, S.; Kumar Kotluri, S. Perturbations in atmospheric gaseous components over coastal Antarctica detected in GPS signals and its natural origin to volcanic eruption. Polar Sci. 2019, 19, 69–76. [Google Scholar] [CrossRef]
- Rignot, E.; Velicogna, I.; Van den Broeke, M.R.; Monaghan, A.; Lenaerts, J.T.M. Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys. Resear. Lett. 2011, 38. [Google Scholar] [CrossRef] [Green Version]
- Hara, K.; Sudo, K.; Ohnishi, T.; Osada, K.; Yabuki, M.; Shiobara, M.; Yamanouchi, T. Seasonal features and origins of carbonaceous aerosols at Syowa Station, coastal Antarctica. Atmos. Chem. Phys. 2019, 19, 7817–7837. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.L.; McMeeking, G.R.; Schwarz, J.P.; Xian, P.; Welch, K.A.; Berry Lyons, W.; McKnight, D.M. Near-Surface Refractory Black Carbon Observations in the Atmosphere and Snow in the McMurdo Dry Valleys, Antarctica, and Potential Impacts of Foehn Winds. J. Geophys. Resear. Atmos. 2018, 123, 2877–2887. [Google Scholar] [CrossRef]
- Gogoi, M.M.; Babu, S.S.; Pandey, S.K.; Nair, V.S.; Vaishya, A.; Girach, I.A.; Koushik, N. Scavenging ratio of black carbon in the Arctic and the Antarctic. Polar Sci. 2018, 16, 10–22. [Google Scholar] [CrossRef]
- Selby, M.J. Antarctica: Soils, weathering processes and environment, I. B. Campbell and G. G. C. Claridge, (developments in soil science 16), Elsevier, Amsterdam, 1987. No. of pages: 368. Earth Surf. Process. Landf. 1989, 14, 753–754. [Google Scholar] [CrossRef]
- Singh, S.M.; Sharma, J.; Gawas-Sakhalkar, P.; Upadhyay, A.K.; Naik, S.; Pedneker, S.M.; Ravindra, R. Atmospheric deposition studies of heavy metals in Arctic by comparative analysis of lichens and cryoconite. Environ. Monit. Assess. 2013, 185, 1367–1376. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Lluberas, A.; Lee, G.; Park, J.K. Natural and Anthropogenic Heavy Metal Deposition to the Snow in King George Island, Antarctic Peninsula. Ocean Polar Resear. 2002, 24, 279–287. [Google Scholar] [CrossRef] [Green Version]
- Hans Wedepohl, K. The composition of the continental crust. Geochim. Cosmochim. Acta 1995, 59, 1217–1232. [Google Scholar] [CrossRef]
- Santos, I.R.; Silva-Filho, E.V.; Schaefer, C.E.G.R.; Albuquerque-Filho, M.R.; Campos, L.S. Heavy metal contamination in coastal sediments and soils near the Brazilian Antarctic Station, King George Island. Mar. Pollut. Bull. 2005, 50, 185–194. [Google Scholar] [CrossRef] [PubMed]
- De Lima Neto, E.; Guerra, M.B.B.; Thomazini, A.; Daher, M.; De Andrade, A.M.; Schaefer, C.E.G.R. Soil Contamination by Toxic Metals Near an Antarctic Refuge in Robert Island, Maritime Antarctica: A Monitoring Strategy. Water Air Soil Pollut. 2017, 228, 66. [Google Scholar] [CrossRef]
- Casey, K.A.; Kaspari, S.D.; Skiles, S.M.; Kreutz, K.; Handley, M.J. The spectral and chemical measurement of pollutants on snow near South Pole, Antarctica. J. Geophys. Resear. Atmos. 2017, 122, 6592–6610. [Google Scholar] [CrossRef]
- Baccolo, G.; Nastasi, M.; Massabò, D.; Clason, C.; Di Mauro, B.; Di Stefano, E.; Łokas, E.; Prati, P.; Previtali, E.; Takeuchi, N.; et al. Artificial and natural radionuclides in cryoconite as tracers of supraglacial dynamics: Insights from the Morteratsch glacier (Swiss Alps). Catena 2020, 191, 104577. [Google Scholar] [CrossRef]
- Abakumov, E. Content of available forms of nitrogen, potassium and phosphorus in ornithogenic and other soils of the Fildes Peninsula (King George Island, Western Antarctica). Biol. Commun. 2008, 63, 109–116. [Google Scholar] [CrossRef]
- Hegg, D.A.; Warren, S.G.; Grenfell, T.C.; Sarah, J.D.; Clarke, A.D. Sources of light-absorbing aerosol in arctic snow and their seasonal variation. Atmos. Chem. Phys. 2010, 10, 10923–10938. [Google Scholar] [CrossRef] [Green Version]
- ISO 11047:1998, Soil Quality—Determination of Cadmium, Cobalt, Copper, Lead, Manganese, Nickel and Zinc in Aqua Regia Extracts of Soil—Flame and Electrothermal Atomic Absorption Spectrometric Methods. 1998, p. 18. Available online: https://www.iso.org/standard/24010.html (accessed on 15 November 2020).
