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Abstract: As a major disturbance to forest ecosystems, wildfires pose a serious threat to the ecological
environment. Monitoring post-fire vegetation recovery is critical to quantifying the effects of wildfire
on ecosystems and conducting forest resource management. Most previous studies have analyzed
short-term (less than five years) post-fire recovery and limited the driving factors to temperature
and precipitation. The lack of long-term and multi-faceted observational analyses has limited our
understanding of the long-term effects of fire on vegetation recovery. This study utilized multi-source
remote sensing data for a long time series analysis of post-fire vegetation recovery in China based
on Google Earth Engine (GEE) cloud computing platform. Normalized Difference Vegetation Index
(NDVI), Enhanced Vegetation Index (EVI), Normalized Burn Ratio (NBR), and Normalized Difference
Moisture Index (NDMI) were selected to quantify the low, moderate, and high severity of burned
areas. Ridge Regression Model (RRM) was used to analyze the relationship between 15 driving
factors and the vegetation regeneration process. The results show that it took at least 7–10 years for
the vegetation index to recover to the pre-fire level after a forest fire. The recovery rate of high severity
combustion areas was the fastest within the first two years. From the results of Ridge Regression,
it came out that the overall fitting degree of the model with NDVI as the dependent variable was
superior than that with EVI. The four variables of temperature, precipitation, soil temperature, and
soil moisture were able to explain the change in more detail in vegetation indices. Our study enriches
the research cases of global forest fires and vegetation recovery, provides a scientific basis for the
sustainable development of forest ecosystems in China, and provides insight into environmental
issues and resource management.

Keywords: forest fire; vegetation recovery; burn severity; ridge regression analysis; climatic factors

1. Introduction

Fire is a natural disturbance that occurs every few years in many forest ecosystems [1].
The distributions and characteristics of forest fuels are changing due to global warming,
which impacts the occurrence of forest fires [2–5]. Fire affects atmospheric chemistry, forest
ecosystem succession, carbon cycling, forests degradation, and land-use change [6–10].
Forest fires have occurred frequently in recent years, such as the California forest fires
in the United States in October 2003 [11,12], the Australian forest fires in February 2001
and March 2002 [13–15], and the forest fires that occurred in the northeastern forest areas
of China in 1987, 1992, and 1996 [16–19], etc., which have seriously affected the social,
economic, and ecological benefits of forest areas [20–23]. On the other hand, fire also
increases the diversity of ecosystem species and promotes natural regeneration [19]. Forests
are renewable resources with a long growth cycle [24]. After severe fires, forests are often
replaced by sparse woodland or scrub. If repeatedly burned, forests may become barren
grassland or even bare ground [25,26].

The theory of vegetation recovery trends after forest fires is one of the hot spots in
studies of forest fires. As early as the 1930s, Russian scholars began to study the effects
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of fire on the ecological environment [27]. By the 1950s, the United States and Canada
began to pay attention to the impact of fire on various landscape types [21,28]. Currently,
satellite remote sensing data are widely used in the study of forest fires [29]. Compared
with traditional in situ monitoring methods, satellite remote sensing has the advantages
of a larger observation scale and more continuity in time and spatial dimensions [30,31].
Therefore, remote sensing is becoming a primary method for studying forest fires. It helps to
monitor the burned area and the severity of damage in real-time [32–34]. For example, forest
fires can be detected by the brightness temperature of infrared (IR) radiation. In particular,
the mid-infrared (MIR) and thermal infrared (TIR) bands are effective in detecting forest
fires [35]. Since the spectral characteristics possessed by green vegetation are different
from those of soil, water, and other features [36–38], hyperspectral remote sensing images
can provide a good record of the spectral characteristics based on their chemistry and
morphology [27], as well as provide good monitoring of the development, health, and
growth conditions of the vegetation [39–41].

With the development of satellite observation technology, high-resolution optical
image data have been used to study fire severity [42,43] and monitor the dynamic changes
of vegetation after fire [12,44–47]. The study by Caccamo, G., R. Bradstock, L. Collins,
T. Penman, and P. Watson of the vegetation recovery after eucalyptus fires in Australia
indicated that spectral recovery was remarkably rapid in the first year after the fire, and
the influence of severity was limited to the first two years after the fire [14]. Analysis of
short-term (<5 years) post-fire vegetation recovery in Larix gmelinii (Larix gmelinii [Rupr.]
Kuzen.) forests in northeastern China showed that climatic conditions and fire severity
in the first growing season after fire play important roles in vegetation recovery [18]. The
recovery rate of Normalized Burn Ratio (NBR) in the short term after a fire varies with
time, severity, and forest type. Recovery rate usually reaches the highest shortly after the
fire [32].

Previous studies have focused on short-term (<5 years) changes in vegetation green-
ness after forest fires [48,49]. The effects of soil structure and meteorological factors (tem-
perature and precipitation) on vegetation recovery were also analyzed using ordinary
least squares [12,50,51]. However, long-term vegetation recovery has seldom been studied.
Although the distribution of fires at different temporal and spatial scales was summa-
rized [52], the analysis of the number and area of fires were not comprehensive enough.
The least-squares method is a widely used classical statistical algorithm. However, the
negative impact of covariance on least squares estimation in a regression setting is in-
evitable. The presence of multiple covariance problems may lead to invalid least squares
estimates [19,53,54].

Ridge Regression provides a way to solve the covariance problem without remov-
ing variables from the original set of independent variables [55,56]. Specifically, Ridge
Regression makes the regression coefficients estimable by introducing a k-unit array. The
regression results are more stable than simple linear regression [57]. The regression co-
efficients are more realistic by abandoning the unbiased nature of least squares at the
expense of losing some information [58]. It is more tolerant to pathological data than the
least-squares method.

In this study, we analyzed the vegetation recovery under different fire severities and
vegetation types. Revealing the effects of fire on forest succession through long-term post-
fire monitoring. Ridge Regression, which is more tolerant of pathological data and has
more accurate regression models, was used to assess the impact of multiple driving factors
on post-fire vegetation recovery. The results of this study can provide a scientific basis for
forest fire management and forest resource protection departments.

The main research objectives of this paper are:

1. To explore the pattern of forest recovery under different fire severities and vegetation
types conditions through long-term observations;

2. To explore the effect of each factor on post-fire recovery using Ridge Regression.
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2. Materials and Methods
2.1. Study Areas

We used the global fire dataset (CMS_Global_Fire_Atlas_1642) to identify fire points
(https://daac.ornl.gov/CMS/guides/CMS_Global_Fire_Atlas.html accessed on 27 July
2021). As shown in Figure 1a, the forest fires in China mainly distribute in the northern
and southwestern regions. According to the “Regulations on Forest Fire Prevention” and
related literature, we chose the study areas based on:

1. Areas with a forest burned area greater than 10 km2 to ensure that the recovery time
would not be too fast;

2. Fires that occurred between 2003 and 2010, to ensure a recovery study period of at
least ten years;

3. Areas in which no other fires occurred within the next five years, in the recovery
process after this fire.

Figure 1. Study area and the Normalized Burn Ratio (NBR) distribution during fire disturbance.
(a) Distribution of forest fires in China from 2003 to 2016; (b–e) are Zone 1, Zone 2 in the northeast,
Zone 3 in the central region, and Zone 4 in the southwest region, respectively.

