Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (573)

Search Parameters:
Keywords = wild pig

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 923 KiB  
Article
Detection of Porcine Circovirus Type 3 in Free-Ranging Wild Boars and Ticks in Jiangsu Province, China
by Fanqi Sun, Meng Li, Yi Wang, Wangkun Cheng, Meirong Li, Changlin Deng, Xianwei Wang and Zhen Yang
Viruses 2025, 17(8), 1049; https://doi.org/10.3390/v17081049 - 28 Jul 2025
Viewed by 362
Abstract
Porcine circovirus type 3 (PCV3) has been detected in wild boars across many countries in Europe, Asia, and South America. However, data regarding the presence of porcine circoviruses in wild boars and ticks remain limited. In this study, we investigated the presence and [...] Read more.
Porcine circovirus type 3 (PCV3) has been detected in wild boars across many countries in Europe, Asia, and South America. However, data regarding the presence of porcine circoviruses in wild boars and ticks remain limited. In this study, we investigated the presence and genetic characteristics of PCV3 in wild boars and parasitizing ticks in Jiangsu, China. Samples, including whole blood, serum, tissues, feces, and oral fluids from wild boars, as well as ticks collected from 47 wild boars, were obtained between March 2021 and November 2022. PCR results indicated that 34.0% (16/47) of wild boars tested positive for PCV3, while ELISA detected 41.9% (18/43) seropositivity. RT-qPCR results showed that 7.2% (6/83) were positive for PCV3 in 83 analyzed tick samples, with all positive samples identified as Amblyomma testudinarium. The PCV3 genome obtained from wild boars was classified as PCV3a and was closely related to the strain identified in domestic pigs in Nanjing, Jiangsu Province. Collectively, these findings confirm the presence of PCV3 in wild boars in Jiangsu and suggest a possible link of PCV3 infection among domestic pigs, wild boars, and ticks, providing new insights into the transmission risk of PCV3 at wildlife–livestock–human interfaces and highlighting the genetic homology between strains from wild and domestic pigs. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

11 pages, 761 KiB  
Communication
First Report of Triple Viral Co-Infection (PPV, PCV2, PCMV) in Wild Boars in the Western Balkans
by Dimitrije Glišić, Sofija Šolaja, Kukilo Stevan, Vesna Milićević, Miloš Vučićević, Jelena Aleksić and Dajana Davitkov
Pathogens 2025, 14(7), 710; https://doi.org/10.3390/pathogens14070710 - 18 Jul 2025
Viewed by 436
Abstract
Wild boars are recognized reservoirs of numerous viral pathogens, posing a significant risk to domestic pig populations, particularly in areas with poor biosecurity. This study assessed the prevalence and co-infection patterns of porcine circovirus type 2 (PCV2), porcine parvovirus (PPV), porcine cytomegalovirus (PCMV), [...] Read more.
Wild boars are recognized reservoirs of numerous viral pathogens, posing a significant risk to domestic pig populations, particularly in areas with poor biosecurity. This study assessed the prevalence and co-infection patterns of porcine circovirus type 2 (PCV2), porcine parvovirus (PPV), porcine cytomegalovirus (PCMV), African swine fever virus (ASFV), classical swine fever virus (CSFV), and pseudorabies virus (PRV) in wild boars from western Serbia and the Republic of Srpska (Bosnia and Herzegovina). Sixty-six spleen samples from legally hunted wild boars were analyzed by qPCR. All animals were negative for ASFV, CSFV, and PRV. The cumulative prevalence of infection with at least one of the other three viruses was 86.4% (95% CI: 76.2–92.8%). PCMV was detected in 74.2% of samples, PCV2 in 50%, and PPV in 28.8%. Co-infections were common: 42.4% of animals were positive for two viruses, and 12.1% for all three. A statistically significant association was observed between triple co-infection and sex, with higher rates in males. Subadult wild boars showed the highest PCV2 + PCMV co-infection rate (p = 0.0547). These findings highlight the need to expand molecular surveillance, particularly for PCMV, in both wild and domestic pigs, especially in regions reliant on low-biosecurity backyard farming. Full article
(This article belongs to the Special Issue Current Challenges in Veterinary Virology)
Show Figures