- ISO 14256-1:2003, Soil quality—Determination of nitrate, nitrite and ammonium in field moist soils by extraction with potassium chloride solution—Part 1: Manual method (ISO/TS 14256-1-2003:2003). 2003, p. 14. Available online: https://www.iso.org/standard/36706.html (accessed on 15 November 2020).
- 54650-2011, Determination of mobile phosphorus and potassium compounds by Kirsanov method modified by ClNAO. 2011, p. 9. Available online: http://docs.cntd.ru/document/gost-r-54650-2011 (accessed on 15 November 2020).
- Groenewerg, W.J.; Beunk, F. The petrography and geochemistry of the King George Island Supergroup and the Admiralty Bay Group volcanics, South Shetland Islands. Available online: http://polardigital.igme.es/handle/123456789/1612 (accessed on 15 November 2020).
- Amaro, E.; Padeiro, A.; Mão de Ferro, A.; Mota, A.M.; Leppe, M.; Verkulich, S.; Hughes, K.A.; Peter, H.-U.; Canário, J. Assessing trace element contamination in Fildes Peninsula (King George Island) and Ardley Island, Antarctic. Mar. Pollut. Bull. 2015, 97, 523–527. [Google Scholar] [CrossRef]
- Braga Bueno Guerra, M.; Schaefer, C.E.G.R.; De Freitas Rosa, P.; Simas, F.N.B.; Pereira, T.T.C.; Rodrigues Pereira-Filho, E. Heavy Metals Contamination in Century-Old Manmade Technosols of Hope Bay, Antarctic Peninsula. Water Air Soil Pollut. 2011, 222, 91–102. [Google Scholar] [CrossRef]
- Celis, J.E.; Barra, R.; Espejo, W.; González-Acuña, D.; Jara, S. Trace Element Concentrations in Biotic Matrices of Gentoo Penguins (Pygoscelis Papua) and Coastal Soils from Different Locations of the Antarctic Peninsula. Water Air Soil Pollut. 2014, 226, 2266. [Google Scholar] [CrossRef]
- Crockett, A.B. Background Levels of Metals in Soils, McMurdo Station, Antarctica. Environ. Monit. Assess. 1998, 50, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Jiao, X.; Dong, Z.; Kang, S.; Li, Y.; Jiang, C.; Rostami, M. New insights into heavy metal elements deposition in the snowpacks of mountain glaciers in the eastern Tibetan Plateau. Ecotoxicol. Environ. Saf. 2021, 207, 111228. [Google Scholar] [CrossRef] [PubMed]
- Shaw, G.E. Evidence for a central Eurasian source area of Arctic haze in Alaska. Nature 1982, 299, 815–818. [Google Scholar] [CrossRef]
- Christner, B.C.; Kvitko, B.H.; Reeve, J.N. Molecular identification of Bacteria and Eukarya inhabiting an Antarctic cryoconite hole. Extremophiles 2003, 7, 177–183. [Google Scholar] [CrossRef]