The western regions were not included in the analysis because of the small burned
area and number of fires.

We first filtered the Chinese region by the fire dataset. Next, we filtered out forest fires.
Finally, the final study areas were selected based on burned area and year. We selected
four forest fires in three regions, i.e., northeast China (Zone 1, Zone 2), central China
(Zone 3), and southwest China (Zone 4), as the study areas. In this study, we analyzed the
recovery process of vegetation in burned areas from two aspects, different burn severities
and different vegetation types. Detailed information on the study area is shown in Table 1.

Table 1. Location, time, and burning area of fire points in China from 2003 to 2016.

Study Area Location Coordinates Time Burning Area
(km2) Main Vegetation Types

Zone 1 Hulun Buir 51.1312 N–121.839 E 2–20 May 2003 981.567

Deciduous Needleleaf Forests
Deciduous Broadleaf Forests

Mixed Forests
Shrublands
Grasslands

Zone 2
Da Hinggan

Ling Prefecture 52.0021 N–126.125 E 30 April–16 June 2003 4596.004

Deciduous Needleleaf Forests
Deciduous Broadleaf Forests

Mixed Forests
Grasslands

Zone 3 Shanxi 38.0021 N–113.329 E 20–25 April 2006 81.565
Shrublands
Grasslands

Zone 4 Yunnan 25.681 N–100.376 E 10–21 March 2010 40.576
Mixed Forests

Grasslands

https://daac.ornl.gov/CMS/guides/CMS_Global_Fire_Atlas.html
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Zone 1 and Zone 2 (Figure 1b–e) are the northernmost and highest latitude border
regions in China. The area has a cold-temperate continental monsoon climate with rainy
summers and winters and significant temperature differences [18]. The terrain consists of
mesas, low mountains, hills, and intermountain basins. The average elevation is 573 m;
the highest peak is 1528 m. The average annual temperatures in the south and north are
1 ◦C and −6 ◦C, and the precipitation is 442 mm and 240 mm, respectively. The natural
vegetation type of the Da Hinggan Ling Prefecture is the cold-temperate coniferous and
deciduous forest area of the Eurasian forest plant sub-region of the Pan-Arctic flora [16,59].
The forest cover rate is over 60%, with coniferous forests dominated by Larix gmelinii
(Larix gmelinii [Rupr.] Kuzen.). The main species are Camphor pine (Pinus sylvestris var.
mongholica Litv.), Red-barked spruce (Picea koraiensis Nakai), Birch (Betula platyphylla Suk.),
Mongolian oak (Quercus mongolica Fisch. ex Ledeb), Populus (Populus davidiana Dode),
etc. The Da Hinggan Ling Prefecture is one of the state-owned forest areas and the main
area of natural forests in China. In the mountains above 1000 m of sea level, there are a
large number of low-temperature plants, such as Pinus pumila (Pinus pumila [Pall.] Regel),
Yuehua birch (Betula ermanii Cham.), Artemisia lagocephala (Artemisia lagocephala), Linnaea
borealis (Linnaea borealis Linn.), etc. The slopes below 1000 m are widely covered with
Cuckoo forests with a well-developed understory of shrubs. The Deciduous Broadleaf
Forests are mainly distributed below 400 m above sea level. The forest composition is
dominated by Mongolian oak (Quercus mongolica Fisch. ex Ledeb). Meadow plants are
mainly found on gentle slopes of forest margins, interstices of forests, and broad valley
edges. Zone 3, which corresponds to the 2006 forest fire (Figure 1d), occurs within Shanxi
Province, with the burned area located at the border of Jinzhong City and Yangquan City.
This area belongs to the warm-temperate semi-humid continental monsoon climate zone.
The topography is high in the west and low in the east, with the highest point at 1804 m
above sea level and the lowest end at only 350 m above sea level. The average annual
temperature is generally 8–12 ◦C, and the yearly precipitation is 450–550 mm. Influenced by
monsoons and complex topography, the four seasons are distinct, and the regional climate
in the territory has noticeable vertical variations. The vegetation type in the study area is
mainly shrubs and grasses due to topography, geomorphology, and climate. Most forests
are artificially planted with Red pine (Pinus koraiensis Sieb. et Zucc.), Cypress (Cupressus
funebris Endl.), Poplar (Populus tomentosa Carr), etc. The forest fire in Yunnan Province in
2010 (Zone 4) (Figure 1e) started at the junction of Dali City and Binchuan County. The
topography of the study area is high in the northwest and low in the southeast. It is a
northern subtropical plateau monsoon climate type with an average annual temperature of
14.9 ◦C. Due to the influence of topography and climate, the rainfall in the northwest is more
significant than that in the southeast. The main tree species include Yunnan pine (Pinus
yunnanensis Franch.), Huashan pine (Pinus armandii Franch.), Hemlock (Tsuga chinensis
[Franch.] Pritz.), Fir (Abies fabri [Mast.] Craib), Horsetail fir (Phlegmariurus phlegmaria [L.]
Holub), Simao pine (Pinus kesiya var. langbianensis), Cypress (Cupressus funebris Endl.),
Camphor (Cinnamomum camphora [L.] presl), Tsubaki (Ailanthus altissima [Mill.] Swingle),
Oak (Quercus L.) and so on. The study area is dominated by Mixed Forests and Grasslands.
The annual temperature difference is slight, and the seasons are not very pronounced.
The temperature at this site decreases with increasing altitude, and rainfall increases with
increasing space altitude [60].

2.2. Data

Moderate-resolution imaging spectroradiometer (MODIS) products were selected to
extract fire trails and were used as the primary data source for monitoring the dynamic
changes of vegetation in fire trails. Three meteorological data products, the fifth generation
ECMWF (European Centre for Medium-Range Weather Forecasts) Atmospheric Reanalysis
of the global climate (ERA5) data, Terra Climate data, and Famine Early Warning Systems
Network (FEWS NET) Land Data Assimilation System (FLDAS) data, were selected as
the data sources for extracting the long time series of driving factors, and the specific
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information is shown in Table 2. We downloaded data through the Google Earth Engine
(GEE) platform [61–64], and the projection coordinate system was set to “EPSG:32649”. The
pre-processing of the source data was performed as follows. First, the images were cropped
by the software ENVI (version 5.3. Colorado, USA: Exelis Visual Information Solutions).
Next, the data were corrected using the “Band Math Batch” tool in ENVI to remove outliers
and multiply by a scale factor of 0.0001 to make the reflectance values within (0,1). Finally,
MATLAB (version R2021a. Massachusetts, USA: MathWorks) was used to calculate each
vegetation index and synthesize the data with different temporal resolutions into annual
data and export them.