Figure 1

20 pages, 2642 KiB  
Article
Complete Genome and Characterization Analysis of a Bifidobacterium animalis Strain Isolated from Wild Pigs (Sus scrofa ussuricus)
by Tenggang Di, Huan Zhang, Cheng Zhang, Liming Tian, Menghan Chang, Wei Han, Ruiming Qiao, Ming Li, Shuhong Zhang and Guangli Yang
Microorganisms 2025, 13(7), 1666; https://doi.org/10.3390/microorganisms13071666 - 16 Jul 2025
Viewed by 319
Abstract
Bifidobacterium is a predominant probiotic in animals that is associated with host intestinal health. The protective mechanisms of the Bifidobacterium animalis (B. animalis) strain, specifically those related to functional gene–host interactions in intestinal homeostasis, remain poorly elucidated. This study reports the [...] Read more.
Bifidobacterium is a predominant probiotic in animals that is associated with host intestinal health. The protective mechanisms of the Bifidobacterium animalis (B. animalis) strain, specifically those related to functional gene–host interactions in intestinal homeostasis, remain poorly elucidated. This study reports the complete genome sequence and characterization of a B. animalis strain isolated from wild pig feces, which comprised a single circular chromosome (1,944,022 bp; GC content 60.49%) with 1567 protein-coding genes, and the B. animalis strain had certain acid resistance, bile salt resistance, gastrointestinal fluid tolerance, and antibacterial characteristics. Genomic annotation revealed three putative genomic islands and two CRISPR-Cas systems. Functional characterization identified genes encoding carbohydrate-active enzymes (CAZymes) and associated metabolic pathways, indicating that this strain can degrade complex dietary carbohydrates and synthesize bioactive metabolites for gut homeostasis. Although the antibiotic resistance genes were predicted, phenotypic assays demonstrated discordant resistance patterns, indicating complex regulatory networks. This study indicated the genomic basis of Bifidobacterium–host crosstalk in intestinal protection, providing a framework for developing novel probiotic interventions. Full article
Show Figures

Figure 1

23 pages, 22555 KiB  
Article
Citrate Transporter Expression and Localization: The Slc13a5Flag Mouse Model
by Jan C.-C. Hu, Tian Liang, Hong Zhang, Yuanyuan Hu, Yasuo Yamakoshi, Ryuji Yamamoto, Chuhua Zhang, Hui Li, Charles E. Smith and James P. Simmer
Int. J. Mol. Sci. 2025, 26(14), 6707; https://doi.org/10.3390/ijms26146707 - 12 Jul 2025
Viewed by 350
Abstract
The sodium–citrate cotransporter (NaCT) plays a crucial role in citrate transport during amelogenesis. Mutations in the SLC13A5 gene, which encodes the NaCT, cause early infantile epileptic encephalopathy 25 and amelogenesis imperfecta. We analyzed developing pig molars and determined that the citrate concentrations in [...] Read more.
The sodium–citrate cotransporter (NaCT) plays a crucial role in citrate transport during amelogenesis. Mutations in the SLC13A5 gene, which encodes the NaCT, cause early infantile epileptic encephalopathy 25 and amelogenesis imperfecta. We analyzed developing pig molars and determined that the citrate concentrations in secretory- and maturation-stage enamel are both 5.3 µmol/g, with about 95% of the citrate being bound to mineral. To better understand how citrate might enter developing enamel, we developed Slc13a5Flag reporter mice that express NaCT with a C-terminal Flag-tag (DYKDDDDK) that can be specifically and accurately recognized by commercially available anti-Flag antibodies. The 24-base Flag coding sequence was located immediately upstream of the natural translation termination codon (TAG) and was validated by Sanger sequencing. The general development, physical activities, and reproductive outcomes of this mouse strain were comparable to those of the C57BL/6 mice. No differences were detected between the Slc13a5Flag and wild-type mice. Tooth development was extensively characterized using dissection microscopy, bSEM, light microscopy, in situ hybridization, and immunohistochemistry. Tooth formation was not altered in any detectable way by the introduction of the Flag. The Slc13a5Flag citrate transporter was observed on all outer membranes of secretory ameloblasts (distal, lateral, and proximal), with the strongest signal on the Tomes process, and was detectable in all but the distal membrane of maturation-stage ameloblasts. The papillary layer also showed positive immunostaining for Flag. The outer membrane of odontoblasts stained stronger than ameloblasts, except for the odontoblastic processes, which did not immunostain. As NaCT is thought to only facilitate citrate entry into the cell, we performed in situ hybridization that showed Ank is not expressed by secretory- or maturation-stage ameloblasts, ruling out that ANK can transport citrate into enamel. In conclusion, we developed Slc13a5Flag reporter mice that provide specific and sensitive localization of a fully functional NaCT-Flag protein. The localization of the Slc13a5Flag citrate transporter throughout the ameloblast membrane suggests that either citrate enters enamel by a paracellular route or NaCT can transport citrate bidirectionally (into or out of ameloblasts) depending upon local conditions. Full article
(This article belongs to the Special Issue Molecular Metabolism of Ameloblasts in Tooth Development)
Show Figures

