The Effect of Polyploidisation on the Physiological Parameters, Biochemical Profile, and Tolerance to Abiotic and Biotic Stresses of Plants
Abstract
1. Introduction
2. Review Methodology
3. Methods of Plant Polyploidisation
3.1. Meiotic Polyploidisation
3.2. Mitotic Polyploidisation
4. The Effect of Polyploidisation on the Content of Plant Secondary Metabolites
4.1. Alkaloids
4.2. Essential Oils
4.3. Flavonoids
4.4. Bitter Acids
5. The Effect of Polyploidy on Plant Physiological Traits and Photosynthetic Efficiency
5.1. Lilium spp.
5.2. Melissa officinalis
5.3. Apple Tree
5.4. Triticum
5.5. Fragaria
5.6. Phlox drummondii
5.7. Oryza sativa
6. Response of Polyploids to Abiotic Stress
6.1. Drought Stress
6.2. Salt Stress
6.3. Temperature Stresses
6.3.1. Heat Stress
6.3.2. Cold Stress
7. Response of Polyploids to Biotic Stress
7.1. The Benefits of Genome Polyploidisation Under Biotic Stress Conditions
Species | Stress | Response | Ploidy | References |
---|---|---|---|---|
Biotic Stresses | ||||
Brassica campestris (L.) A.R. Clapham | Myzus persicae (Sulzer) | Less frequent colonization by aphids than in diploids | Tetraploid (2n = 4× 2) | [153] |
Glycine tabacina (Labill.) Benth. | Phakopsora pachyrhizi | Increased resistance to Phakopsora pachyrhizi; lower rate of disease development and number of pustules per unit area of leaf compared to diploids | Polyploid | [151] |
Beta vulgaris (L.) | Cercospora | Increased resistance to Cercospora compared to diploids | Polyploid | [152] |
Stenotaphrum secundatum Walter Kuntze | Belonolaimus longicaudatus | 6.8 times fewer of sting nematodes per pot, slight root damage; transpiration rate unchanged compared to diploids | Polyploid (2n = 4× = 30) | [155] |
Malus x domestica Borkh. | Alternaria alternate, Colletotrichum gloeosporioides | Lower incidence of disease in autotetraploid plants inoculated with A. alternata after 48 h than in diploid plants. The same trend in the incidence of disease in plants after C. gloeosporioides inoculation | Autotetraploid (2n = 4×) | [156] |
Venturia inaequalis | Autopolyploidy reduced the severity of apple scab symptoms in two cultivars upon inoculation with two different V. inaequalis isolates. Tetraploid plants exhibited reduced sporulation symptoms compared to their diploid counterparts upon infection, which is attributed to a reduced presence of V. inaequalis | Tetraploid (2n = 4×) | [157] | |
Elevated expression levels of the Rvi6 gene and other genes (e.g., WRKY29, CDPK and MPK4), which are known to be associated with disease resistance | Tetraploid (2n = 4×) | [99] | ||
Arabidopsis thaliana L. Heynh | Pseudomonas syringae pv. tomato DC3000 | Increased resistance to P. syringae pv. tomato DC3000, regardless of phyllosphere, beneficial bacteria inoculation; some constitutively activated defences, regardless of colonization by the beneficial bacteria; lower pathogen abundance, higher baseline activation of certain defence genes compared to diploids | Tetraploid (2n = 4×) | [159] |
Arabidospis suecica (Fr.) Norrl. | Enhanced resistance to P. syringae pv. tomato DC3000 with improved recovery compared with the autotetraploid progenitors, Arabidopsis thaliana and A. arenosa | Allotetraploid | [160] | |
Fragaria × ananasa Duchesne | Xanthomonas fra-gariae | The increased expression of the FaRXf1o gene made allo-octoploid strawberries resistant to Xanthomonas fragariae | Allo-octoploid (2n = 8× 4 = 56) | [161] |
Aster amellus L. | Coleophora obscenella | Higher seed damage by the herbivore; increase in density of C. obscenella larvae in hexaploid than in diploid populations | Hexaploid (2n = 6× 3) | [162] |
Butomus umbellatus L. | Plectosphaerella cucumerina, Colletotrichum fioriniae, Alternaria alternata | Lesions on the leaves of triploid genotypes of B. umbellatus infected with various pathogens were larger than those on the leaves of diploids. The mean lesion size was 80% larger in triploids infected by C. fioriniae, 24% larger in those infected by P. cucumerina, and 7% larger in those infected by A. alternata. Triploid leaves infected by P. cucumerina sustained around 100% more damage than diploid leaves | Triploid (2n = 3× 1) | [163] |
