Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (272)

Search Parameters:
Keywords = whole-plant biomass

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1222 KB  
Article
Whole-Plant Trait Integration Underpins High Leaf Biomass Productivity in a Modern Mulberry (Morus alba L.) Cultivar
by Bingjie Tu, Nan Xu, Juexian Dong and Wenhui Bao
Horticulturae 2026, 12(1), 67; https://doi.org/10.3390/horticulturae12010067 - 6 Jan 2026
Viewed by 218
Abstract
Understanding yield improvement in horticultural systems depends on elucidating how multiple plant traits operate in concert to sustain productivity. Mulberry (Morus alba L.) provides a suitable model for examining such whole-plant integration. Under cold-region field conditions, a modern high-yield cultivar (‘Nongsang 14’) [...] Read more.
Understanding yield improvement in horticultural systems depends on elucidating how multiple plant traits operate in concert to sustain productivity. Mulberry (Morus alba L.) provides a suitable model for examining such whole-plant integration. Under cold-region field conditions, a modern high-yield cultivar (‘Nongsang 14’) was compared with a traditional cultivar (‘Lusang 1’). Measurements encompassed canopy architecture, biomass allocation between roots and shoots, leaf economic traits, and gas-exchange parameters, allowing trait coordination to be evaluated across structural and physiological dimensions. Multivariate profiling—Principal Component Analysis (PCA) and correlation networks—was used to characterise phenotypic integration. The modern cultivar’s superior productivity emerged as a coordinated “acquisitive” trait syndrome. This strategy couples a larger canopy (higher LAI) and nitrogen-rich foliage (higher LNC) with greater stomatal conductance (Gs), operating together with reduced root-to-shoot allocation. These features form a tightly connected network where structural investment and physiological upregulation are synchronised to maximise carbon gain. These findings provide a whole-plant framework for interpreting high productivity, offering guidance for breeding programmes that target trait integration rather than single-trait optimisation. Full article
Show Figures

Figure 1

13 pages, 1491 KB  
Article
Nutrient Use Efficiency in Yacon Potato Under Varying NPK Fertilization Rates
by Fábio Luiz de Oliveira, Tiago Pacheco Mendes, Felipe Valadares Ribeiro Avelar, Marcelo Antonio Tomaz, José Francisco Teixeira do Amaral and Arnaldo Henrique de Oliveira Carvalho
Horticulturae 2026, 12(1), 61; https://doi.org/10.3390/horticulturae12010061 - 4 Jan 2026
Viewed by 159
Abstract
This study aimed to determine the nutrient use efficiency of the yacon potato under NPK fertilization at different rates. The experiment followed a randomized block design with four replications and a split-plot arrangement. The main plots consisted of three fertilization levels (60%, 100%, [...] Read more.
This study aimed to determine the nutrient use efficiency of the yacon potato under NPK fertilization at different rates. The experiment followed a randomized block design with four replications and a split-plot arrangement. The main plots consisted of three fertilization levels (60%, 100%, and 140% of the reference dose—50:80:60 kg ha−1 of NPK), with subplots to data collection intervals, performed every 30 days, for a total of 7 collections, generating 21 treatments. The dry biomass of whole plants and tuberous roots was determined. Samples were taken to determine the content of N, P, K, Ca, Mg, Cu, Fe, Mn, and Zn. The biological utilization coefficient (BUC) was calculated by dividing the mean values of dry biomass in kilograms of plant parts by the kilogram of nutrient found in that biomass. The application of 100% of the reference dose led to the highest use efficiency of P, K, Ca, and Mg, and intermediate efficiency for N in yacon tuberous roots and total biomass production throughout the cycle, provides a significant contribution to fertilization planning for this crop. The amount applied which was 100% of the reference dose was 17, 80, and 20 kg ha−1 of N, P2O5, and K2O, respectively, at planting, supplemented with 33 and 40 kg ha−1 of N and K2O as topdressing. Full article
Show Figures