Figure 1

16 pages, 2950 KiB  
Article
Characterization of the Mitochondrial Genome of the Vietnamese Central Highland Wild Boar (Sus scrofa)
by Minh Thi Tran, Anh Le Hong Vo, Chi Nguyen Quynh Ho, Manh Quang Vu, Quan Minh To, Mai Thi Phuong Nguyen, Loan Thi Tung Dang, Nhan Lu Chinh Phan, Chung Chinh Doan, Huy Nghia Quang Hoang, Cuong Phan Minh Le, Son Nghia Hoang, Han Thai Minh Nguyen and Long Thanh Le
Animals 2025, 15(14), 2029; https://doi.org/10.3390/ani15142029 - 10 Jul 2025
Viewed by 347
Abstract
Hybridization between domestic pigs and wild boars of unknown origins has disrupted the precious gene pool of Vietnamese wild boar (Sus scrofa) populations in the Central Highlands. However, the genetic background of Vietnamese wild boars remains largely unknown. This study describes [...] Read more.
Hybridization between domestic pigs and wild boars of unknown origins has disrupted the precious gene pool of Vietnamese wild boar (Sus scrofa) populations in the Central Highlands. However, the genetic background of Vietnamese wild boars remains largely unknown. This study describes the complete mitochondrial genome of the Vietnamese Central Highland wild boar, a circular molecule comprising 16,581 base pairs (bp). The mitogenome contains 37 genes, which encode for 2 ribosomal RNAs, 22 transfer RNAs, and 13 mitochondrial proteins. It has a conserved gene order, gene orientation, and similar nucleotide composition indexes to other boars and pig breeds across the world. Notably, 232 nucleotide substitutions were detected when comparing this genome with 19 previously described Sus scrofa genomes. Partial cytochrome b gene analysis revealed the distribution of Asian haplotypes in the Vietnamese Central Highland Sus scrofa. A phylogenetic tree constructed from 32 Sus scrofa’s whole mitogenome sequences demonstrated the close relationship between Vietnamese wild boars and domestic pig breeds. The study provides additional insights into the genetics of Vietnamese wild boars, paving the way for future research in conservation, evolution, and breeding of Vietnamese wild boar populations. Full article
(This article belongs to the Special Issue Wildlife Genetic Diversity)
Show Figures

