Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (390)

Search Parameters:
Keywords = wide-area deformation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4328 KiB  
Article
High-Throughput Study on Nanoindentation Deformation of Al-Mg-Si Alloys
by Tong Shen, Guanglong Xu, Fuwen Chen, Shuaishuai Zhu and Yuwen Cui
Materials 2025, 18(15), 3663; https://doi.org/10.3390/ma18153663 - 4 Aug 2025
Abstract
Al-Mg-Si (6XXX) series aluminum alloys are widely applied in aerospace and transportation industries. However, exploring how varying compositions affect alloy properties and deformation mechanisms is often time-consuming and labor-intensive due to the complexity of the multicomponent composition space and the diversity of processing [...] Read more.
Al-Mg-Si (6XXX) series aluminum alloys are widely applied in aerospace and transportation industries. However, exploring how varying compositions affect alloy properties and deformation mechanisms is often time-consuming and labor-intensive due to the complexity of the multicomponent composition space and the diversity of processing and heat treatments. This study, inspired by the Materials Genome Initiative, employs high-throughput experimentation—specifically the kinetic diffusion multiple (KDM) method—to systematically investigate how the pop-in effect, indentation size effect (ISE), and creep behavior vary with the composition of Al-Mg-Si alloys at room temperature. To this end, a 6016/Al-3Si/Al-1.2Mg/Al KDM material was designed and fabricated. After diffusion annealing at 530 °C for 72 h, two junction areas were formed with compositional and microstructural gradients extending over more than one thousand micrometers. Subsequent solution treatment (530 °C for 30 min) and artificial aging (185 °C for 20 min) were applied to simulate industrial processing conditions. Comprehensive characterization using electron probe microanalysis (EPMA), nanoindentation with continuous stiffness measurement (CSM), and nanoindentation creep tests across these gradient regions revealed key insights. The results show that increasing Mg and Si content progressively suppresses the pop-in effect. When the alloy composition exceeds 1.0 wt.%, the pop-in events are nearly eliminated due to strong interactions between solute atoms and mobile dislocations. In addition, adjustments in the ISE enabled rapid evaluation of the strengthening contributions from Mg and Si in the microscale compositional array, demonstrating that the optimum strengthening occurs when the Mg-to-Si atomic ratio is approximately 1 under a fixed total alloy content. Furthermore, analysis of the creep stress exponent and activation volume indicated that dislocation motion is the dominant creep mechanism. Overall, this enhanced KDM method proves to be an effective conceptual tool for accelerating the study of composition–deformation relationships in Al-Mg-Si alloys. Full article
Show Figures

Graphical abstract

21 pages, 5706 KiB  
Article
The Impact of Drilling Parameters on Drilling Temperature in High-Strength Steel Thin-Walled Parts
by Yupu Zhang, Ruyu Li, Yihan Liu, Chengwei Liu, Shutao Huang, Lifu Xu and Haicheng Shi
Appl. Sci. 2025, 15(15), 8568; https://doi.org/10.3390/app15158568 (registering DOI) - 1 Aug 2025
Viewed by 83
Abstract
High-strength steel has high strength and low thermal conductivity, and its thin-walled parts are very susceptible to residual stress and deformation caused by cutting heat during the drilling process, which affects the machining accuracy and quality. High-strength steel thin-walled components are widely used [...] Read more.
High-strength steel has high strength and low thermal conductivity, and its thin-walled parts are very susceptible to residual stress and deformation caused by cutting heat during the drilling process, which affects the machining accuracy and quality. High-strength steel thin-walled components are widely used in aerospace and other high-end sectors; however, systematic investigations into their temperature fields during drilling remain scarce, particularly regarding the evolution characteristics of the temperature field in thin-wall drilling and the quantitative relationship between drilling parameters and these temperature variations. This paper takes the thin-walled parts of AF1410 high-strength steel as the research object, designs a special fixture, and applies infrared thermography to measure the bottom surface temperature in the thin-walled drilling process in real time; this is carried out in order to study the characteristics of the temperature field during the thin-walled drilling process of high-strength steel, as well as the influence of the drilling dosage on the temperature field of the bottom surface. The experimental findings are as follows: in the process of thin-wall drilling of high-strength steel, the temperature field of the bottom surface of the workpiece shows an obvious temperature gradient distribution; before the formation of the drill cap, the highest temperature of the bottom surface of the workpiece is distributed in the central circular area corresponding to the extrusion of the transverse edge during the drilling process, and the highest temperature of the bottom surface can be approximated as the temperature of the extrusion friction zone between the top edge of the drill and the workpiece when the top edge of the drill bit drills to a position close to the bottom surface of the workpiece and increases with the increase in the drilling speed and the feed volume; during the process of drilling, the highest temperature of the bottom surface of the workpiece is approximated as the temperature of the top edge of the drill bit and the workpiece. The maximum temperature of the bottom surface of the workpiece in the drilling process increases nearly linearly with the drilling of the drill, and the slope of the maximum temperature increases nearly linearly with the increase in the drilling speed and feed, in which the influence of the feed on the slope of the maximum temperature increases is larger than that of the drilling speed. Full article
(This article belongs to the Special Issue Machine Automation: System Design, Analysis and Control)
Show Figures