Figure 1

17 pages, 4718 KB  
Article
Managing Nitrogen Sources in Soybean–Rhizobium Symbiosis During Reproductive Phenological Stage: Partitioning Symbiotic and Supplemental N with 15N
by Nicolas Braga Casarin, Cássio Carlette Thiengo, Carlos Alcides Villalba Algarin, Maria Clara Faria Chaves, Gil Miguel de Sousa Câmara, Valter Casarin, Fernando Shintate Galindo and José Lavres
Nitrogen 2026, 7(1), 1; https://doi.org/10.3390/nitrogen7010001 - 22 Dec 2025
Viewed by 460
Abstract
Understanding how supplemental nitrogen (N) interacts with biological N2 fixation (BNF) in modern soybean cultivars is essential for designing fertilization strategies that avoid unnecessary N inputs. We investigated N partitioning among soil, fertilizer and symbiotic sources in soybean grown in a greenhouse [...] Read more.
Understanding how supplemental nitrogen (N) interacts with biological N2 fixation (BNF) in modern soybean cultivars is essential for designing fertilization strategies that avoid unnecessary N inputs. We investigated N partitioning among soil, fertilizer and symbiotic sources in soybean grown in a greenhouse pot experiment on a tropical Oxisol. Plants were inoculated with Bradyrhizobium and subjected to four N managements: no external N, soil-applied 15N-urea (20 kg N ha−1), foliar 15N-urea (2 kg N ha−1, 0.7% w/v), and the combination of soil + foliar N. Using 15N isotope dilution, we quantified N derived from the atmosphere (NDFA), fertilizer (NDFF) and soil (NDFS) at organ and whole-plant scales, and related these fractions to nodulation, nitrogenase activity and yield. In the absence of external N, NDFA exceeded 97% in all organs, indicating a strong reliance on BNF and efficient internal N remobilization during grain filling, accompanied by higher leaf nitrate reductase activity. Soil and soil + foliar N markedly increased NDFF and NDFS while suppressing nodulation (particularly at V4) and reducing nitrogenase activity, yet they did not improve grain yield or vegetative biomass. Foliar N alone had only modest effects on N partitioning and did not enhance yield. Under these tropical soil conditions, symbiotic fixation and internal N remobilization were sufficient to meet grain N demand, highlighting the limited agronomic benefit and potential ecological cost of supplemental N during reproductive growth. Full article
Show Figures

Figure 1

19 pages, 8957 KB  
Article
Mean Annual Temperature, Soil Organic Matter and Phyllospheric Bacterial Diversity Shape Biomass of Dominant Species Along a Degradation Gradient in Alpine Steppes: A Case Study from the Qinghai–Tibet Plateau
by Kaifu Zheng, Xin Jin, Jingjing Li and Guangxin Lu
Microorganisms 2025, 13(12), 2787; https://doi.org/10.3390/microorganisms13122787 - 7 Dec 2025
Viewed by 413
Abstract
The structure and function of alpine steppes are maintained largely by dominant species, which in turn determine the productivity and stability of plant communities. Nutrient acquisition and stress regulation may, to some extent, be mediated by phyllospheric microbiota at the interface of plants [...] Read more.
The structure and function of alpine steppes are maintained largely by dominant species, which in turn determine the productivity and stability of plant communities. Nutrient acquisition and stress regulation may, to some extent, be mediated by phyllospheric microbiota at the interface of plants with the atmosphere, and phyllospheric microbes are capable of amplifying and transmitting vegetation responses to degradation. Previous research has mainly addressed climate, soil, vegetation and soil microbiota or has assessed phyllosphere communities as a whole, thereby overlooking the specific responses of phyllospheric bacteria associated with the vegetation-dominant species Stipa purpurea along gradients of vegetation degradation in alpine steppes. In this study, we characterised vegetation degradation at the community level (from non-degraded to severely degraded grasslands) and quantified associated changes in the dominant species Stipa purpurea (cover, height and aboveground biomass) and its phyllospheric bacterial communities, in order to elucidate response patterns within the coupled system of host plants, phyllosphere microbiota, climate (mean annual temperature and precipitation) and soil physicochemical properties. Compared with non-degraded (ND) grasslands, degraded sites had a 22.6% lower mean annual temperature (MAT) and reductions in total nitrogen, nitrate nitrogen, organic matter (OM) and soil quality index (SQI) of 49.4%, 55.6%, 46.8% and 47.6%, respectively. Plant community cover and the aboveground biomass of dominant species declined significantly with increasing degradation. Along the vegetation-degradation gradient from non-degraded to severely degraded alpine steppes, microbial source-tracking analysis of the phyllosphere of the dominant species Stipa purpurea revealed a sharp decline in the contribution of phyllospheric bacterial sources. Estimated contributions from non-degraded sites to lightly, moderately and severely degraded sites were 95.68%, 62.21% and 6.89%, respectively, whereas contributions from lightly to moderately degraded and from moderately to severely degraded sites were 34.89% and 16.47%, respectively. Bacterial richness increased significantly, and β diversity diverged under severe degradation (PERMANOVA, F = 5.48, p < 0.01). From light to moderate degradation, biomass and relative cover of the dominant species decreased significantly, while the phyllosphere bacterial community appeared more strongly influenced by the host than by environmental deterioration; the community microbial turnover index (CMTB) and microbial resistance potential increased slightly but non-significantly (p > 0.05). Under severe degradation, worsening soil conditions and hydrothermal regimes exerted a stronger influence than the host, and CMTB and microbial resistance potential decreased by 6.5% and 34.1%, respectively (p < 0.05). Random-forest analysis indicated that climate, soil, phyllosphere diversity and microbial resistance jointly accounted for 42.1% of the variation in constructive-species biomass (R2 = 0.42, p < 0.01), with the remaining variation likely driven by unmeasured biotic and abiotic factors. Soil contributed the most (21.73%), followed by phyllosphere diversity (9.87%) and climate (8.62%), whereas microbial resistance had a minor effect (1.86%). Specifically, soil organic matter (OM) was positively correlated with biomass, whereas richness, beta diversity and MAT were negatively correlated (p < 0.05). Taken together, our results suggest that under ongoing warming on the Qinghai–Tibet Plateau, management of alpine steppes should prioritise grasslands in the early stages of degradation. In these systems, higher soil organic matter is associated with greater phyllospheric microbial resistance potential and increased biomass of Stipa purpurea, which may help stabilise this dominant species and slow further vegetation degradation. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