Figure 1

14 pages, 1293 KiB  
Article
Comprehensive Survey of PCV2 and PCV3 in Domestic Pigs and Wild Boars Across Portugal: Prevalence, Geographical Distribution and Genetic Diversity
by Bernardo Almeida, Margarida D. Duarte, Ana Duarte, Teresa Fagulha, Fernanda Ramos, Tiago Luís, Inês Caetano, Sílvia C. Barros, Fábio Abade dos Santos and Ana Margarida Henriques
Pathogens 2025, 14(7), 675; https://doi.org/10.3390/pathogens14070675 - 9 Jul 2025
Viewed by 374
Abstract
Porcine circoviruses are significant pathogens that affect swine populations worldwide, with implications for animal health and productivity. While PCV2 is well-documented, particularly due to widespread vaccination programs, PCV3 is less understood, and its epidemiological impact is still under investigation. This study screened for [...] Read more.
Porcine circoviruses are significant pathogens that affect swine populations worldwide, with implications for animal health and productivity. While PCV2 is well-documented, particularly due to widespread vaccination programs, PCV3 is less understood, and its epidemiological impact is still under investigation. This study screened for PCV2 and PCV3 in pigs and wild boars across Portugal to assess their prevalence. Also, nucleotide sequence determination was performed to evaluate the genetic diversity of these viruses. Stool samples from 160 pigs belonging to different groups (quarantine, nursery, fattening and adult pigs), as well as organ samples from 120 hunted wild boars, were analyzed. Samples were collected from twelve of the eighteen mainland Portuguese districts with positive cases being detected in nine of them. Pigs had a lower prevalence of PCV2 (1.9%) than PCV3 (11.2%), but the opposite was true in wild boars (76.7% for PCV2 and 55.0% for PCV3). The lower PCV2 prevalence in pigs can be attributed to the PCV2 vaccination program implemented. Additionally, these viruses were significantly more prevalent in wild boars (90.8% were infected with at least one of the viruses) than in domestic pigs (only 12.5%). This significant difference highlights the impact of the controlled environment in pig farms on disease prevention in contrast to the higher exposure risks faced by wild boars in their natural habitat. Compared to a previous study from 2023, we observed a slight decrease in the percentage of positive cases for both PCV2 and PCV3. Phylogenetic analysis of sequences obtained by Sanger sequencing allowed us to conclude that the samples from domestic pigs belong to the PCV2a and PCV3c clades, in contrast to the PCV2-positive cases detected in domestic pigs in 2023 that were classified in the PCV2d genotype. Conversely, samples from wild boars belong to the PCV2d and PCV3a clades. These results reveal genotype differences between wild and domestic pigs and shifts from 2023 to 2024. Our findings provide some information about the circulation of these viruses and emphasize the importance of vaccination and continued monitoring for a deeper understanding of their epidemiology to mitigate potential risks to swine health and production. Full article
(This article belongs to the Special Issue Current Challenges in Veterinary Virology)
Show Figures

Figure 1

9 pages, 429 KiB  
Article
The Problem of the Presence of DNA in Cosmetic and Medicinal Products Obtained from Animals on the CITES List
by Aleksandra Figura, Magdalena Gryzinska and Andrzej Jakubczak
Genes 2025, 16(7), 805; https://doi.org/10.3390/genes16070805 - 8 Jul 2025
Viewed by 293
Abstract
Background: The illegal trade in wildlife remains a critical threat to biodiversity, prompting the development of international regulatory frameworks such as the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). One of the key challenges in enforcement is [...] Read more.
Background: The illegal trade in wildlife remains a critical threat to biodiversity, prompting the development of international regulatory frameworks such as the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). One of the key challenges in enforcement is the detection of CITES-listed species in highly processed consumer goods. Methods: This study investigates the use of molecular techniques to detect animal DNA in two selected commercially available medicinal products—a balm and a gel—marketed with ingredients suggestive of protected species such as the brown bear (Ursus arctos) and the medicinal leech (Hirudo medicinalis). Results: Although DNA from these target species was not detected, the analysis revealed the presence of genetic material from the American mink (Neovison vison) and domestic pig (Sus scrofa), indicating the undeclared use of animal-derived substances. While limited in scope, these findings suggest potential ethical and transparency concerns, particularly for consumers adhering to vegetarian, vegan, or religious dietary practices. Conclusions: The study illustrates the feasibility of applying DNA-based screening methods in complex, degraded matrices and their potential as supportive tools in consumer product assessment. However, broader studies are necessary before drawing general regulatory or conservation conclusions. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

23 pages, 1929 KiB  
Article
The First African Swine Fever Viruses Detected in Wild Boar in Hong Kong, 2021–2023
by Karina W. S. Tam, Candy C. Y. Lau, Timothy T. L. Ng, Sin Ming Ip, Sin Fat Pun, Amanda Corla, Carrie Batten and Christopher J. Brackman
Viruses 2025, 17(7), 896; https://doi.org/10.3390/v17070896 - 25 Jun 2025
Viewed by 472
Abstract
This study represents the first report on the detection and whole-genome sequencing of African swine fever (ASF) viruses in wild boar in Hong Kong in 2021–2023. Wild boar samples collected via an ASF surveillance program by the Agriculture, Fisheries, and Conservation Department were [...] Read more.
This study represents the first report on the detection and whole-genome sequencing of African swine fever (ASF) viruses in wild boar in Hong Kong in 2021–2023. Wild boar samples collected via an ASF surveillance program by the Agriculture, Fisheries, and Conservation Department were tested for ASF viruses (ASFVs) using real-time polymerase chain reaction. ASF-positive carcasses were detected in four cases and hemadsorption, virus isolation, and whole-genome sequencing were conducted. The B646L gene, E183L gene, central variable region within the B602L gene, intergenic region between the I73R and I329L genes, EP420R gene, and multigene family members of the four ASFV strains were compared. The whole-genome phylogenetic relationships were studied. The comparative analysis of the genomes indicates that the ASFVs in these four cases have genetic similarities to Asian genotype II ASFVs, but are genetically distinct from each other, as well as the ASFV previously identified in a domestic pig farm in Hong Kong in 2021. Full article
(This article belongs to the Collection African Swine Fever Virus (ASFV))
Show Figures