Figure 1

22 pages, 9122 KiB  
Article
Computational Mechanics of Polymeric Materials PEEK and PEKK Compared to Ti Implants for Marginal Bone Loss Around Oral Implants
by Mohammad Afazal, Saba Afreen, Vaibhav Anand and Arnab Chanda
Prosthesis 2025, 7(4), 93; https://doi.org/10.3390/prosthesis7040093 (registering DOI) - 1 Aug 2025
Viewed by 169
Abstract
Background/Objectives: Dental practitioners widely use dental implants to treat traumatic cases. Titanium implants are currently the most popular choice among dental practitioners and surgeons. The discovery of newer polymeric materials is also influencing the interest of dental professionals in alternative options. A comparative [...] Read more.
Background/Objectives: Dental practitioners widely use dental implants to treat traumatic cases. Titanium implants are currently the most popular choice among dental practitioners and surgeons. The discovery of newer polymeric materials is also influencing the interest of dental professionals in alternative options. A comparative study between existing titanium implants and newer polymeric materials can enhance professionals’ ability to select the most suitable implant for a patient’s treatment. This study aimed to investigate material property advantages of high-performance thermoplastic biopolymers such as PEEK and PEKK, as compared to the time-tested titanium implants, and to find the most suitable and economically fit implant material. Methods: Three distinct implant material properties were assigned—PEEK, PEKK, and commercially pure titanium (CP Ti-55)—to dental implants measuring 5.5 mm by 9 mm, along with two distinct titanium (TI6AL4V) abutments. Twelve three-dimensional (3D) models of bone blocks, representing the mandibular right molar area with Osseo-integrated implants were created. The implant, abutment, and screw were assumed to be linear; elastic, isotropic, and orthotropic properties were attributed to the cancellous and cortical bone. Twelve model sets underwent a three-dimensional finite element analysis to evaluate von Mises stress and total deformation under 250 N vertical and oblique (30 degree) loads on the top surface of each abutment. Results: The study revealed that the time-tested titanium implant outperforms PEEK and PEKK in terms of marginal bone preservation, while PEEK outperforms PEKK. Conclusions: This study will assist dental practitioners in selecting implants from a variety of available materials and will aid researchers in their future research. Full article
Show Figures