24 pages, 6200 KB  
Article
An Efficient Biomass Estimation Model for Large-Scale Olea europaea L. by Integrating UAV-RGB and U2-Net with Allometric Equations
by Yungang He, Weili Kou, Ning Lu, Yi Yang, Lee Seng Hua, Chunqin Duan, Ziyi Yang, Yongjun Song, Jiayue Gao and Yue Chen
Remote Sens. 2025, 17(23), 3923; https://doi.org/10.3390/rs17233923 - 4 Dec 2025
Viewed by 513
Abstract
Olea europaea L. is an economically and ecologically significant species, for which accurate biomass estimation provides critical insights for artificial propagation, yield forecasting, and carbon sequestration assessments. Currently, research on biomass estimation for Olea europaea L. remains scarce, and there is a lack [...] Read more.
Olea europaea L. is an economically and ecologically significant species, for which accurate biomass estimation provides critical insights for artificial propagation, yield forecasting, and carbon sequestration assessments. Currently, research on biomass estimation for Olea europaea L. remains scarce, and there is a lack of efficient, accurate, and scalable technical solutions. To address this gap, this study achieved, for the first time, non-destructive estimation of Olea europaea L. biomass across individual tree to plot scales by integrating UAV-RGB (Unmanned Aerial Vehicle-Red-Green-Blue) imagery with the U2-Net model. This study initially developed allometric models for W-D-H, CA-D, and CA-H in Olea europaea L. (where W = biomass, D = ground diameter, H = tree height, and CA = canopy area). A single-parameter CA-based whole-plant biomass model was subsequently developed utilizing the optimal models. An innovative whole-plant biomass estimation model (UAV-RGB, U2-Net Total Biomass, UUTB) that combines UAV-RGB imagery with U2-Net at the sample-plot level was developed and assessed. The results revealed the following: (1) The model for Olea europaea L. aboveground biomass (AGB) was WA = 0.0025D1.943H0.690 (R2 = 0.912), the model for belowground biomass (BGB) was WB = 0.012D1.231H0.525 (R2 = 0.693), the model for CA-D was D = 4.31427C0.513 (R2 = 0.751), CA-H model was H = 226.51939C0.268 (R2 = 0.500). (2) The optimal AGB model for CA single-parameter was WA = 1.80901C1.181 (R2 = 0.845), and the model for BGB was WB = 1.25043C0.772 (R2 = 0.741). (3) The R2 of Olea europaea L. biomass, as estimated by CA derived from the U2-Net and UUTB models, was 0.855. This study presents the first integration of UAV-RGB imagery and the U2-Net model for biomass estimation in Olea europaea L., which not only addresses the research gap in species-specific allometric modeling but also overcomes the limitations of traditional manual measurement methods. The proposed approach provides a reliable technical foundation for accurate assessment of both economic yield and ecological carbon sequestration capacity. Full article
Show Figures

Figure 1

16 pages, 856 KB  
Article
Preferential Allocation of Currently Assimilated Carbon Induced by the Source Leaf Position on Young Cork Oaks (Quercus suber L.) in Late Spring
by Carla Nóbrega, Helena Marques, Renato Coelho, Margarida Tomé and Augusta Costa
Environments 2025, 12(12), 451; https://doi.org/10.3390/environments12120451 - 23 Nov 2025
Viewed by 874
Abstract
The whole-plant preferential allocation patterns of recently assimilated carbon by the source leaves of six-year-old cork oaks (Quercus suber L.) were assessed 7 days after a 14CO2 pulse-labelling in late spring (end of May). The 14CO2 assimilation was [...] Read more.
The whole-plant preferential allocation patterns of recently assimilated carbon by the source leaves of six-year-old cork oaks (Quercus suber L.) were assessed 7 days after a 14CO2 pulse-labelling in late spring (end of May). The 14CO2 assimilation was separately induced on attached leaves on branches located at the top-down 30% of the crown height, in the middle 40% and at the bottom-up 30% of the crown height of twelve plants. Our results showed that the top source leaves retained the highest amount (64%) of their own current produced carbohydrates compared to either lower (49%) or middle (42%) source leaves. The top source leaves preferentially export current carbohydrates to their most proximal sinks, namely, other leaves or their branches. However, lower source leaves exported the highest amount of current carbon, about 37%, preferentially to the root system. Roots displayed the greatest sink strength for the available current carbohydrates, due to their largest biomass (between 69% and 75% of the whole plant biomass), when other strong sinks, such as the annual leaves, were fully expanded. Taken together, our data revealed that carbon supply by leaves and delivery to roots are critical for maintaining root growth in cork oak under Mediterranean seasonal drought conditions. Full article
Show Figures