Figure 1

12 pages, 1360 KiB  
Article
Pharmacological Effect of Water-Extractable (Poly)Phenolic Polysaccharide–Protein Complexes from Prunus spinosa L. Wild Fruits
by Šutovská Martina, Miroslava Molitorisová, Jozef Mažerik, Iveta Uhliariková and Peter Capek
Int. J. Mol. Sci. 2025, 26(13), 5993; https://doi.org/10.3390/ijms26135993 - 22 Jun 2025
Viewed by 359
Abstract
Wild fruits are distributed worldwide, but are consumed mainly in developing countries, where they are an important part of the diet. Still, in many other countries, they are consumed only locally. Blackthorn (Prunus spinosa L.) is an underutilized species rich in fibres [...] Read more.
Wild fruits are distributed worldwide, but are consumed mainly in developing countries, where they are an important part of the diet. Still, in many other countries, they are consumed only locally. Blackthorn (Prunus spinosa L.) is an underutilized species rich in fibres and phenolic compounds, making it suitable as a potential functional food for supporting human health. Cold (Cw) and hot (Hw) water-extracted (poly)phenolic polysaccharide–protein complexes, differing in carbohydrate, phenolic and protein contents, were isolated from blackthorn fruits and characterized. The complexes exhibited molecular weights of 235,200 g/mol (Cw) and 218,400 g/mol (Hw), and were rich in pectic polymers containing galacturonic acid, arabinose, galactose and rhamnose, indicating a dominance of homogalacturonan (HG) [→4)-α-D-GalA(1→4)-α-D-GalA(1→]n and a low content of RGI [→2)-α-L-Rha(1→4)-α-D-GalA(1→2)-α-L-Rha(1→]n sequences associated with arabinan or arabinogalactan. Minor content of glucan, probably starch-derived, was also solubilized. Pectic polysaccharides were highly esterified and partly acetylated. Pharmacological testing was performed in male Dunkin–Hartley guinea pigs, a model with human-like airway reflexes. Both complexes affected airway defense mechanisms. Particularly, Hw significantly suppressed citric acid-induced cough, similar to codeine, and reduced bronchoconstriction comparably to salbutamol in a dose-dependent manner. These findings support further exploration of Hw as a natural antitussive and bronchodilatory agent. Full article
Show Figures

Figure 1

26 pages, 2449 KiB  
Article
Mitochondrial Phylogeography of Wild Boars, Sus scrofa, from Asia Minor: Endemic Lineages, Natural Immigration, Historical Anthropogenic Translocations, and Possible Introgression of Domestic Pigs
by Yasin Demirbaş, Hakan Soysal, Ayςa Özkan Koca, Milomir Stefanović and Franz Suchentrunk
Animals 2025, 15(13), 1828; https://doi.org/10.3390/ani15131828 - 20 Jun 2025
Viewed by 633
Abstract
Türkiye represents an important biogeographic region connecting Southeast Europe with Southwest Asia, where pig domestication began in the western Palearctic. We studied the phylogenetic relationships and spatial distribution of new and published mitochondrial D-loop sequences of wild boars from Türkiye, other parts of [...] Read more.
Türkiye represents an important biogeographic region connecting Southeast Europe with Southwest Asia, where pig domestication began in the western Palearctic. We studied the phylogenetic relationships and spatial distribution of new and published mitochondrial D-loop sequences of wild boars from Türkiye, other parts of the Middle East, and from around the world to understand migration patterns within Asia Minor and other parts of the Middle East as well as across the Bosphorus/Sea of Marmara/Dardanelles, a current migration barrier to Southwest Europe. Our phylogenetic (ML, BI) and spatial (Geneland) analyses revealed haplotypes both endemic to Anatolia and with a wider distribution in the Middle East as well as European (E1) lineages. The latter suggested possible rare immigration into Anatolia at present times and prehistorical/historical anthropogenic translocations of wild boars or pigs, such as during the pre-Hellenic, Roman, and Byzantine periods or during the European crusades, and subsequent introgression into Anatolian wild boars. Import of pigs with E1 haplotypes and introgression into wild boars during the medieval Empire of Trebizond particularly by Italian merchants or settlers, is also suggested. Anatolian lineages that may have formed the basis of the archaic domestication process of pigs in the western Palearctic are discussed. Full article
Show Figures