Figure 1

17 pages, 2640 KiB  
Article
The Developmental Toxicity of Haloperidol on Zebrafish (Danio rerio) Embryos
by Maximos Leonardos, Charis Georgalis, Georgia Sergiou, Dimitrios Leonardos, Lampros Lakkas and George A. Alexiou
Biomedicines 2025, 13(8), 1794; https://doi.org/10.3390/biomedicines13081794 - 22 Jul 2025
Viewed by 218
Abstract
Background/Objectives: Haloperidol is a typical antipsychotic drug widely used for acute confusional state, psychotic disorders, agitation, delirium, and aggressive behavior. Methods: The toxicity of haloperidol was studied using zebrafish (ZF) embryos as a model organism. Dechorionated embryos were exposed to various concentrations of [...] Read more.
Background/Objectives: Haloperidol is a typical antipsychotic drug widely used for acute confusional state, psychotic disorders, agitation, delirium, and aggressive behavior. Methods: The toxicity of haloperidol was studied using zebrafish (ZF) embryos as a model organism. Dechorionated embryos were exposed to various concentrations of haloperidol (0.5–6.0 mg/L). The lethal dose concentration was estimated and was found to be 1.941 mg/L. Results: The impact of haloperidol was dose-dependent and significant from 0.25 mg/L. Haloperidol induced several deformities at sublethal doses, including abnormal somites, yolk sac edema, and skeletal deformities. Haloperidol significantly affected heart rate and blood flow and induced pericardial edema and hyperemia in a dose-dependent manner, suggesting its influence on heart development and function. Embryos exposed to haloperidol during their ontogenetic development had smaller body length and eye surface area than non-exposed ones in a dose-dependent manner. Conclusions: It was found that haloperidol significantly affects the behavior of the experimental organisms in terms of mobility, reflexes to stimuli, and adaptation to dark/light conditions. Full article
(This article belongs to the Section Neurobiology and Clinical Neuroscience)
Show Figures

Figure 1

21 pages, 9288 KiB  
Article
Research on Deformation Mechanisms and Control Technology for Floor Heave in Deep Dynamic Pressure Roadway
by Haojie Xue, Chong Zhang, Yubing Huang, Ancheng Wang, Jie Wang, Kuoxing Li and Jiantao Zhang
Appl. Sci. 2025, 15(15), 8125; https://doi.org/10.3390/app15158125 - 22 Jul 2025
Viewed by 294
Abstract
Under deep, high-intensity mining conditions, a high mineral pressure develops at the working face, which can easily cause floor heave deformation of the roadway. In this paper, with the geological conditions of Buertai coal mine as the background, through on-site monitoring and numerical [...] Read more.
Under deep, high-intensity mining conditions, a high mineral pressure develops at the working face, which can easily cause floor heave deformation of the roadway. In this paper, with the geological conditions of Buertai coal mine as the background, through on-site monitoring and numerical simulation, the mechanism of strong dynamic pressure roadway floor heave is clarified and a cooperative control method for roadway floor heave deformation is proposed. The main conclusions are as follows: (1) The overall strength of the floor of this strong dynamic pressure roadway is low, which can easily cause roadway floor heave, and on-site multivariate monitoring of the mine pressure is carried out, which clarifies the evolution law of the mine pressure of the mining roadway and along-the-airway roadway. (2) Combined with FLAC3D numerical simulation software, we analyze the influence of coal seam depth and floor lithology on the stability of the roadway floor and find that both have a significant influence on the stability of the roadway. Under the condition of high-intensity mining, the floor will deteriorate gradually, forming a wide range of floor heave areas. (3) Based on the deformation and damage mechanism of the roadway floor, a synergistic control method of “roof cutting and pressure relief + floor anchor injection” is proposed and various technical parameters are designed. An optimized design scheme is designed for the control of floor heave in Buertai coal mine. Full article
Show Figures