- Singh, P.; Tsuji, M.; Singh, S.M.; Takeuchi, N. Contrasting Patterns of Microbial Communities in Glacier Cryoconite of Nepali Himalaya and Greenland, Arctic. Sustainability 2020, 12, 6477. [Google Scholar] [CrossRef]
- Liu, L.; Hsieh, C.; Kuo, M.; Chen, C.; Shau, Y.; Lui, H.; Yuan, C.; Arthur Chen, C. Evidence for Fossil Fuel PM1 Accumulation in Marine Biota. Environ. Sci. Technol. 2020, 54, 7, 4068–4078. [Google Scholar] [CrossRef] [Green Version]
Sample ID | Coordinates (S/W) | Elevation (m) | Origin | |
---|---|---|---|---|
B1 | 62°10′27.8″ | 58°54′29.7 | 88 | Volcano |
B2 | 62°10′27.3″ | 58°54′19.8″ | 103 | Volcano |
B3 | 62°10′27.7″ | 58°54′13.6″ | 108 | Volcano |
B4 | 62°10′26.2″ | 58°54′10.6″ | 114 | Volcano with biogenic material of ornitogenic origin |
B5 | 62°9′18.4″ | 58°54′20.6″ | 121 | Volcano with biogenic material of ornitogenic origin |
B6 | 62°9′15.8″ | 58°54′9.3″ | 130 | Volcano with biogenic material of ornitogenic origin |
B7 | 62°9′9.5″ | 58°54′23.1″ | 118 | Volcano with biogenic material of ornitogenic origin |
B8 | 62°9′5.6″ | 58°54′30.4″ | 99 | Volcano with biogenic material of ornitogenic origin |
B9 | 62°9′6.9″ | 58°54′34.5″ | 98 | Volcano |
B10 | 62°9′21.8″ | 58°54′48.1″ | 92 | Volcano |
Sample ID | Cu | Pb | Zn | Cd | Ni | Cr |
---|---|---|---|---|---|---|
B1 | 6.85 | 3.12 | 13.3 | 0.258 | 6.33 | 4.20 |
B2 | 9.55 | 3.27 | 16.6 | 0.295 | 6.90 | 4.75 |
B3 | 7.56 | 1.05 | 14.1 | 0.150 | 6.01 | 2.38 |
B4 | 15.8 | 5.53 | 23.0 | 0.357 | 8.06 | 5.91 |
B5 | 20.4 | 6.31 | 27.4 | 0.409 | 8.49 | 5.00 |
B6 | 22.8 | 8.08 | 30.9 | 0.499 | 9.64 | 7.52 |
B7 | 19.2 | 6.69 | 27.4 | 0.359 | 8.47 | 4.79 |
B8 | 21.4 | 4.48 | 28.6 | 0.319 | 7.57 | 3.45 |
B9 | 11.3 | 1.56 | 18.6 | 0.310 | 6.34 | 5.39 |
B10 | 6.81 | 0.102 | 10.9 | 0.207 | 5.36 | 1.98 |
Standard deviation | 6.45 | 2.64 | 7.27 | 0.10 | 1.35 | 1.64 |
Coefficient of Variation, % | 45.5 | 65.8 | 34.5 | 31.43 | 18.42 | 36.23 |
Sampling Site | Cu | Pb | Zn | Cd | Ni | Cr |
---|---|---|---|---|---|---|
Cryoconites 1 | 14.16 | 4.01 | 21.08 | 0.32 | 7.32 | 4.54 |
Soil from Trinity House Ruins 2 | 107 | 102 | 148 | <0.2 | 37.9 | 72 |
Soils from Robert Island 3 | 47.8 | 7.3 | 43.9 | <0.2 | 40.4 | 52 |
Soil from Fildes Bay 4 | 31 | 23 | 15000 | 0.33 | - | - |
Soil from O’Higgins Base 5 | 422 | 282 | 485 | 4.3 | 28 | 65 |
Sediments King George Island 6 | 92 | 10.5 | 89 | - | 10.1 | 31 |