Table 2. Dataset used in this study.

Product/Bands Temporal and Spatial Resolution Explain

MODIS

MCD64A1 500 m Identify fire tracks in the study area and draw
vector maps

MOD14A1 1 km-8 d The fire confidence is specified in pixels

MOD13A1 500 m-16 d Extraction and calculation of vegetation index
(NDVI, EVI, NDMI)

M0D09A1 500 m-8 d Calculation the Normalized Burn Ratio (NBR) and
the differenced Normalized Burn Ratio (dNBR)

MCD13Q1 1 km Land cover type classification

ERA5

temperature 2 m-1 monthly Average air temperature at 2 m (daily mean)
precipitation m Total precipitation (daily total)

Soil temperature K The temperature of the soil in layer 1 (0–7 cm) of
the ECMWF Integrated Forecasting System.

Terra
Climate

Soil mm Soil moisture derived using a one-dimensional soil
water balance model

Aet mm Actual evapotranspiration derived using a
one-dimensional soil water balance model

Def mm Climate water deficit derived using a
one-dimensional soil water balance model

Pr mm Precipitation accumulation
Tmmn ◦C Minimum temperature
Tmmx ◦C Maximum temperature

FLDAS

Qg_tavg W/m2 Soil heat flux
Qair_f_tavg kg/kg Specific humidity

SoilMoi00_10cm

m3/m3

Soil moisture (00–10 cm underground)
SoilMoi10_40cm Soil moisture (10–40 cm underground)

SoilMoi40_100cm Soil moisture (40–100 cm underground)
SoilMoi100_200cm Soil moisture (100–200 cm underground)

2.3. Methods

Based on multi-source remote sensing data, this paper quantifies the long-term recov-
ery process of vegetation on fire sites by monitoring post-fire vegetation recovery from
forest fires for 10–20 years. The differences in vegetation recovery under different fire
severities and vegetation types are also explored. Ridge Regression Method (RRM) was
used to evaluate the influence of multiple driving factors on the recovery of fire sites and
identify the key factors. The specific process is shown in Figure 2.
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Figure 2. Research Process.

2.3.1. Vegetation Index

We used 8-day synthetic surface reflectance MODIS data at 500 m resolution to calcu-
late indices in Table 3. NDVI is the most widely used vegetation index indicating changes in
vegetation cover, biomass, and ecosystem [65–67]. However, it can be oversaturated in areas
with high above-ground biomass, such as tropical rainforests [68–70]. It is susceptible to
soil background at low vegetation cover, which can cause changes in the NDVI time series
patterns and thus result in some uncertainties in the parameter extraction [71–73]. Therefore
the MODIS vegetation index product team developed a new enhanced vegetation index
EVI. It mitigates the effects of atmospheric aerosol scattering and soil background radiation
by introducing blue-band reflectance and mathematically transforming the calculation
formula [28,74,75].

Table 3. Selected remote sensing vegetation indices to detect fire severity in China.

Index Expression Description

Normalized Difference Vegetation
Index (NDVI) NDVI = ρNIR−ρRED

ρNIR+ρRED
NDVI and EVI are used to monitor changes in vegetation
greenness (The values of NDVI and EVI are between −1

and 1, and the normal values of green vegetation)Enhanced Vegetation Index (EVI) EVI = 2.5× (ρNIR−ρRED)
ρNIR+6.0ρRED−7.5ρBLUE+1

Normalized Burn Ratio (NBR) NBR = ρNIR−ρSWIR
ρNIR+ρSWIR

Monitor whether the fire occurs and identify the fire trace

Normalized Difference Moisture
Index (NDMI) NDMI = ρNIR−ρMIR

ρNIR+ρMIR
Extract the water content of the vegetation canopy

the differenced Normalized Burn
Ratio (dNBR) dNBR = NBRpre −NBRpost Estimate the burn severity of the fire

In this study, the differenced Normalized Burn Ratio (dNBR) was obtained by calcu-
lating the difference between the pre-fire and post-fire NBRs. We performed the k-means



Forests 2022, 13, 883 7 of 22

clustering analysis to obtain the thresholds and distributions of the three fire intensities, as
detailed in Table 4.

Table 4. Classification of different fire severities.

Study Area Low Severity Moderate Severity High Severity

Zone 1 0 < dNBR < 0.2 0.2 ≤ dNBR < 0.4 dNBR ≥ 0.4
Zone 2 0.1 < dNBR < 0.16 0.16 ≤ dNBR < 0.3 dNBR ≥ 0.3
Zone 3 0.055 < dNBR < 0.145 0.145 ≤ dNBR < 0.22 dNBR ≥ 0.22
Zone 4 0.04 < dNBR < 0.12 0.12 ≤ dNBR < 0.24 dNBR ≥ 0.24

We monitor the changes in NBR and NDMI by calculating the year-over-year growth
rate of the indicators and thus determine the occurrence of fires. The rate is the year-on-
year growth rate, valuei is the indicator value for the current period, and valuei−1 is the
indicator value for the previous period.

rate =
valuei − valuei−1

valuei−1
× 100% (1)

The average EVI value of the three years before the fire disturbance was used as the
average level of the vegetation index in this area. The recovery level of EVI each year after
fire disturbance is calculated by the following formula:

recovery level =
EVIi

EVImean
× 100% (2)

where EVIi represents the EVI values for different fire severities in that year and EVImean is
the average EVI value for the three years before the fire.

2.3.2. Ridge Regression

Ridge Regression is one of the most frequently used regularization methods for regres-
sion analysis of ill-posed problems. It is commonly used to solve multicollinearity problems
in multiple linear regression [54]. The least-squares method is widely used in regression
analysis, which is an unbiased estimation. For a well-posed problem, X is usually column
full rank i.e., Xθ = y. Using the least-squares method, the loss function is defined as the
square of the residuals, minimizing the loss function as ‖Xθ− y‖2. The above optimization
problem can be solved by the gradient descent method or directly by using the following
Equation (3).

θ = (XTX)
−1

XTy (3)

When X is not a column of full rank, or when the linear correlation between columns
is relatively significant, the determinant of XTX approaches 0, i.e., XTX approaches the
singular matrix, and the problem becomes an ill-posed problem. At this point, the error in

calculating (XTX)
−1

will be large, and the traditional least-squares method lacks stability
and reliability.

Adding the regularization term to the loss function transforms it into a fitness problem,

‖Xθ− y‖2 + ‖Γθ‖2 (4)

let Γ = kI, then
θ(k) = (XTX + kI)

−1
XTy (5)

where I is the unit matrix. As k increases, |θ(k)i| tends to become smaller, and their
deviation from the correct value θi becomes larger. θ(k) tends to 0 as k tends to infinity. The
trajectory of θ(k) varying with k is called the ridge trace. Ridge Regression complements
least squares regression, which loses unbiasedness in exchange for high numerical stability,
resulting in higher computational accuracy [76]. Although Ridge Regression yields a more
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enormous sum of squared residuals than least squares regression, in this way, it is far more
tolerant of pathological data than least squares [77].