Figure 1

25 pages, 8466 KiB  
Article
Influence on Existing Underlying Metro Tunnel Deformation from Small Clear-Distance Rectangular Box Jacking: Monitoring and Simulation
by Chong Ma, Hao Zhou and Baosong Ma
Buildings 2025, 15(14), 2547; https://doi.org/10.3390/buildings15142547 - 19 Jul 2025
Viewed by 277
Abstract
Rectangular box jacking is widely used in densely developed urban areas. However, when conducted with limited clear distance near existing metro tunnels, it introduces considerable structural safety risks. This study investigates a large-section rectangular box jacking project in Suzhou that crosses a double-line [...] Read more.
Rectangular box jacking is widely used in densely developed urban areas. However, when conducted with limited clear distance near existing metro tunnels, it introduces considerable structural safety risks. This study investigates a large-section rectangular box jacking project in Suzhou that crosses a double-line metro tunnel with minimal vertical clear distance. Integrated field monitoring and finite element simulations were conducted to analyze the tunnel’s deformation behavior during various jacking phases. The results show that the upline tunnel experienced greater uplift than the downline tunnel, with maximum vertical displacement occurring directly beneath the jacking axis. The affected zone extended approximately 20 m beyond the pipe gallery boundaries. Both the tunnel vault and ballast bed exhibited vertical uplift, while the hance displaced laterally toward the launching shaft. These deformations showed clear stage-dependent patterns strongly influenced by the relative position of the jacking machine. Numerical simulations demonstrated that doubling the pipe–tunnel clearance reduced the vault displacement by 58.87% (upline) and 51.95% (downline). Increasing the pipe–slurry friction coefficient from 0.1 to 0.3 caused the hance displacement difference to rise from 0.12 mm to 0.36 mm. Further sensitivity analysis reveals that when the jacking machine is positioned directly above the tunnel, grouting pressure is the greatest influence on the structural response and must be carefully controlled. The proposed methodology and findings offer valuable insights for future applications in similar tunnelling projects. Full article
Show Figures

Figure 1

29 pages, 8184 KiB  
Article
Experimental and Mechanism Study on Axial Compressive Performance of Double Steel Tube Columns Filled with Recycled Concrete Containing Abandoned Brick Aggregate
by Yuanyuan Sun, Dongxu Hou, Yanbiao Shi, Yamei Sun, Fancheng Meng and Dong Chen
Buildings 2025, 15(14), 2424; https://doi.org/10.3390/buildings15142424 - 10 Jul 2025
Viewed by 246
Abstract
Recycled concrete is widely recognized as favorable for environmental protection and sustainable development. However, recycled concrete, especially containing abandoned brick aggregate, is rarely used in main structural members due to its inherent defects. Concrete-filled double steel tube columns (CFDSTCs), consisting of an outer [...] Read more.
Recycled concrete is widely recognized as favorable for environmental protection and sustainable development. However, recycled concrete, especially containing abandoned brick aggregate, is rarely used in main structural members due to its inherent defects. Concrete-filled double steel tube columns (CFDSTCs), consisting of an outer and an inner steel tube with concrete filling the entire section, are effective in load bearing and deformation resistance. The structural application of abandoned brick aggregate, resulting from urbanization renewal, might be widened through CFDSTCs. This paper presents an experimental and analytical study aiming to investigate the axial compressive behavior of recycled-brick-aggregate-concrete-filled double steel tube columns (RBCDSTs). A total of six specimens were tested under concentric compression, including five RBCDSTs and one concrete-filled single steel tube column. The varied parameters included the replacement ratios (0% and 25%) of brick aggregate and the thickness ratio of the inner and outer steel tubes (0.75, 1, and 1.25). Theoretical analysis was also carried out. A new constitutive model of RBCDST was proposed and used in finite element analysis. The investigation indicated that, under the current conditions, the presence of the inner steel tube only increased the strength by 0.14%. When the inner and outer diameter ratio is 0.73, using a 25% replacement rate of bricks in the entire cross-section or only in the ring area of the cross-section will result in 21.1% and 10.1% strength decreases, respectively. For every 0.6% increase in the diameter-to-thickness ratio of the outer tube, the strength of RBCDST increases 16.3% on average. Full article
Show Figures