Figure 1

15 pages, 3514 KiB  
Article
Seroprevalence, Genetic Characteristics, and Pathogenicity of Korean Porcine Sapeloviruses
by Song-Yi Kim, Choi-Kyu Park, Gyu-Nam Park, SeEun Choe, Min-Kyung Jang, Young-Hyeon Lee, Yun Sang Cho and Dong-Jun An
Viruses 2025, 17(7), 870; https://doi.org/10.3390/v17070870 - 20 Jun 2025
Viewed by 450
Abstract
Although porcine sapelovirus (PSV) is generally subclinical, it can cause a wide range of clinical signs in some individuals, including respiratory distress, acute diarrhea, pneumonia, skin lesions, reproductive failure, and neurological diseases. In this study, we investigated the prevalence and genotype of PSV [...] Read more.
Although porcine sapelovirus (PSV) is generally subclinical, it can cause a wide range of clinical signs in some individuals, including respiratory distress, acute diarrhea, pneumonia, skin lesions, reproductive failure, and neurological diseases. In this study, we investigated the prevalence and genotype of PSV isolated from domestic pigs and wild boars in Korea. We also analyzed potential recombination events, and assessed the pathogenicity of the virus through animal experiments. In wild boars, the prevalence of PSV antibodies decreased slightly (by 1.8%) over 5 years (from 2019 to 2024); however, prevalence increased significantly (by 17.8%) in breeding sows. In samples from animals with diarrhea and respiratory clinical signs, the prevalence of PSV alone was 21.1%, whereas the prevalence of PSV mixed with other pathogens was also 21.1%. The whole genome of the PSV/Goryeong/KR-2019 strain isolated from a piglet with diarrhea was closely related to the Jpsv447 strain isolated in Japan in 2009, and recombination analysis predicted that the PSV/Goryeong/KR-2019 strain was generated by genetic recombination between the KS05151 strain and the Jpsv447 strain. However, when the PSV/Goryeong/KR-2019 strain was orally administered to 5-day-old suckling pigs, diarrhea clinical signs were mild, and no significant changes were observed in villus height and ridge depth in the duodenum, jejunum, or ileum. In addition, no neurological clinical signs were observed when the isolated virus was administered to 130-day-old pigs, and no specific lesions were found upon histopathological examination of brain tissue. In conclusion, PSV/Goryeong/KR-2019 appears to be a weakly pathogenic virus that does not cause severe diarrhea in suckling pigs, and does not cause neurological clinical signs in fattening pigs. Therefore, it is presumed that most PSVs detected in Korean pig farms are weakly pathogenic strains. Full article
(This article belongs to the Special Issue Porcine Viruses 2025)
Show Figures