Figure 1

26 pages, 934 KB  
Article
Impact of Fertilization with Cattle Slurry in a Poplar Short Rotation Coppice on Mass Balance of Nutrients and Biomass Productivity
by Abel Rodrigues, Sofia Pereira, Alberto Azevedo Gomes, José Louzada, Alexandre B. Gonçalves, Teresa Fonseca, Amélia Castelo-Branco, Paula Castro, Helena Moreira and Regina Menino
Appl. Sci. 2025, 15(23), 12403; https://doi.org/10.3390/app152312403 - 22 Nov 2025
Viewed by 547
Abstract
The incorporation of cattle slurry in soil in short-rotation-cycle poplar cultivations can be a win–win strategy, insofar as a main feedstock derived from local intensive dairy cattle breeding can be used as a natural fertilizer and in bioenergy produced in the same region. [...] Read more.
The incorporation of cattle slurry in soil in short-rotation-cycle poplar cultivations can be a win–win strategy, insofar as a main feedstock derived from local intensive dairy cattle breeding can be used as a natural fertilizer and in bioenergy produced in the same region. The circularity of this process can contribute to boosting local socio-economic value. In this context, this work involved the installation of a poplar SRC plantation with a density of 5330 trees ha−1 in a 4000 m2 moderately fertile flat site, which was formerly used as a vineyard. Mechanical dosages of slurry of 0, 26.6, 53.2, and 106.5 Mg ha−1, designated as treatments T0, T1, T2, and T3, were applied three times per year during 2019, 2020, and 2021. The variables quantified were related to plant growth, biomass productivity and mass balances of K, P, Cu, Zn, Mg, and N, and organic matter in the whole soil, plant, and slurry system during the first rotation cycle. For treatments T0 and T1, all these seven chemical components showed positive balances in the system, with cumulative demand by soil and biomass being higher than cumulative supply by slurry. Negative balances occurred for P with T2 and T3 and for Zn with T3, so that an overall condition of nutrient saturation of the whole system was not achieved. A no-slurry application, or at most a moderate application equivalent to T1, in the second rotation cycle should therefore be prescribed to allow a nutrient equilibrium status to be achieved through internal seasonal recycling mechanisms. The biomass average productivities ranged from 6.1 to 11.8 Mg ha−1 y−1, peaking under treatment T2, and are within the typical values for a first rotation cycle for poplar SRCs. The biomass fuel quality was not affected by the slurry treatments. A good performance of plant total height and growth in diameter at breast height suggested that poplar trees were not stressed by the applied slurry. Only treatment T1 could assure that cattle CO2-eq methane emissions were overall equilibrated by the carbon sequestration from poplar cultivation, with an absence of climatic-warming impacts. Treatments T2 and T3 could only partially minimize that impact, which would always exist. Globally, this site-specific analysis showed that, under moderately fertile conditions, controlled cattle slurry fertilization of poplar SRC cultivations, which would assure a long-term steady-state equilibrium, can be a viable option to contribute to decentralized production of bioenergy in rural communities. Full article
(This article belongs to the Section Agricultural Science and Technology)
Show Figures