Figure 1

26 pages, 8827 KiB  
Article
Three-Dimensional Refined Numerical Modeling of Artificial Ground Freezing in Metro Cross-Passage Construction: Thermo-Mechanical Coupling Analysis and Field Validation
by Qingzi Luo, Junsheng Li, Wei Huang, Wanying Wang and Bingxiang Yuan
Buildings 2025, 15(13), 2356; https://doi.org/10.3390/buildings15132356 - 4 Jul 2025
Viewed by 283
Abstract
The artificial ground freezing method (AGF) is widely used in underground construction to reinforce the ground and ensure construction safety. This study systematically evaluates the implementation of the artificial ground freezing method in the construction of a metro tunnel cross-passage, with a focus [...] Read more.
The artificial ground freezing method (AGF) is widely used in underground construction to reinforce the ground and ensure construction safety. This study systematically evaluates the implementation of the artificial ground freezing method in the construction of a metro tunnel cross-passage, with a focus on analyzing the soil’s thermo-mechanical behavior and assessing safety performance throughout the construction process. A combined approach integrating field monitoring and refined three-dimensional numerical simulation using FLAC3D is adopted, considering critical factors, such as freezing pipe inclination, thermo-mechanical coupling, and ice–water phase transitions. Both field data and simulation results demonstrate that increasing the density of freezing pipes accelerates temperature reduction and intensifies frost heave-induced displacements near the pipes. After 45 days of active freezing, the freezing curtain reaches a thickness of 3.7 m with an average temperature below −10 °C. Extending the freezing duration beyond this period yields negligible improvement in curtain performance. Frost heave deformation develops rapidly during the initial phase and stabilizes after approximately 25 days, with maximum vertical displacements reaching 12 cm. Significant stress concentrations occur in the soil adjacent to the freezing pipes, with shield tunnel segments experiencing up to 5 MPa of stress. Thaw settlement is primarily concentrated in areas previously affected by frost heave, with a maximum settlement of 3 cm. Even after 45 days of natural thawing, a frozen curtain approximately 3.3 m thick remains intact, maintaining sufficient structural strength. The refined numerical model accurately captures the mechanical response of soil during the freezing and thawing processes under realistic engineering conditions, with field monitoring data validating its effectiveness. This research provides valuable guidance for managing construction risks and ensuring safety in similar cross-passage and cross-river tunnel projects, with broader implications for underground engineering requiring precise control of frost heave and thaw settlement. Full article
Show Figures

Figure 1

11 pages, 1758 KiB  
Article
Squamous Cell Carcinoma of the Thumb: Misdiagnosis and Consequences
by Alessia Pagnotta, Luca Patanè, Carmine Zoccali, Juste Kaciulyte, Federico Lo Torto and Diego Ribuffo
J. Clin. Med. 2025, 14(13), 4640; https://doi.org/10.3390/jcm14134640 - 30 Jun 2025
Viewed by 338
Abstract
Background: Cutaneous squamous cell carcinoma (SCC) is the most common primary malignant tumor of the hand, and its aggressive nature can lead to significant morbidity, particularly when affecting critical structures like the thumb. SCC in this location may arise in the periungual [...] Read more.
Background: Cutaneous squamous cell carcinoma (SCC) is the most common primary malignant tumor of the hand, and its aggressive nature can lead to significant morbidity, particularly when affecting critical structures like the thumb. SCC in this location may arise in the periungual area or the pulp and frequently presents with non-specific symptoms such as swelling, nail deformity, or discharge, features that closely mimic common benign conditions. Methods: A retrospective study analyzed patients with neglected or misdiagnosed SCC of the thumb treated at the Hand and Microsurgery Unit of the Jewish Hospital, Rome, between 2015 and 2025. Patient demographics, duration from symptom onset to diagnosis, initial misdiagnoses, and imaging findings (X-rays, MRI, CT scans, lymph node sonography) were reviewed. Surgical interventions, histopathological grading, and postoperative management were documented, with long-term follow-up focusing on disease progression and patient survival. Results: Sixteen patients were included in the study. The mean age at surgery was 73.6 years (range: 55–93 years), with a mean delay of 8.2 months from symptom onset to diagnosis in 87.5% of cases. Initial misdiagnoses included verruca vulgaris, onychomycosis, paronychia, and osteomyelitis. Imaging consistently revealed soft tissue involvement, bony invasion, and occasional metastasis. Surgical approaches ranged from wide resection to amputation, with thumb reconstruction in selected cases and hand amputation in severe presentations. Long-term follow-up (mean 4.6 years) showed high morbidity, a reduction in hand function and QoL, and a 50% mortality rate, with two cases due to metastatic disease (12.5%). Conclusions: Thumb SCC presents diagnostic and therapeutic challenges, exacerbated by late diagnosis and initial misdiagnoses. Multidisciplinary management involving early recognition, comprehensive imaging, appropriate surgical interventions, and vigilant follow-up is crucial for optimizing outcomes. Full article
Show Figures