Assuming that the data matrix X =
{

xij
}

of the independent variables is n× p, the least-
squares estimation seeks the coefficient β that minimizes the sum of squared residuals, i.e.,

(α̂(ols), β̂(ols)
) = argmin

(α,β)

n

∑
i=1

(yi − α−
n

∑
j=1

Xijβj)
2

(6)

and the Ridge Regression requires an additional term λ
n
∑

j=1
β2

j to constrain the magnitude of

the coefficients, such that the residual sum of squares is small and the coefficients are not
inflated, i.e.,

(α̂(ridge), β̂(ridge)
) = argmin

(α,β)

n

∑
i=1

{
(yi − α−

n

∑
j=1

Xijβj)
2

+ λ
n

∑
j=1

β2
j

}
(7)

where β̂(k) = (XTX + kI)
−1

XTY is the Ridge Regression parameter estimate, k is the ridge
parameter. The effect of multicollinearity can be reduced by the choice of the k value. Since
the ridge parameter k is not uniquely chosen, the Ridge Regression parameter estimate
β̂(k) is an estimation class of the regression parameter β with different values of k and
different values of β̂(k). Ridge trace plots are used to determine k values. The component
β̂i(k) of the ridge is estimated as a function of k. When k varies in [0,+∞), the graph
depicted by the plane rectangular coordinate system is the ridge trace plot. The principle
of determining the value of k is to choose the smallest value of kmin which makes the
standardized regression coefficients of each variable stable. When k = 0 is equivalent to
ordinary linear regression (OLS). The regression model is obtained by substituting the
value of kmin for the modeling.

In the regression analysis of various models, autocorrelation between independent
variables is inevitable. If the multicollinearity between the independent variables can be
reduced or eliminated, the accuracy and reliability of the index prediction can be improved.
Multicollinearity refers to the existence of an approximately linear relationship between the
independent variables of a multiple regression model. In this paper, the Variance Inflation
Factor (VIF) is chosen to measure the covariance between the explanatory variables of the
model [56,78]. The variance inflation factor is the reciprocal of tolerance (1− R2

i ), where Ri
is the negative correlation coefficient of the independent variable xi for regression analysis
of other independent variables.

VIF =
1

1− R2
i

(8)

Usually, a VIF value greater than 10 indicates a severe covariance problem. The
existence of the multicollinearity problem makes the accuracy of the estimation significantly
reduced; the stability of the estimated value becomes poor. Even though the overall
significance of the regression equation was high, some regression coefficients could not
pass the significance test. The positive and negative signs of the regression coefficients
are inverted, which cannot reasonably explain the regression equation, thus reducing the
application value of the regression equation [55,79].

Common methods for overcoming multicollinearity among explanatory variables
include increasing the sample size, stepwise regression, and Ridge Regression. How-
ever, stepwise regression methods solve the covariance problem by directly removing
the independent variables from covariance. This may remove key variables resulting in
a meaningless regression equation. Ridge Regression provides a method to address the
problem without eliminating variables from the original set of independent variables [54].
Therefore, this paper will solve this problem by modifying the model using the Ridge Re-
gression analysis method, which is more general and has higher accuracy in the regression
equation [80].



Forests 2022, 13, 883 9 of 22

The Ridge Regression is divided into two steps. First, from the ridge trace plot, the opti-
mal k value is determined. Second, the k values are brought to the regression model. In this
study, ridge trajectory plots were obtained using IBM SPSS Statistics software (version 24.0.
Armonk, NY, USA: IBM Corp). The horizontal axis is the ridge parameter and the vertical
axis is the standardized regression coefficient. Then, we selected 15 independent variables
as input variables, including the average air temperature at 2 m (air_temperature_2m),
total daily precipitation (precipitation), soil temperature at 0–7 cm (soil_temperature),
monthly climatic precipitation (pr), climatic moisture gain/loss using a one-dimensional
soil moisture balance model (def), actual evapotranspiration (aet), soil_moisture, minimum
temperature (tmmn), maximum temperature (tmmx), soil moisture at four depths (Soil-
Moi100_200cm, SoilMoi40_100cm, SoilMoi10_40cm, SoilMoi00_10cm), soil heat flux (Qg),
and specific humidity (Qair). Regression analysis was performed with NDVI and EVI as
dependent variables, respectively. The output models were used to study the effects of
15 climatic factors, including monthly mean temperature and precipitation, on changes in
vegetation indices.

3. Results
3.1. Forest Fire Vegetation Restoration
3.1.1. Forest Fire Identification

The MCD64A1 product contains per-pixel burned area and mass information to
determine the burning date for each 500 m grid cell within each MODIS tile. The MOD14A1
product includes fire occurrence time (day/night), fire location, detection confidence, fire
radiated power, and other layers describing fire pixel properties. We distinguish between
fire, no fire, and no observation by Fire-Mask layers. Fire points are identified, and vector
boundaries are mapped by combining the two products.

From Figure 3, it can be observed that the moderate and high burning areas in Zone 1
account for 90% of the fire area. The high burning areas in Zone 2 are mainly distributed in
the eastern part of the whole study area, and the fire intensity gradually decreases to the
southwest. Zone 3 and Zone 4 are relatively small in terms of the fire area and severity and
do not vary significantly in the images.

Figure 3. Distribution of burn severity in the study area. (a–d) indicate Zone 1, Zone 2, Zone 3, and
Zone 4 study areas, respectively.

For NBR, as shown in Figure 4a, the year-on-year growth rate fluctuated within the
range of (−1~30) % in the two years before the fire. After the disturbance of the fire
occurred (shaded part), the year-on-year growth rate of NBR became negative and became
more prominent with the increase of the severity of the forest fire. The negative growth
rate of NBR reached 90.22%, 73.64%, 50.27%, and 55.15% in the four high burning zones,
respectively. The year-on-year growth rate of the moderate burning zone fire year in Zone
4 was 5.02%, and the negative growth rate of the moderate burning zone one year after the
fire was 36.76%, indicating that this forest fire had a lagging effect on the moderate burning
zone. The year-on-year growth rate in the high severity burn zone one year after the fire
was much greater than that in the low and moderate severity burn zone, with year-on-year
growth rates of 8.17 and 3.6 times (Zone 1); 2.96, and 2.04 times (Zone 2); 1.86 and 1.31 times
(Zone 3); and 4.02 and 1.15 times (Zone 4) for the low and moderate severity burn zone,
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respectively. Then, in the absence of fire, the year-on-year growth rate gradually tends to 0
and remains stable with no abnormality.