Figure 1

16 pages, 1065 KiB  
Article
First Serologic Analysis of Antibodies Against African Swine Fever Virus Detected in Domestic Pig Farms in South Korea from 2019 to 2024
by Seong-Keun Hong, Mugyeom Moon, Ki-Hyun Cho, Hae-Eun Kang, Jong-Soo Lee and Yeon-Hee Kim
Pathogens 2025, 14(6), 581; https://doi.org/10.3390/pathogens14060581 - 11 Jun 2025
Viewed by 887
Abstract
Background: African swine fever (ASF) is a crucial socioeconomic setback to South Korea’s swine industry. This study aimed to determine seropositivity for ASF virus (ASFV) in pigs that appeared to be infected on farms with reported ASF outbreaks. Methods: A total of 2232 [...] Read more.
Background: African swine fever (ASF) is a crucial socioeconomic setback to South Korea’s swine industry. This study aimed to determine seropositivity for ASF virus (ASFV) in pigs that appeared to be infected on farms with reported ASF outbreaks. Methods: A total of 2232 sera from ASF outbreaks (2019–2024) in South Korea were collected. Two enzyme-linked immunosorbent assay (ELISA) kits were used to detect ASFV antibodies, and an immunoperoxidase test (IPT) was used as a confirmatory test following the method recommended by the World Organisation for Animal Health in the Manual of Diagnostic Tests and Vaccines for Terrestrial Animals. Also, spatial clustering was identified using the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) model to understand ASF hotspots in the wild boar population and assess the spatial relationship between the hotspots and ASF antibody-positive domestic pig farms. Results: Antibodies were first detected in Hwacheon in 2020, but by 2024, only 1.43% of pigs had detectable antibodies against ASFV. Although this percentage is still low, the number of antibody-positive pigs is gradually increasing. Additionally, 32 positive samples were found from nine pig farms with outbreaks, and these samples were confirmed positive in both the two ELISA tests and the IPT. The highest seropositivity was recorded at the finishing stage of pig production. When compared to the confirmatory IPT, both blocking and competition ELISA demonstrated high diagnostic sensitivities. The statistical association between ASF antibody-positive farms and wild boars were analyzed using Fisher’s exact test, yielding a significant p-value of 0.007. This indicates a strong correlation, as eight out of nine ASF-seropositive farms were located within hotspots that were significantly associated. Conclusions: Our findings provide valuable insights into ASFV antibody detection in South Korea and demonstrate a statistical association between farms housing pigs with ASFV antibodies and hotspots of ASFV-infected wild boars. Confirmatory tests, such as the IPT, are needed. These insights will contribute to the improvement of surveillance and biosecurity measures for swine farms. Full article
(This article belongs to the Special Issue Diagnostics of Emerging and Re-Emerging Pathogens)
Show Figures

Figure 1

18 pages, 2815 KiB  
Article
The Involvement of MGF505 Genes in the Long-Term Persistence of the African Swine Fever Virus in Gastropods
by Sona Hakobyan, Nane Bayramyan, Zaven Karalyan, Roza Izmailyan, Aida Avetisyan, Arpine Poghosyan, Elina Arakelova, Tigranuhi Vardanyan and Hranush Avagyan
Viruses 2025, 17(6), 824; https://doi.org/10.3390/v17060824 - 7 Jun 2025
Viewed by 600
Abstract
African swine fever virus (ASFV), a highly contagious and lethal virus affecting domestic and wild pigs, has raised global concerns due to its continued spread across Europe and Asia. While traditional transmission pathways involve suids and soft ticks, this study investigates the potential [...] Read more.
African swine fever virus (ASFV), a highly contagious and lethal virus affecting domestic and wild pigs, has raised global concerns due to its continued spread across Europe and Asia. While traditional transmission pathways involve suids and soft ticks, this study investigates the potential role of freshwater gastropods as environmental reservoirs capable of sustaining ASFV. We analysed ASFV survival in ten gastropod species after long-term co-incubation with the virus. Viral transcriptional activity, particularly of the late gene B646L and members of the multigene family MGF505, was evaluated in snail faeces up to nine weeks post-infection. Results revealed that several gastropods, including Melanoides tuberculata, Tarebia granifera, Physa fontinalis, and Pomacea bridgesii, support long-term persistence of ASFV, accompanied by increased MGF505 gene expression. Notably, the simultaneous activation of MGF5052R and MGF50511R significantly correlated with higher B646L expression and extended viral survival, suggesting a functional role in ASFV maintenance. Conversely, antiviral (AV) activity assays showed that some gastropod faeces reduced replication of the unrelated Influenza virus, hinting at induced host defences. A negative correlation was observed between AV activity and the expression of MGF505 2R/11R, implying that ASFV may suppress antiviral responses to facilitate persistence. These findings suggest that certain gastropods may serve as overlooked environmental hosts, contributing to ASFV epidemiology via long term viral shedding. Further research is needed to clarify the mechanisms underlying ASFV–host interactions and to assess the ecological and epidemiological implications of gastropods in ASFV transmission cycles. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