Graphical abstract

23 pages, 3551 KiB  
Article
The Influence of Soft Soil, Pile–Raft Foundation and Bamboo on the Bearing Characteristics of Reinforced Concrete (RC) Structure
by Zhibin Zhong, Xiaotong He, Shangheng Huang, Chao Ma, Baoxian Liu, Zhile Shu, Yineng Wang, Kai Cui and Lining Zheng
Buildings 2025, 15(13), 2302; https://doi.org/10.3390/buildings15132302 - 30 Jun 2025
Viewed by 348
Abstract
Pile–raft foundations are widely used in soft soil engineering due to their good integrity and high stiffness. However, traditional design methods independently design pile–raft foundations and superstructures, ignoring their interaction. This leads to significant deviations from actual conditions when the superstructure height increases, [...] Read more.
Pile–raft foundations are widely used in soft soil engineering due to their good integrity and high stiffness. However, traditional design methods independently design pile–raft foundations and superstructures, ignoring their interaction. This leads to significant deviations from actual conditions when the superstructure height increases, resulting in excessive costs and adverse effects on building stability. This study experimentally investigates the interaction characteristics of pile–raft foundations and superstructures in soft soil under different working conditions using a 1:10 geometric similarity model. The superstructure is a cast-in-place frame structure (beams, columns, and slabs) with bamboo skeletons with the same cross-sectional area as the piles and rafts, cast with concrete. The piles in the foundation use rectangular bamboo strips (side length ~0.2 cm) instead of steel bars, with M1.5 mortar replacing C30 concrete. The raft is also made of similar materials. The results show that the soil settlement significantly increases under the combined action of the pile–raft and superstructure with increasing load. The superstructure stiffness constrains foundation deformation, enhances bearing capacity, and controls differential settlement. The pile top reaction force exhibits a logarithmic relationship with the number of floors, coordinating the pile bearing performance. Designers should consider the superstructure’s constraint of the foundation deformation and strengthen the flexural capacity of inner pile tops and bottom columns for safety and economy. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

28 pages, 11508 KiB  
Article
Non-Destructive Integrity Assessment of Austenitic Stainless-Steel Membranes via Magnetic Property Measurements
by Haeng Sung Heo, Jinheung Park, Jehyun You, Shin Hyung Rhee and Myoung-Gyu Lee
Materials 2025, 18(12), 2898; https://doi.org/10.3390/ma18122898 - 19 Jun 2025
Viewed by 424
Abstract
This study proposes a novel non-destructive methodology for assessing structural integrity in liquefied natural gas (LNG) carrier cargo containment systems (CCSs), addressing limitations of conventional inspection techniques like visual inspection and vacuum box testing. The method leverages strain-induced martensitic transformation (SIMT) in austenitic [...] Read more.
This study proposes a novel non-destructive methodology for assessing structural integrity in liquefied natural gas (LNG) carrier cargo containment systems (CCSs), addressing limitations of conventional inspection techniques like visual inspection and vacuum box testing. The method leverages strain-induced martensitic transformation (SIMT) in austenitic stainless steel (SUS304L), widely used in CCS membranes, quantifying magnetic permeability increase via a Feritscope to evaluate deformation history and damage. To analyze SUS304L SIMT behavior, uniaxial tensile (UT) and equi-biaxial tensile (EBT) tests were conducted, as these stress states predominate in CCS membranes. Microstructural evolution was examined using X-ray diffraction (XRD) and electron backscatter diffraction (EBSD), allowing a quantitative assessment of the transformed martensite volume fraction versus plastic strain. Subsequently, Feritscope measurements under the same conditions were calibrated against the XRD-measured martensite volume fraction for accuracy. Based on testing, this study introduces three complementary Feritscope approaches for evaluating CCS health: outlier detection, quantitative damaged area analysis, and time-series analysis. The methodology integrates data-driven quantitative assessment with conventional qualitative inspection, enhancing safety and maintenance efficiency. Full article
Show Figures