Figure 4. Year-on-year growth rate of (a) NBR, (b) NDMI. The gray shadow indicates the occurrence
of fire disturbance.

NDMI is more effective than NDVI in extracting the moisture content of vegetation
canopy; as shown in Figure 4b, the year-on-year growth rate fluctuated within (−5~50) % in
the two years before the fire. Fires consume a large amount of water in the vegetation, after
which the indicator decreases and becomes negative and becomes more prominent with
increasing severity of forest fires. The NDMI values gradually recovered and leveled off
two years after the fire. Then, the growth rate values fluctuated above and below the value
of 0 without abnormalities in the absence of fire. Combining the two indices can determine
whether a disturbance has occurred and the duration of the observed disturbance condition.

3.1.2. Effects of Different Fire Severities on Post-Fire Recovery

In the burned areas, vegetation index values and species richness increased substan-
tially recovered over time. Figure 5 shows the time-series variation of NDVI and EVI for
different fire intensities. Since the fire years are different, the post-fire monitoring time
ranges are also different.

Under the three fire intensities, NDVI and EVI index values have similar trends. Still,
NDVI values are 0.2 to 0.4 units higher than EVI values, and NDVI recovery time is longer
than EVI overall. It can be seen from Figure 5 that both NDVI and EVI values drop below
the normal fluctuation range after the fire, and the decline varies with the severity. The
index values increased rapidly within two years after the fire (one year after the Zone 4
fire). Then the rate of increase slowed down, and gradually stabilized.

From the trend in Figure 5, the recovery rate of the high severity burning zone is
the fastest, followed by the moderate severity burning area within one year after fire
disturbance. The EVI increments in Zones 1–4 were 2.34, 1.99, 1.54, and 2.24 times higher
than those in the low-severity burning zone and 1.23, 1.42, 1.16, and 1.27 times higher than
those in the moderate-severity burning zone, respectively. The similar recovery trends in
the two study areas of Zone 1 and Zone 2 are related because they are both located in the
northeast and have identical vegetation type compositions. Combined with Figure 6, it can
be seen that low-severity areas were always the first to recover to pre-fire levels, requiring
only one to four years. Four of the study areas reaching normal EVI levels four years (107%
of normal for Zone 1), two years (101% of normal for Zone 2), and one year (100% for both
Zone 3 and Zone 4) after the fire, respectively.
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Figure 5. Time series of NDVI and EVI at different fire severities where (a–d) represent Zone 1–4.
The vertical red dotted line represents the fire year, and the two horizontal grays dashed lines are
the mean values of NDVI, and EVI for the three years before the fire, respectively. The three colored
solid lines represent NDVI and the dashed lines represent EVI. Yellow lines indicate low severity,
blue lines indicate moderate severity, and red lines indicate high severity.

Figure 6. Recovery of EVI for different fire severities levels where (a–d) represent Zone 1–4. The red
vertical dashed line is the fire year, and the gray horizontal dashed line is the reference line for the
average EVI values for the three years before the fire.
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For Zone 1, the change in NDVI growth (reduction) rate after the fire was in a smaller
band than EVI (Figure 6). The negative growth rates of the low, moderate, and high fire
zones as indicators of NDVI after the 2003 fire were 9.67%, 20.37%, and 32.95%, respectively.
The growth rate of the moderate fire zone was 0.16%, almost no growth, and the growth
rate of the high fire zone was only 4.61%, indicating a slow recovery rate; the growth rate
only increased significantly in the fourth year after the fire (2007). In contrast, the negative
growth rates of the low, moderate, and high burned areas were 20.87%, 40.49%, and 57.03%,
respectively. The year-on-year growth rates were 9.54%, 23.24%, and 38.67% in the year
after the fire, and the comparison with the growth rate of EVI shows that NDVI is a weaker
indicator than EVI for monitoring the vegetation condition.

The recovery of EVI from Figure 6 shows that the recovery rate varies for different
severity levels. The recovery of EVI for low to moderate burning zones reaches 100% in
the second (Zone 3), sixth (Zone 4), seventh (Zone 2), and eighth (Zone 1) years after the
fire, respectively. For heavily burned areas, recovery took longer, requiring eight to eleven
years to reach pre-fire levels. Fire has a significant impact on the successional recovery
of vegetation.

In the overall EVI recovery process, Zone 1 took eight years to reach 102.1% of the
pre-fire three-year average and remained above 100% after that. Zone 2 took seven years to
get 101.7% of the pre-fire level, followed by three years (2011–2013) of minor fluctuations
but was still above 99.6% of the ordinary level overall. Zone 3 recovered to the normal level
one year after the fire, and the subsequent EVI values have remained above 1.25 times the
normal level, which positively influenced the vegetation recovery, indicating that the fire
promoted vegetation regeneration. Zone 4 never reached the pre-fire level, and the best
recovery was 97.37% of the pre-fire normal level, also indicating that this fire disturbance
inhibited the vegetation regeneration, resulting in the decrease of EVI.

3.1.3. Effects of Different Vegetation Types on Post-Fire Recovery

Since land cover types in Zone 3 and Zone 4 are relatively simple, Zone 1 and Zone
2 were selected to analyze the restoration of different vegetation types. Five land cover
types were extracted in the Northeast study area, namely Deciduous Needleleaf Forests,
Deciduous Broadleaf Forests, Mixed Forests, Shrublands, and Grasslands.

Combined with Figure 7a, through 19 years, it can be seen that in Zone 1, Deciduous
Needleleaf Forests and Deciduous Broadleaf Forests had the highest year-on-year growth
rates in the first year after the fire, 32.23% and 32.02%, respectively. This was followed
by grassland with 27.26%, while Mixed Forests and Shrublands had the slowest growth
rates, 26.39%, and 24.21%, respectively. However, from the third year onwards, the growth
rate slowed down and remained around 1% on average. Shrublands showed a negative
growth rate, indicating a slowing down of the vegetation recovery process. In the 11th year
after the fire, all five vegetation types recovered to their pre-fire mean levels. In Zone 2,
the recovery was less volatile than in Zone 1. The fastest growth rate was in Mixed Forests
(33.71%), followed by Deciduous Broadleaf Forests (27.31%) and Grasslands (24.61%) in
the first year after the fire. The slowest growth rate was in Deciduous Needleleaf Forests
(22.88%) and the EVI values of Deciduous Needleleaf Forests were kept at the lowest level,
seven years after the fire (2010). The EVI values of all four land cover species returned to
pre-fire levels seven years after the fire (2010) and continued to increase slowly during the
following decade.
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Figure 7. Time series of enhanced vegetation index under different vegetation types. (a) In the first
study area of Northeast China in 2003; (b) in the second study area of Northeast China in 2003. The
gray dashed line is the mean reference line for each vegetation type in the three years pre-fire. The
horizontal axis is the year, and the vertical axis is the EVI value.