Figure 1

19 pages, 1102 KB  
Article
Cultivar-Dependent Differences in Agronomic Characteristics, Nutritional Value, Fermentation Quality, and Bacteriome Profile of Whole-Plant Sorghum Silage
by Yawei Zhang, Danqi Feng, Juanli Huo, Jiabao Xu, Yuehong Wang, Qiang Liu, Wenbin Bai, Qingshan Liu and Yuanqing Zhang
Microorganisms 2025, 13(11), 2634; https://doi.org/10.3390/microorganisms13112634 - 20 Nov 2025
Viewed by 390
Abstract
Forage scarcity in semi-arid regions necessitates the identification of optimal sorghum cultivars for high-quality silage production. This study systematically evaluated varietal differences in agronomic characteristics, nutritive value, fermentation quality, and bacterial community structure of whole-plant sorghum silage. A completely randomized design was implemented [...] Read more.
Forage scarcity in semi-arid regions necessitates the identification of optimal sorghum cultivars for high-quality silage production. This study systematically evaluated varietal differences in agronomic characteristics, nutritive value, fermentation quality, and bacterial community structure of whole-plant sorghum silage. A completely randomized design was implemented with four sorghum cultivars representative of semi-arid northwestern China: Liaotian1 (LT1), Jinnuo3 (JN3), Jinza2001 (JZ2001), and Jinza1531 (JZ1531). Five quadrats per cultivar in experimental fields were randomly designated as biological replicates for silage production. The plants were harvested at the dough stage, chopped, and ensiled in laboratory-scale silos (n = 20, 4 cultivars × 5 replicates) for 120 days. Analyses included agronomic measurements, chemical composition, fermentation parameters, microbial plate enumeration, and bacterial community profiling via 16S rRNA gene amplicon sequencing of the V3–V4 hypervariable region. The results showed that cultivar significantly influenced (p < 0.01) all agronomic traits and most nutritional parameters. The forage-type cultivar LT1 showed the highest biomass yield but the lowest nutritional quality, with higher neutral detergent fiber (47.77% vs. 29.21–32.35%; p < 0.05) and lower starch (10.94% vs. 18.10–24.30%; p < 0.05) contents as well as higher dry matter losses (1.39% vs. 0.91–1.23%; p < 0.05) than grain-type cultivars. In contrast, the grain-type cultivar JN3 exhibited balanced yield-quality traits with the highest (p < 0.05) starch (24.30%) and crude protein (7.50%) contents. Most fermentation parameters differed significantly (p < 0.01) among cultivars, with JN3 showing elevated ammonia-nitrogen (0.24 g/kg) but within acceptable ranges. Microbial diversity analysis revealed cultivar-driven differences in bacterial communities, with JN3 enriched in Leuconostoc and early-colonizing taxa (p < 0.05 and LDA Score > 4). It is concluded that the grain-type cultivar JN3 is the most suitable cultivar for whole-plant sorghum silage production in water-limited regions due to its optimal yield-quality balance. The findings underscore the importance of integrated cultivar evaluation and suggest the potential of targeted microbial inoculants for enhancing silage quality. Full article
(This article belongs to the Special Issue Microorganisms in Silage)
Show Figures

Figure 1

20 pages, 803 KB  
Article
The Influence of Technological Conditions of Co-Fermentation of Lignocellulosic and Starch Raw Materials on the Amount of Volatile By-Products Formed and the Quality of Obtained Bioethanol
by Katarzyna Kotarska, Wojciech Dziemianowicz and Anna Świerczyńska
Appl. Sci. 2025, 15(21), 11315; https://doi.org/10.3390/app152111315 - 22 Oct 2025
Viewed by 673
Abstract
This study investigated the effect of co-fermentation of starch (1G) and lignocellulosic (2G) feedstocks on ethanol production and the profile of volatile by-products. Experiments were conducted using an integrated SHF/SSF method with separate pretreatment of each raw material. After 72 h, the ethanol [...] Read more.
This study investigated the effect of co-fermentation of starch (1G) and lignocellulosic (2G) feedstocks on ethanol production and the profile of volatile by-products. Experiments were conducted using an integrated SHF/SSF method with separate pretreatment of each raw material. After 72 h, the ethanol concentration in the starch–lignocellulosic mash reached 49.39 g/L, which is 77% higher compared to the ethanol concentration from the lignocellulosic biomass alone (27.93 g/L). The ethanol yields were 31.32 and 17.72 L/100 kg of raw material, respectively. Co-fermentation significantly changed the profile of volatile compounds. In the starch–lignocellulosic mash, the content of aldehydes was 51.20 mg/L (43% lower vs. lignocellulose alone), higher alcohols was 2018.17 mg/L (64% lower), esters was 8.70 mg/L (73% lower), and methanol was 1.33 mg/L (98% lower). These results demonstrate that integrating 1G and 2G feedstocks reduces the formation of by-products during the fermentation process, while maintaining ethanol concentrations at an industrial profitability threshold (above 40 g/L). The findings provide important insights for optimizing integrated bioethanol production from whole corn plants, which is essential for improving the economic feasibility. Full article
Show Figures