Figure 1

37 pages, 3957 KiB  
Review
A Comprehensive Review of Fused Filament Fabrication: Numerical Modeling Approaches and Emerging Trends
by Maria Enriconi, Rocío Rodriguez, Márcia Araújo, João Rocha, Roberto García-Martín, João Ribeiro, Javier Pisonero and Manuel Rodríguez-Martín
Appl. Sci. 2025, 15(12), 6696; https://doi.org/10.3390/app15126696 - 14 Jun 2025
Viewed by 804
Abstract
Fused Filament Fabrication (FFF) has become a widely adopted additive manufacturing technology due to its cost-effectiveness, material versatility, and accessibility. However, optimizing process parameters, predicting material behavior, and ensuring structural reliability remain major challenges. This review analyzes state-of-the-art computational methods used in FFF, [...] Read more.
Fused Filament Fabrication (FFF) has become a widely adopted additive manufacturing technology due to its cost-effectiveness, material versatility, and accessibility. However, optimizing process parameters, predicting material behavior, and ensuring structural reliability remain major challenges. This review analyzes state-of-the-art computational methods used in FFF, which are categorized into four main areas: melt flow dynamics, cooling and solidification, thermal–mechanical behavior, and material property characterization. Notably, the integration of Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA) has led to improved predictions of key phenomena, such as filament deformation, residual stresses, and temperature gradients. The growing use of fiber-reinforced filaments has further enhanced mechanical performance; however, this also introduces added complexity due to filler orientation effects and interlayer adhesion issues. A critical limitation across existing studies is the lack of standardized experimental validation methods, which hinders model comparability and reproducibility. This review highlights the need for unified testing protocols, more accurate multi-physics simulations, and the integration of AI-based process monitoring to bridge the gap between numerical predictions and real-world performance. Addressing these gaps will be essential to advancing FFF as a precise and scalable manufacturing platform. Full article
Show Figures

Figure 1

26 pages, 42046 KiB  
Article
High-Resolution Wide-Beam Millimeter-Wave ArcSAR System for Urban Infrastructure Monitoring
by Wenjie Shen, Wenxing Lv, Yanping Wang, Yun Lin, Yang Li, Zechao Bai and Kuai Yu
Remote Sens. 2025, 17(12), 2043; https://doi.org/10.3390/rs17122043 - 13 Jun 2025
Viewed by 315
Abstract
Arc scanning synthetic aperture radar (ArcSAR) can achieve high-resolution panoramic imaging and retrieve submillimeter-level deformation information. To monitor buildings in a city scenario, ArcSAR must be lightweight; have a high resolution, a mid-range (around a hundred meters), and low power consumption; and be [...] Read more.
Arc scanning synthetic aperture radar (ArcSAR) can achieve high-resolution panoramic imaging and retrieve submillimeter-level deformation information. To monitor buildings in a city scenario, ArcSAR must be lightweight; have a high resolution, a mid-range (around a hundred meters), and low power consumption; and be cost-effective. In this study, a novel high-resolution wide-beam single-chip millimeter-wave (mmwave) ArcSAR system, together with an imaging algorithm, is presented. First, to handle the non-uniform azimuth sampling caused by motor motion, a high-accuracy angular coder is used in the system design. The coder can send the radar a hardware trigger signal when rotated to a specific angle so that uniform angular sampling can be achieved under the unstable rotation of the motor. Second, the ArcSAR’s maximum azimuth sampling angle that can avoid aliasing is deducted based on the Nyquist theorem. The mathematical relation supports the proposed ArcSAR system in acquiring data by setting the sampling angle interval. Third, the range cell migration (RCM) phenomenon is severe because mmwave radar has a wide azimuth beamwidth and a high frequency, and ArcSAR has a curved synthetic aperture. Therefore, the fourth-order RCM model based on the range-Doppler (RD) algorithm is interpreted with a uniform azimuth angle to suit the system and implemented. The proposed system uses the TI 6843 module as the radar sensor, and its azimuth beamwidth is 64°. The performance of the system and the corresponding imaging algorithm are thoroughly analyzed and validated via simulations and real data experiments. The output image covers a 360° and 180 m area at an azimuth resolution of 0.2°. The results show that the proposed system has good application prospects, and the design principles can support the improvement of current ArcSARs. Full article
Show Figures