To further understand the influence of fire on the vegetation succession process, this
paper also extracted the information of phenological parameters to monitor the change of
vegetation type characteristics during the vegetation restoration process more intuitively.
The essential level value, maximum value, and seasonal amplitude were selected as pheno-
logical change parameters. The parameter characteristics of typical land cover in the two
study areas of Zone 1 and Zone 2 were obtained by screening the location information of
specific land cover (Table 5).

Table 5. Typical land cover phenological parameters.

Type Baseval. Max Mean Amplitude

Deciduous
Needleleaf

Forests
0.2643 0.4477 0.3501 0.1835

Deciduous
Broadleaf

Forests
0.3029 0.5137 0.3970 0.2111

Mixed Forests 0.2648 0.4449 0.3716 0.1801
Shrublands 0.2481 0.4100 0.3153 0.1763
Grasslands 0.2365 0.4248 0.3524 0.1885

Figure 8 shows the monthly (April to September) B-spline curves of EVI, with the red
dotted line showing the fire disturbance year. Figure 8 shows that in 2003, the EVI values of
Zone 1 and 2 both began to decline when the EVI value did not reach the maximum value,
indicating that disturbance occurred.

Figure 8. Monthly (April to September) B-spline change curve of EVI in which the red dotted line is
the year of fire disturbance.



Forests 2022, 13, 883 14 of 22

As shown in Table 6 and Figure 8, the maximum and the average values of EVI for
Zone 1 in the first five years after the fire (2004–2008) were small. The fire was more intense
and severely impacted the main vegetation types. From 2009 to 2012, the EVI maximum
and mean values increased to some extent (the maximum value increased to more than
0.40, and the mean value increased to about 0.35.) After 2013, the mean value of EVI in
the fire sites increased to more than 0.38, and the main vegetation types started to show
forest characteristics. A relatively severe forest fire occurred in May 2003 at the Zone 1 site.
After the fire, the site showed a nearly grassland-like ground cover and began to recover
gradually. During the 19 years of vegetation recovery, the site went through a transitional
stage from grassland to forest. Grassland dominated for about 10 years, and the process of
vegetation recovery was slow.

Table 6. Typical land cover phenological parameters of Zone 1.

Year Baseval. Max Ampl. Mean Estimation of Main Vegetation Types

2002 0.1935 0.4667 0.2732 0.3577 Forest
2003 0.1739 0.2765 0.1026 0.2026 Grasslands
2004 0.1886 0.3188 0.1303 0.2536 Grasslands
2005 0.2117 0.3482 0.1364 0.2904 Grasslands
2006 0.2666 0.3550 0.0883 0.3080 Grasslands
2007 0.2760 0.3757 0.0997 0.3261 Grasslands
2008 0.2550 0.3617 0.1067 0.3109 Grasslands
2009 0.2695 0.4151 0.1456 0.3410 Grasslands
2010 0.2892 0.4117 0.1225 0.3484 Grasslands
2011 0.2695 0.4419 0.1723 0.3606 Grasslands
2012 0.2611 0.4462 0.1851 0.3509 Grasslands
2013 0.2646 0.4953 0.2307 0.3809 Forest
2014 0.2592 0.4817 0.2224 0.3697 Forest
2015 0.2749 0.4539 0.1790 0.3606 Forest
2016 0.2790 0.4613 0.1823 0.3708 Forest
2017 0.2788 0.4890 0.2101 0.3756 Forest
2018 0.2733 0.4807 0.2074 0.3691 Forest
2019 0.2624 0.4458 0.1834 0.3579 Forest
2020 0.2653 0.4872 0.2218 0.3723 Forest

From Table 7 and Figure 8, it can be seen that the mean value of EVI in Zone 2 dropped
to 0.27, and the maximum value was only 0.35 after the fire. From 2004, the vegetation
recovery process became more apparent, and the maximum and mean values of EVI started
to increase gradually. The mean and maximum values suddenly increased in 2007 to 0.5
and 0.39, respectively, then there was a slight decrease in the following two years. After
2010, the EVI maximum value reached above 0.5, and the mean value was more significant
than 0.40 and remained stable, and began to show the characteristics of woodland. A
relatively severe forest fire occurred in May 2003 at the Zone 2 site. After the fire, the site
showed a nearly grassland-like ground cover and began to recover gradually. During the
19 years of vegetation recovery, the site went through a gradual transition from grassland
to forest. The grassland stage lasted only six years, and the vegetation recovery process
was rapid.

3.2. Analysis of Driving Factors of Forest Fire

Simple linear regression of the model was done using IBM SPSS Statistics software
(version 24.0. Armonk, NY, USA: IBM Corp), and the covariance VIF test is shown in
Table 8. Many variables showed VIF values greater than 100, which means there is a severe
covariance problem among the variables.
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Table 7. Typical land cover phenological parameters of Zone 2.

Year Baseval. Max Ampl. Mean Estimation of Main Vegetation Types

2002 0.2449 0.5275 0.2827 0.3975 Forest
2003 0.2276 0.3487 0.1211 0.2745 Grasslands
2004 0.2447 0.4619 0.2172 0.3449 Grasslands
2005 0.2541 0.4251 0.1709 0.3346 Grasslands
2006 0.2837 0.4438 0.1600 0.3577 Grasslands
2007 0.2926 0.5170 0.2245 0.3968 Grasslands
2008 0.2712 0.4365 0.1653 0.3529 Grasslands
2009 0.2665 0.4630 0.1965 0.3564 Grasslands
2010 0.2750 0.5377 0.2627 0.3923 Forest
2011 0.2819 0.5063 0.2243 0.3912 Forest
2012 0.2850 0.5158 0.2307 0.3849 Forest
2013 0.2725 0.5012 0.2287 0.3733 Forest
2014 0.2715 0.5460 0.2746 0.4077 Forest
2015 0.2946 0.5190 0.2244 0.3950 Forest
2016 0.3081 0.5683 0.2602 0.4264 Forest
2017 0.3053 0.5578 0.2524 0.4162 Forest
2018 0.3016 0.5428 0.2413 0.4012 Forest
2019 0.2929 0.5591 0.2663 0.4196 Forest
2020 0.2905 0.5484 0.2578 0.4095 Forest

Table 8. Multicollinearity test.

Independent Variable Zone 1 Zone 2 Zone 3 Zone 4

air_temperature_2m 280.9687 441.9791 198.6482 48.5518
precipitation 5.5803 5.2305 6.7810 8.9000

soil_temperature 161.7993 217.5032 101.5689 30.9440
pr 11.8155 8.2197 18.0869 8.0774
def 4.6275 7.6822 36.3580 58.7483
aet 5.9457 5.4454 24.4846 25.9693

soil_moisture 3.8887 2.8730 3.4613 5.8624
tmmn 116.1371 156.3384 111.4930 22.2615
tmmx 103.9297 127.7386 68.0482 14.1496

SoilMoi100_200cm 1.9654 1.2187 1.5865 11.1703
SoilMoi40_100cm 2.8919 2.9092 4.0294 68.9484
SoilMoi10_40cm 3.0035 4.7844 4.1863 72.8044
SoilMoi00_10cm 4.7541 3.4573 5.6312 37.7164

Qg 5.0672 8.8173 7.2950 8.1072
Qair 33.2108 39.3646 32.3019 34.8219

To reduce the effect of multicollinearity, the study was conducted using a Ridge
Regression Model with better performance. Although the parameter estimates obtained by
using Ridge Regression analysis are biased, the significance and stability of the parameter
estimates are significantly higher than those of ordinary regression, and their likelihood of
being close to the truth is greater.