Vulcanic rock King George Island 7 | 111 | 7.7 | 66 | - | 12.5 | - |
p = 0.95 | Cu | Pb | Zn | Cd | Ni | Cr |
---|---|---|---|---|---|---|
Cu | 1 | 0.87 | 0.99 | 0.84 | 0.90 | 0.59 |
Pb | 1 | 0.89 | 0.90 | 0.98 | 0.76 | |
Zn | 1 | 0.85 | 0.92 | 0.64 | ||
Cd | 1 | 0.92 | 0.88 | |||
Ni | 1 | 0.78 | ||||
Cr | 1 |
Sample ID | C, % | N, % | C/N | P2O5 | K2O | N-NH4 | N-NO3 |
---|---|---|---|---|---|---|---|
B1 | 0.08 | 0.06 | 1 | 37 | 196 | 119 | 1 |
B2 | 0.78 | 0.12 | 7 | 40 | 224 | 128 | 1 |
B3 | 0 | 0.02 | 0 | 118 | 159 | 24 | 1 |
B4 | 3.92 | 0.53 | 7 | 11 | 375 | 280 | 1 |
B5 | 5.44 | 0.61 | 9 | 13 | 395 | 306 | 2 |
B6 | 5.23 | 0.74 | 7 | 18 | 399 | 332 | 2 |
B7 | 5.32 | 0.56 | 9 | 51 | 318 | 156 | 5 |
B8 | 3.94 | 0.46 | 8 | 13 | 379 | 170 | 2 |
B9 | 0.15 | 0.08 | 2 | 66 | 240 | 121 | 1 |
B10 | 0.04 | 0.05 | 1 | 43 | 171 | 108 | 1 |
Standard deviation | 2.46 | 0.28 | 3.63 | 32.78 | 97.55 | 99.31 | 1.25 |
Coefficient of variation, % | 99.07 | 86.94 | 71.26 | 79.95 | 34.15 | 56.94 | 73.62 |
Leptosols 1 | 7.12 | 0.58 | 12 | 2238 | 1849 | 461 | 155 |
Technic Cryosol1 | 4.64 | 0.41 | 11 | 435 | 465 | 36 | 9 |
p = 0.95 | C | N | C/N | P2O5 | K2O | N-NH4 | N-NO3 |
---|---|---|---|---|---|---|---|
C | 1 | 0.95 | 0.95 | −0.54 | 0.89 | 0.89 | 0.84 |
N | 1 | 0.84 | −0.59 | 0.93 | 0.96 | 0.75 | |
C/N | −0.50 | 0.78 | 0.78 | 0.81 | |||
P2O5 | 1 | −0.69 | −0.74 | −0.24 | |||
K2O | 1 | 0.97 | 0.70 | ||||
N-NH4 | 1 | 0.63 | |||||
N-NO3 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polyakov, V.; Abakumov, E.; Mavlyudov, B. Black Carbon as a Source of Trace Elements and Nutrients in Ice Sheet of King George Island, Antarctica. Geosciences 2020, 10, 465. https://doi.org/10.3390/geosciences10110465
Polyakov V, Abakumov E, Mavlyudov B. Black Carbon as a Source of Trace Elements and Nutrients in Ice Sheet of King George Island, Antarctica. Geosciences. 2020; 10(11):465. https://doi.org/10.3390/geosciences10110465
Chicago/Turabian StylePolyakov, Vyacheslav, Evgeny Abakumov, and Bulat Mavlyudov. 2020. "Black Carbon as a Source of Trace Elements and Nutrients in Ice Sheet of King George Island, Antarctica" Geosciences 10, no. 11: 465. https://doi.org/10.3390/geosciences10110465
APA StylePolyakov, V., Abakumov, E., & Mavlyudov, B. (2020). Black Carbon as a Source of Trace Elements and Nutrients in Ice Sheet of King George Island, Antarctica. Geosciences, 10(11), 465. https://doi.org/10.3390/geosciences10110465