Figure 1

24 pages, 7946 KiB  
Article
Design of Variable-Stiffness Bistable Composite Laminates and Their Application in Variable-Camber Wings
by Hanqi Xie, Shujie Zhang, Yizhang Yang, Yang Zhou and Hongxiao Zhao
Aerospace 2025, 12(6), 525; https://doi.org/10.3390/aerospace12060525 - 10 Jun 2025
Viewed by 317
Abstract
The bistable laminated structure is widely used in many fields due to its unique deformation characteristics. In practical engineering, laminates under different structural constraints will exhibit different steady-state deformation characteristics. This study proposes a novel bistable laminated structure based on applying a variable-stiffness [...] Read more.
The bistable laminated structure is widely used in many fields due to its unique deformation characteristics. In practical engineering, laminates under different structural constraints will exhibit different steady-state deformation characteristics. This study proposes a novel bistable laminated structure based on applying a variable-stiffness design to the deformation element. By adjusting the laying area of the metal layer in the variable-stiffness zone, the out-of-plane deformation and local curvature distribution can be changed to better meet application requirements. This study adopts the finite element numerical simulation method to systematically investigate the influence of geometric parameters, the proportion of metal layer edge length, and the number of layers on the deformation performance of bistable laminates. Considering the design of a flexible bistable variable-camber wing, the variable-stiffness design proposed in this study was adopted to coordinate the curvature distribution of laminates, making the cambered airfoil of the wing more uniform and smoother and improving aerodynamic efficiency. The research results not only provide new ideas for designing bistable laminates under complex constraints but also offer design references for the lightweight optimization and aerodynamic performance improvement of bistable morphing wings. Full article
(This article belongs to the Special Issue Advanced Composite Materials in Aerospace)
Show Figures

Graphical abstract

23 pages, 8309 KiB  
Article
Retractable Wireless Charging Windings for Inspection Robots
by Mohd Norhakim Bin Hassan, Simon Watson and Cheng Zhang
Appl. Sci. 2025, 15(12), 6530; https://doi.org/10.3390/app15126530 - 10 Jun 2025
Viewed by 407
Abstract
Limited battery life compromises the usability of inspection and operation robots in hazardous environments such as nuclear sites under decommissioning. Both manually replacing the batteries and installing charging bays may be infeasible. Inductive wireless power transfer is a possible solution to deliver power [...] Read more.
Limited battery life compromises the usability of inspection and operation robots in hazardous environments such as nuclear sites under decommissioning. Both manually replacing the batteries and installing charging bays may be infeasible. Inductive wireless power transfer is a possible solution to deliver power through barriers such as reinforced concrete walls without physical contact. However, when requiring decent power (e.g., 100 W) to be transmitted over longer distances, the exaggerated dimensions of transmitting and receiving coils restrain the integrations with mobile robots. In this paper, a novel retractable design of the coil used in an inductive wireless power charging system is proposed, proving the minor deformation of the winding shape does not affect the transmission efficiency. A prototype with 5× size compression is implemented and tested. It successfully transmits 116.5 W over a distance of 1 m with 68.72% energy efficiency. The principle can be applied to a wide range of mobile platforms with a limited payload area where remote power is needed. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

Back to TopTop