Figure 1

17 pages, 3876 KB  
Article
Rootstock Genotype Dictates Phosphorus Deficiency Tolerance and Transcriptional Plasticity in Grafted Camellia oleifera Plants
by Zhihua Ren, Juan Liu, Jin Zeng, Li Cheng, Huiyun Liu, Yunyu Zhang, Qinhua Cheng, Wenjuan Su, Huaiyuan Wu and Dongnan Hu
Life 2025, 15(9), 1489; https://doi.org/10.3390/life15091489 - 22 Sep 2025
Viewed by 532
Abstract
Rootstock choice offers a powerful lever for tailoring economically important trees to adverse environments. Camellia oleifera Abel., a premier oil-producing species cultivated widely on red-soil hills, suffers large yield losses under chronic phosphorus deficiency. We grafted a single elite scion (CL4) onto three [...] Read more.
Rootstock choice offers a powerful lever for tailoring economically important trees to adverse environments. Camellia oleifera Abel., a premier oil-producing species cultivated widely on red-soil hills, suffers large yield losses under chronic phosphorus deficiency. We grafted a single elite scion (CL4) onto three contrasting rootstocks (CL4, CL3, CL53) and monitored growth and root transcriptomes for 1.5 years under adequate (1 mM) or limiting (0 mM) P supply. Under low-P stress, the rootstock identity reshaped the root architecture: CL4/CL3 produced the longest, most extensive network, increasing the total root length by 49.7%, the surface area by 52.9%, and the volume by 42.6% relative to the control, whereas leaf morphology responded solely to P supply, not to the graft combination. CL4/CL3 also accumulated up to more than 17.5% of root biomass and 28.25% of whole-plant biomass than any other combination. Physiologically, CL4/CL3 acted as an aggressive P miner, accumulating 67.8% more P in its roots than the self-grafted control under P limitation, while CL4/CL4 maximized the internal P use efficiency, showing a 44.74% higher root P use efficiency than CL4/CL53—two contrasting yet effective strategies for coping with low-P stress. Transcriptome profiling uncovered 1733 DEGs in the CL4/CL3 and 2585 in the CL4/CL4 roots, with 150 and 255 uniquely co-expressed genes, respectively. CL4/CL3 up-regulated organic-acid and phenylpropanoid pathways; CL4/CL4 activated defense and phosphate transport networks. qRT-PCR of six genes confirmed that CL4/CL3 mounted a stronger low-P response via MAPK, hormonal, and lipid–metabolic signaling. These results provide a mechanistic framework for rootstock-mediated P efficiency and establish a foundation for the molecular breeding of C. oleifera under nutrient-limited conditions. Full article
Show Figures

Figure 1

22 pages, 661 KB  
Review
Current Trends and Biotechnological Innovations in Biofouling Control of RO Membranes in Desalination Systems
by Victoria Cruz-Balladares, Hernán Vera-Villalobos, Carlos Riquelme and Fernando Silva Aciares
Membranes 2025, 15(9), 270; https://doi.org/10.3390/membranes15090270 - 5 Sep 2025
Cited by 1 | Viewed by 2028
Abstract
Background: Water scarcity is a pressing global challenge increasingly addressed by advanced desalination that converts seawater into potable water. Reverse osmosis and ultrafiltration dominate because they deliver permeate with very low impurities. Their principal limitation is membrane biofouling, which causes clogging, raises energy, [...] Read more.
Background: Water scarcity is a pressing global challenge increasingly addressed by advanced desalination that converts seawater into potable water. Reverse osmosis and ultrafiltration dominate because they deliver permeate with very low impurities. Their principal limitation is membrane biofouling, which causes clogging, raises energy, operation, and maintenance costs, and shortens membrane life. Multiple approaches mitigate biofouling—most notably pretreatment trains and engineered surface coatings—but cleaning remains the most decisive remediation pathway. Current practice distinguishes physical, chemical, and biological cleaning. Biological cleaning has gained momentum by exploiting microorganisms that inherently counter biofilms. These strategies include targeted secretion of enzymes and antifouling metabolites, and the application of whole-cell culture supernatants containing the full suite of secreted components. In addition, predatory bacteria can infiltrate established biofilms and eradicate them by lysing prey, thereby accelerating the removal of adherent biomass. Progress across these bio-based approaches signals meaningful advances in fouling control and could substantially improve the efficiency, reliability, and sustainability of desalination facilities. Collectively, they underscore the transformative potential of biological antifouling agents in operational systems. Realizing that potential will require rigorous evaluation of technical performance, long-term stability, compatibility with polyamide membranes, regulatory acceptance, and environmental safety, ultimately alongside scalable production and cost-effective deployment in full-scale plants. Full article
(This article belongs to the Special Issue Applications of Membrane Filtration and Separation)
Show Figures

Graphical abstract

18 pages, 1185 KB  
Article
Ecotoxicological Assessment of Sediment Samples Impacted by Wastewater Treatment Plant Effluents Transporting Contaminants of Emerging Concern
by Carlos Silva, Ana Ré, Nelson Abrantes, Fernando J. M. Gonçalves and Joana Luísa Pereira
J. Xenobiot. 2025, 15(4), 132; https://doi.org/10.3390/jox15040132 - 15 Aug 2025
Viewed by 1020
Abstract
Wastewater treatment plant (WWTP) effluents can be important sources of contaminants of emerging concern (CEC) for riverine ecosystems, with some accumulation in sediments. This study investigated the ecotoxicological effects of sediment samples collected near three WWTPs. Sediment elutriates, simulating resuspension conditions, and whole [...] Read more.
Wastewater treatment plant (WWTP) effluents can be important sources of contaminants of emerging concern (CEC) for riverine ecosystems, with some accumulation in sediments. This study investigated the ecotoxicological effects of sediment samples collected near three WWTPs. Sediment elutriates, simulating resuspension conditions, and whole sediment samples were tested. Results showed that sediments were toxic to some organisms and beneficial to others. Elutriates from one site significantly reduced luminescence in the bacterium Aliivibrio fischeri, though this was not consistently linked to sediment contaminant levels. Significant noxious effects of elutriates were recorded for the macrophyte Lemma minor (yield reductions up to 48%) and the microalgae Raphidocelis subcapitata (yield reductions up to 25%). Exposure to elutriates resulted in increased Daphnia magna reproduction and increased biomass yield of Chironomus riparius exposed to sediments directly. Overall, there were no major toxicity variations in samples collected upstream and downstream of the effluent outfall. Suggesting limited hazardous potential of the effluent and a potential masking effect of background contamination (mostly metals and polycyclic aromatic hydrocarbons). The complexity of effluent-sourced contamination, coupled with the realistic testing approach, renders this work a valuable contribution to understanding the role of WWTP effluents in surface freshwaters contamination and their effects, especially concerning CECs. Full article
Show Figures