From the ridge trace plots (Figure 9), it can be seen that the standardized regression co-
efficients of the independent variables tend to be stable after the optimal K value is selected.
The regression coefficients and results for the four study areas are shown in Table 9. The
marked stars are the variables that passed the significance test, ∗ p < 0.05, ∗ ∗ p < 0.01;
the corresponding t-values are in parentheses. The variables that passed the significance
test were retained, and the final Ridge Regression Model was obtained as shown in Table 10,
where, X1: temperature, X2: soil_temp, X3: tmmn, X4: tmmx, X5: SoilMoi100_200cm, X6:
Qg, X7: Qair, X8: pr, X9: def.
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Figure 9. Ridge trace map obtained by Ridge Regression for NDVI and EVI. The red dotted line is
the optimal K value, for the four study areas, where (a–h) are the ridge trace plots under the optimal
K values of Zone 1–4, respectively.

Table 9. Ridge Regression correlation coefficient summary, where the marked stars are the variables
that passed the significance test (* p < 0.05 ** p < 0.01).

Dependent
Variable

Zone 1 Zone 2 Zone 3 Zone 4

NDVI EVI NDVI EVI NDVI EVI NDVI EVI

constant −3.803409 ** −2.088772 ** −2.882776 ** −2.068646 ** −2.136167 −0.419936 2.546419 −0.634158
air_temperature_2m 0.007401 ** 0.003959 ** 0.006699 ** 0.004553 ** 0.008268 ** 0.003899 * 0.007125 0.005414

precipitation 0.047458 0.060939 −0.086581 −0.087635 −0.147393 −0.140648 −0.320704 −0.024361
soil_temperature 0.007086 ** 0.003763 ** 0.003380 * 0.002259 * 0.013212 ** 0.009271 ** −0.016231 −0.003412

pr 0.000054 0.000230 ** 0.000072 0.000257 0.000361 0.000393 * −0.000696 * −0.000243
def −0.000034 0.000005 −0.000019 0.000003 0.000053 0.000055 ** −0.000027 −0.000003
aet 0.000028 0.000010 0.000031 0.000034 0.000017 0.000038 0.000055 0.000036

soil_ moisture 0.000002 −0.000004 −0.000031 −0.000039 −0.000007 0.000004 0.000022 −0.000002
tmmn 0.000542 ** 0.000327 ** 0.001066 ** 0.000606 ** 0.000749 * 0.000579 ** 0.000232 0.000241
tmmx 0.000680 ** 0.000284 ** 0.000555 ** 0.000302 ** 0.000008 0.000113 0.001693 0.000290

SoilMoi100_200cm 0.491963 ** 0.255826 ** 0.602195 ** 0.474445 * −12.1318 ** −10.5677 ** 0.744633 ** 0.405073 **
SoilMoi40_100cm 0.052904 0.154634 0.015860 0.114421 0.359546 0.213440 0.062536 0.240833
SoilMoi10_40cm −0.071292 −0.174804 −0.045349 −0.242848 0.042609 −0.022720 0.124141 0.086111
SoilMoi00_10cm −0.231088 −0.081440 0.040574 0.051104 0.606331 0.300097 0.153566 0.111667

Qg 0.004082 ** 0.004766 ** 0.007151 ** 0.007434 ** −0.00771 ** −0.000791 −0.02041 ** −0.005873
Qair 5.053745 7.735988 ** 11.940298 ** 12.668206 ** −0.281842 0.283235 −3.006526 0.951760

R-square 0.911133 0.852603 0.933542 0.88843 0.876618 0.820434 0.557328 0.675701
Adjusted
R-square 0.898675 0.83194 0.924226 0.872789 0.859321 0.795261 0.495271 0.630238

F value, F (15,107) 73.14,
p = 0.000

41.26,
p = 0.000

100.2,
p = 0.000

56.80,
p = 0.000

50.68,
p = 0.000

32.59,
p = 0.000

8.98,
p = 0.000

14.86,
p = 0.000

In Zone 1, the K value for Ridge Regression analysis with NDVI as the dependent
variable was taken as 0.08 and the model R2 = 0.911, implying that 15 independent
variables such as air_temperature_2m can explain 91.11% of the variation in NDVI. When
EVI is the dependent variable, the model R2 = 0.853, implies that air_temperature_2m and
other 15 variables can explain 85.26% of the variation in EVI. Differences in the equations of
different dependent variables in the same study area: the EVI equation in Zone 1 increased
the variables pr and Qair. In Zone 2 study area, NDVI, EVI remained the same; Zone 3’s
EVI equation increased the variables pr, def, Qg; Zone 4’s EVI equation decreased the
variable temperature, pr, soilmoi40_100cm, and Qg, and the variables SoilMoi100_200cm
were added to the Zone 4’s EVI equation.
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Table 10. Ridge Regression results.

Study Area Dependent
Variable

Adjusted
R-Square K Ridge Regression Equation

Zone 1
NDVI 0.898675 0.08 NDVI = 0.007X1 + 0.007X2 + 0.001X3 + 0.001X4 + 0.492X5+

0.004X6 − 3.803
EVI 0.83194 0.22 EVI = 0.004X1 + 0.004X2 + 0.000327X3 + 0.000284X4+

0.256X5 + 0.005X6 + 7.736X7 + 0.0002X8 − 2.089

Zone 2
NDVI 0.924226 0.03 NDVI = 0.007X1 + 0.003X2 + 0.001X3 + 0.001X4 + 0.602X5+

0.007X6 + 11.940X7 − 2.883
EVI 0.872789 0.05 EVI = 0.005X1 + 0.002X2 + 0.001X3 + 0.0003X4 + 0.474X5+

0.007X6 + 12.668X7 − 2.069

Zone 3
NDVI 0.859321 0.02 NDVI = 0.008X1 + 0.013X2 + 0.001X3 − 12.132X5−

0.008X6 − 2.136
EVI 0.795261 0.04 EVI = 0.004X1 + 0.009X2 + 0.001X3 − 10.568X5 + 0.0004X8+

0.0001X9 − 0.420

Zone 4
NDVI 0.495271 0.03 NDVI = 0.745X5 − 0.020X6 − 0.0007X8 + 2.546
EVI 0.630238 0.04 EVI = 0.405X5 − 0.634

In the regression model, the goodness of fit R2 of the equation with NDVI as the
dependent variable was better than the R2 obtained with EVI as the dependent variable,
except for Zone 4. The six variables X1–X6 in the equation had a greater influence on the
vegetation index, indicating that temperature, precipitation, soil temperature, soil water
content, and soil heat flux explained more of the variation in the vegetation index. In
general, regression coefficients are mainly used for prediction, while standard regression
coefficients indicate the relative importance of each independent variable under the same
conditions. The degree of influence of each factor on vegetation indices (NDVI, EVI) is
shown in Figure 10.