12 pages, 622 KiB  
Review
Is African Swine Fever Driven by Flying Hematophagous Insects?
by Marek Walczak, Maciej Frant, Krzesimir Szymankiewicz, Małgorzata Juszkiewicz, Katarzyna Podgórska and Marcin Smreczak
Pathogens 2025, 14(6), 563; https://doi.org/10.3390/pathogens14060563 - 5 Jun 2025
Viewed by 652
Abstract
African swine fever (ASF) has become one of the most economically important diseases affecting swine and has a significant negative impact on the global pork production sector. In Europe, the main reservoir of the disease is the wild boar population, which poses a [...] Read more.
African swine fever (ASF) has become one of the most economically important diseases affecting swine and has a significant negative impact on the global pork production sector. In Europe, the main reservoir of the disease is the wild boar population, which poses a risk of transmitting the disease to pig farms. To date, no safe and effective vaccine is available on the market. Therefore, biosecurity measures and early recognition of the disease play a key role in preventing and combating ASF. In recent years, numerous insights into the nature of the virus have emerged; however, several knowledge gaps still need to be addressed. One of these gaps is an accurate understanding of all possible pathways through which the virus can reach a pig farm. Interrupting these pathways would significantly reduce the risk of disease outbreaks. Despite a general understanding of disease transmission, ASF can still affect farms with well-established high biosecurity measures. This article highlights the potential for mechanical transmission of ASF by flying hematophagous insects, considering several factors, including current knowledge of the putative role of insects in ASF transmission, insects’ abilities to transmit the virus, ASFV properties, the uncertainties regarding the effectiveness of indirect transmission, and the seasonality of disease outbreaks on domestic pig farms. Full article
Show Figures

Figure 1

11 pages, 1458 KiB  
Article
Molecular Epidemiology and Genetic Context of optrA-Carrying Linezolid-Resistant Enterococci from Humans and Animals in South Korea
by Younggwon On, Sung Young Lee, Jung Sik Yoo and Jung Wook Kim
Antibiotics 2025, 14(6), 571; https://doi.org/10.3390/antibiotics14060571 - 3 Jun 2025
Viewed by 592
Abstract
Objectives: Linezolid resistance among Enterococcus species poses a growing clinical and public health concern, especially due to the dissemination of transferable resistance genes, such as optrA. This study aimed to evaluate the prevalence of linezolid resistance and to characterize the molecular epidemiology [...] Read more.
Objectives: Linezolid resistance among Enterococcus species poses a growing clinical and public health concern, especially due to the dissemination of transferable resistance genes, such as optrA. This study aimed to evaluate the prevalence of linezolid resistance and to characterize the molecular epidemiology and genetic contexts of optrA-positive linezolid-resistant Enterococcus (LRE) isolates from clinical and animal sources in South Korea. Methods: A total of 2156 Enterococcus isolates, collected through nationwide surveillance from hospitalized patients and healthy livestock (pigs, cattle, and chickens) between 2017 and 2019, were retrospectively analyzed. Phenotypic susceptibility testing, optrA gene screening, and whole-genome sequencing were performed to investigate genetic environments and phylogenetic relationships. Results: The prevalence of linezolid resistance was 0.2% in clinical isolates, 3.3% in pigs, 4.3% in cattle, and 1.4% in chickens. optrA-positive linezolid-resistant isolates were less frequent, with rates of 0.1%, 1.4%, 0.9%, and 1.0%, respectively. Multilocus sequence typing identified sequence types (STs) 330 and ST476 in E. faecalis from humans, with no shared STs between human and livestock isolates. The optrA gene was located either chromosomally, frequently associated with transposon Tn6674, or on multidrug resistance plasmids. Notably, optrA variants exhibited host-specific distribution patterns. Phylogenetic analysis demonstrated considerable genomic diversity, and Korean ST476 isolates were genetically related to international strains reported from livestock, poultry products, and wild birds, suggesting potential global dissemination. Conclusions: This study provides a comprehensive, nationally representative assessment of linezolid resistance in South Korea. The findings highlight the zoonotic potential and possible international dissemination of optrA-carrying ST476 lineages, underscoring the need for integrated One Health surveillance to monitor and control the spread of transferable resistance genes. Full article
Show Figures

Figure 1

Back to TopTop