Graphical abstract

21 pages, 4239 KB  
Article
Melatonin-Producing Bacillus aerius EH2-5 Enhances Glycine max Plants Salinity Tolerance Through Physiological, Biochemical, and Molecular Modulation
by Eun-Hae Kwon, Suhaib Ahmad and In-Jung Lee
Int. J. Mol. Sci. 2025, 26(16), 7834; https://doi.org/10.3390/ijms26167834 - 13 Aug 2025
Cited by 1 | Viewed by 1514
Abstract
Climate change has intensified extreme weather events and accelerated soil salinization, posing serious threats to crop yield and quality. Salinity stress, now affecting about 20% of irrigated lands, is expected to worsen due to rising temperatures and sea levels. At the same time, [...] Read more.
Climate change has intensified extreme weather events and accelerated soil salinization, posing serious threats to crop yield and quality. Salinity stress, now affecting about 20% of irrigated lands, is expected to worsen due to rising temperatures and sea levels. At the same time, the global population is projected to exceed 9 billion by 2050, demanding a 70% increase in food production (UN, 2019; FAO). Agriculture, responsible for 34% of global greenhouse gas emissions, urgently needs sustainable solutions. Microbial inoculants, known as “plant probiotics,” offer a promising eco-friendly alternative by enhancing crop resilience and reducing environmental impact. In this study, we evaluated the plant growth-promoting (PGP) traits and melatonin-producing capacity of Bacillus aerius EH2-5. To assess its efficacy under salt stress, soybean seedlings at the VC stage were inoculated with EH2-5 and subsequently subjected to salinity stress using 150 mM and 100 mM NaCl treatments. Plant growth parameters, the expression levels of salinity-related genes, and the activities of antioxidant enzymes were measured to determine the microbe’s role in promoting plant growth and mitigating salt-induced oxidative stress. Here, our study shows that the melatonin-synthesizing Bacillus aerius EH2-5 (7.48 ng/mL at 24 h after inoculation in Trp spiked LB media) significantly improved host plant (Glycine max L.) growth, biomass, and photosynthesis and reduced oxidative stress during salinity stress conditions than the non-inculcated control. Whole genome sequencing of Bacillus aerius EH2-5 identified key plant growth-promoting and salinity stress-related genes, including znuA, znuB, znuC, and zur (zinc uptake); ptsN, aspA, and nrgB (nitrogen metabolism); and phoH and pstS (phosphate transport). Genes involved in tryptophan biosynthesis and transport, such as trpA, trpB, trpP, and tspO, along with siderophore-related genes yusV, yfhA, and yfiY, were also detected. The presence of multiple stress-responsive genes, including dnaK, dps, treA, cspB, srkA, and copZ, suggests EH2-5′s genomic potential to enhance plant tolerance to salinity and other abiotic stresses. Inoculation with Bacillus aerius EH2-5 significantly enhanced soybean growth and reduced salt-induced damage, as evidenced by increased shoot biomass (29%, 41%), leaf numbers (12% and 13%), and chlorophyll content (40%, 21%) under 100 mM and 150 mM NaCl compared to non-inoculated plants. These results indicate EH2-5′s strong potential as a plant growth-promoting and salinity stress-alleviating rhizobacterium. The EH2-5 symbiosis significantly enhanced a key ABA biosynthesis enzyme-related gene NCED3, dehydration responsive transcription factors DREB2A and NAC29 salinity stresses (100 mM and 150 mM). Moreover, the reduced expression of peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) by 16%, 29%, and 24%, respectively, and decreased levels of malondialdehyde (MDA) and hydroxy peroxidase (H2O2) by 12% and 23% were observed under 100 mM NaCl compared to non-inoculated plants. This study demonstrated that Bacillus aerius EH2-5, a melatonin-producing strain, not only functions effectively as a biofertilizer but also alleviates plant stress in a manner comparable to the application of exogenous melatonin. These findings highlight the potential of utilizing melatonin-producing microbes as a viable alternative to chemical treatments. Therefore, further research should focus on enhancing the melatonin biosynthetic capacity of EH2-5, improving its colonization efficiency in plants, and developing synergistic microbial consortia (SynComs) with melatonin-producing capabilities. Such efforts will contribute to the development and field application of EH2-5 as a promising plant biostimulant for sustainable agriculture. Full article
(This article belongs to the Special Issue Genetics and Novel Techniques for Soybean Pivotal Characters)
Show Figures