Figure 10. Bar charts of the significance of the driving factors. (a–c) are the three study areas, and
only the important variables are shown on the bar chart because the significant driving factors are
different in each area. Blue represents EVI as the dependent variable, and orange represents NDVI as
the dependent variable.

It is clear that among the nine variables that passed the significance test after Ridge
Regression, mean monthly temperature (X1), soil surface temperature (X2), and maximum
temperature (X4) have a higher ability to influence changes in NDVI in the Zone 1, all
reaching 20% of overall importance. In contrast, soil heat flux (X6) has the weakest ability
to control, with only 9% importance. For Zone 1, the role of EVI variation is relatively
average, and the most significant influence is also temperature (X1, X2) accounting for 15%.
For the study area of Zone 2, the minimum temperature (X3) can explain 27% of the NDVI
variation with the greatest influence; the minimum temperature (X3), soil heat flux (X6),
and specific humidity (X7) can explain 20% of the EVI variation, respectively. Zone 3 had
relatively few influences, with 27% positive influence of soil temperature (X2) on NDVI
and 17.8% negative influence on soil heat flux (X6). The regression equation for Zone 4
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is not shown in the bar chart because of the small number of variables included in the
regression equation.

During post-fire recovery, managers can target human intervention to create a natural
environment suitable for vegetation recovery and promote forest recovery according to the
magnitude of the impact of different climatic variables on the vegetation index.

4. Discussion

Every year there are more than 200,000 forest fires worldwide, large numbers of
hectares of forest are burned in China. Forest fires have a severe impact on the ecological
environment [77]. In this study, we analyzed the effect of fire severity on the recovery
process of vegetation by comparing the recovery rates of vegetation indices under different
fire intensities.

The experimental results showed that the areas with the highest fire severity had the
fastest rate of vegetation recovery within the beginning two years after the fire, which is
consistent with previous studies [15,81]. The burned areas could recover to pre-fire levels
over seven years. Still, due to the lack of field data, it was hard to determine whether
the disturbed vegetation had fully recovered. The results of this paper also demonstrate
that fire promotes the growth and development of vegetation on fire sites, keeping the
vegetation index values above pre-fire levels [25,35,82]. This happens due to the fact that
fire burned many tall trees and let in more sunlight in low-lying areas, the seeds of some
low-lying herbaceous plants were cracked through the fire, promoting plant growth [4,30].
In addition, previous studies have shown that full recovery of vegetation after severe forest
fires takes more than 20 years [38]. To gain a deeper understanding of the links between
ecosystem processes and fire impacts, more areas need to be studied. In the future, more
efforts are required to explore long-term competitive relationships and recovery processes
among different species in burned areas using higher-resolution remote sensing data, or
through stratified field sampling.

Post-fire vegetation regeneration is controlled by meteorological conditions, and
recovery is more rapid in spring and summer [3,22]. The adaptation of different vegetation
to fire varies is also related to temperature and soil conditions [48]. The resolution of
the climatic data used in this study was relatively coarse compared to the Landsat and
topographic data. This may lead to a decrease in the explanatory power of the driving
factors of vegetation recovery. Due to multicollinearity among different climatic data, the
analysis could not be performed by the OLS regression method [26,42,54]. Therefore, we
tried to build a model using the Ridge Regression Method (RRM), which is more tolerant
of pathological data. The accuracy of the regression model was improved without reducing
the variables [54]. In addition, we obtained four critical driving factors, namely temperature,
precipitation, soil temperature, and soil moisture. After the fire, according to the actual
condition of the fire site, we can create favorable conditions for the recovery of vegetation
by increasing soil moisture and artificial rainfall.

Our results contribute to a better understanding of the interactions between climate,
disturbance, and vegetation dynamics. We believe that the application of forest restoration
using different indicators will allow us to evaluate the progress of forest restoration from
different perspectives. It will potentially help forest management authorities to make scien-
tific and rational arrangement. This study also has the following limitations. First, due to
the lack of field measurement data, we could not determine the main reason for the recovery
of NDVI and EVI to pre-fire levels. It may be caused by the recovery of fire-disturbed vege-
tation or the role of developing vegetation. Second, the low resolution of meteorological
data selected for this study may affect the explanatory power of meteorological factors
for small study area. Finally, the number of study samples in this study is small, and the
conclusions obtained for post-fire recovery do not apply to the whole ecosystem. Still, the
research method can be used for studies in other areas. Although this paper has made
preliminary achievements in the analysis of factors affecting vegetation recovery, there are
still many tasks that need to be done further. The key ones are briefly discussed as follows:
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First, how to find a feasible method for proper planning of post-fire vegetation recovery
from the macro-level based on the results of Ridge Regression analysis. Second, there
is a need to study on a larger spatial scale to summarize more comprehensive statistical
patterns of the post-fire vegetation restoration process. Finally, a more comprehensive
prediction can be obtained by using a combination of different statistical models.

5. Conclusions

The study of post-fire recovery is a crucial determinant of building re-establishment
of ecosystem services. We studied the long-term recovery processes of four forest fires in
northeastern, central, and southwestern China. Considering the importance of post-fire
climatic conditions in explaining the recovery process, we used the highest possible spatial
and temporal resolution data for monitoring. Post-fire methods and rates were assessed by
long time series analysis of multivariate remote sensing data. In combination with Ridge
Regression, the covariance between variables was resolved, and attribution analysis was
performed to obtain the main driving factors. This study showed that different severity
levels had a significant effect on the recovery rate of vegetation, with higher severity
recovering faster in the short term, and the recovery rate gradually leveling off in the
middle and late stages of fire. The four main factors affecting vegetation recovery obtained
from the Ridge Regression analysis were temperature, precipitation, soil temperature, and
soil moisture. These results improve our understanding of vegetation dynamics after forest
fires. Combining these methods makes it possible to assess the different stages of forest
succession after the fire. However, additional studies are needed to include other potentially
driving factors (soil properties, etc.) to obtain a more comprehensive investigation. Our
results contribute to the understanding of the interactions between climate, disturbance,
and vegetation dynamics. It can provide a scientific basis for forest management, post-fire
ecosystem restoration, and risk assessment. Future research directions can monitor forest
fire recovery on a larger scale, combine more climate products, and explore new methods
to obtain more extensive results.
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