Figure 1

20 pages, 3600 KB  
Article
Functional Analyses of a Rhodobium marinum RH-AZ Genome and Its Application for Promoting the Growth of Rice Under Saline Stress
by Yang Gao, Cheng Xu, Tao Tang, Xiao Xie, Renyan Huang, Youlun Xiao, Xiaobin Shi, Huiying Hu, Yong Liu, Jing Peng and Deyong Zhang
Plants 2025, 14(16), 2516; https://doi.org/10.3390/plants14162516 - 13 Aug 2025
Cited by 2 | Viewed by 780
Abstract
Soil salinity stands among the most critical abiotic stressors, imposing severe limitations on global rice cultivation. Emerging evidence highlights the potential of beneficial microorganisms to enhance crop salt tolerance. In this study, a halotolerant bacterial strain, Rhodobium marinum RH-AZ (Gram-negative) was identified and [...] Read more.
Soil salinity stands among the most critical abiotic stressors, imposing severe limitations on global rice cultivation. Emerging evidence highlights the potential of beneficial microorganisms to enhance crop salt tolerance. In this study, a halotolerant bacterial strain, Rhodobium marinum RH-AZ (Gram-negative) was identified and analyzed. It exhibited exceptional survival at 9% (w/v) NaCl salinity. Whole-genome sequencing revealed a circular chromosome spanning 3,875,470 bp with 63.11% GC content, encoding 5534 protein-coding genes. AntiSMASH analysis predicted eight secondary metabolite biosynthetic gene clusters. Genomic annotation identified functional genes associated with nitrogen cycle coordination, phytohormone biosynthesis, micronutrient management and osmoprotection. Integrating genomic evidence with the existing literature suggests RH-AZ’s potential for enhancing rice salt tolerance and promoting the growth of rice plants. Subsequent physiological investigations revealed that the RH-AZ strain had significant growth-promoting effects on rice under high salinity stress. Compared with a non-inoculated control, RH-AZ-inoculated rice plants exhibited stem elongation and fresh biomass enhancement under salt stress conditions. The RH-AZ strain concurrently affected key stress mitigation biomarkers: it enhanced the activity of antioxidant enzymes including superoxide dismutase, peroxidase, catalase and ascorbate peroxidase, and the contents of proline and chlorophyll in plants, and reduced the content of malondialdehyde. These findings demonstrate that R. marinum RH-AZ, as a multifunctional bioinoculant, enhances rice salt tolerance by enhancing the stress responses of the plants, presenting a promising solution for sustainable agriculture in saline-affected ecosystems. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

32 pages, 2353 KB  
Review
The Effect of Polyploidisation on the Physiological Parameters, Biochemical Profile, and Tolerance to Abiotic and Biotic Stresses of Plants
by Marta Koziara-Ciupa and Anna Trojak-Goluch
Agronomy 2025, 15(8), 1918; https://doi.org/10.3390/agronomy15081918 - 8 Aug 2025
Cited by 2 | Viewed by 2753
Abstract
Polyploidisation is a very common phenomenon in the plant kingdom and plays a key role in plant evolution and breeding. It promotes speciation and the extension of biodiversity. It is estimated that approximately 47% of flowering plant species are polyploids, derived from two [...] Read more.
Polyploidisation is a very common phenomenon in the plant kingdom and plays a key role in plant evolution and breeding. It promotes speciation and the extension of biodiversity. It is estimated that approximately 47% of flowering plant species are polyploids, derived from two or more diploid ancestral species. In natural populations, the predominant methods of whole-genome multiplication are somatic cell polyploidisation, meiotic cell polyploidisation, or endoreduplication. The formation and maintenance of polyploidy is accompanied by a series of epigenetic and gene expression changes, leading to alterations in the structural, physiological, and biochemical characteristics of polyploids relative to diploids. This article provides information on the mechanisms of formation of natural and synthetic polyploids. It presents a number of examples of the effects of polyploidisation on the composition and content of secondary metabolites of polyploids, providing evidence of the importance of the phenomenon in plant adaptation to the environment, improvement of wild species, and crops. It aims to gather and systematise knowledge on the effects of polyploidisation on plant physiological traits, including stomatal conductance (Gs), transpiration rate (Tr), light saturation point (LSP), as well as the most important photosynthetic parameters determining biomass accumulation. The text also presents the latest findings on the adaptation of polyploids to biotic and abiotic stresses and explains the basic mechanisms of epigenetic changes determining resistance to selected stress factors. Full article
Show Figures

Figure 1

Back to TopTop