Ribes L. | Podosphaera morsuvae | Similar response of tetraploids and diploids to powdery mildew, septoria leaf spot, and anthracnose | Tetraploid (2n = 4×) | [164] |
7.2. The Negative Effects of Genome Polyploidisation Under Biotic Stress Conditions
8. Epigenetic Mechanisms That Determine Polyploid Stress Tolerance
9. Future Research Directions
10. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Madani, H.; Escrich, A.; Hosseini, B.; Sanchez-Muñoz, R.; Khojasteh, A.; Palazon, J. Effect of Polyploidy Induction on Natural Metabolite Production in Medicinal Plants. Biomolecules 2021, 11, 899. [Google Scholar] [CrossRef]
- Chen, Z.J. Molecular mechanisms of polyploidy and hybrid vigor. Trends Plant Sci. 2010, 15, 57–71. [Google Scholar] [CrossRef] [PubMed]
- Małuszyńska, J. Cytogenetyczne badania struktury genomów poliploidalnych. Biotechnologia 2001, 1, 35–41. [Google Scholar]
- Madlung, A. Polyploidy and its effect on evolutionary success: Old questions revisited with new tools. Heredity 2013, 110, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Salojärvi, J.; Rambani, A.; Yu, Z.; Guyot, R.; Strickler, S.; Lepelley, M.; Wang, C.; Rajaraman, S.; Rastas, P.; Zheng, C.; et al. The genome and population genomics of allopolyploid Coffea arabica reveal the diversification history of modern coffee cultivars. Nat. Genet. 2024, 56, 721–731. [Google Scholar] [CrossRef]
- Stack, S.M.; Roelofs, D. Localized chiasmata and meiotic nodules in the tetraploid onion Allium porrum. Genome 1996, 39, 770–783. [Google Scholar] [CrossRef]
- Tomaszewska, P. Understanding polyploid banana origins. A commentary on: ‘Unravelling the complex story of intergenomic recombination in ABB allotriploid bananas’. Ann. Bot. 2021, 127, 7–20. [Google Scholar] [CrossRef]
- Lv, Z.; Nyarko, C.A.; Ramtekey, V.; Behn, H.; Mason, A.S. Defining autopolyploidy: Cytology, genetics, and taxonomy. Am. J. Bot. 2024, 111, 6292. [Google Scholar] [CrossRef]
- Osabe, K.; Kawanabe, T.; Sasaki, T.; Ishikawa, R.; Okazaki, K.; Dennis, E.S.; Kazama, T.; Fujimoto, T. Multiple Mechanisms and Challenges for the Application of Allopolyploidy in Plants. Int. J. Mol. Sci. 2012, 13, 8696–8721. [Google Scholar] [CrossRef]
- Berbeć, A.; Doroszewska, T. The Use of Nicotiana Species in Tobacco Improvement. In The Tobacco Plant Genome. Compendium of Plant Genomes; Ivanov, N., Sierro, N., Peitsch, M., Eds.; Springer: Cham, Switzerland, 2020; Available online: https://www.researchgate.net/publication/339958133 (accessed on 20 April 2020).
- Jiang, C.; Wright, R.J.; El-Zik, K.M.; Paterson, A.H. Polyploid formation created unique avenues for response to selection in Gossypium (cotton). Proc. Natl. Acad. Sci. USA 1998, 95, 4419–4424. [Google Scholar] [CrossRef]
- Głowacka, K.; Jeżowski, S.; Kaczmarek, Z. In vitro induction of polyploidy by colchicine treatment of shoots and preliminary characterisation of induced polyploids in two Miscanthus species. Ind. Crops Prod. 2010, 32, 88–96. [Google Scholar] [CrossRef]
- Van de Peer, Y.; Mizrachi, E.; Marchal, K. The evolutionary significance of polyploidy. Nat. Rev. Genet. 2017, 18, 411–424. [Google Scholar] [CrossRef]
- Lynch, M.; Conery, J.S. The evolutionary fate and consequences of duplicate genes. Science 2000, 290, 1151–1155. [Google Scholar] [CrossRef]
- te Beest, M.; Le Roux, J.J.; Richardson, D.M.; Brysting, A.K.; Suda, J.; Kubesová, M.; Pysek, P. The more the better? The role of polyploidy in facilitating plant invasions. Ann. Bot. 2012, 109, 19–45. [Google Scholar] [CrossRef] [PubMed]
- Babik, W. Ewolucja genomów i powstanie nowych genów. Kosmos 2009, 58, 385–393. Available online: https://bibliotekanauki.pl/articles/1196031 (accessed on 5 August 2025).
- Lynch, M.; Walsh, B. The origins of genome architecture. J. Hered. 2007, 98, 633–634. [Google Scholar] [CrossRef]
- Comai, L. The advantages and disadvantages of being polyploid. Nat. Rev. Genet. 2005, 6, 836–846. [Google Scholar] [CrossRef] [PubMed]
- Soltis, P.S.; Marchant, D.B.; van de Peer, Y.; Soltis, D.E. Polyploidy and genome evolution in plants. Curr. Opin. Gen. Dev. 2015, 35, 119–125. [Google Scholar] [CrossRef]
- Eng, W.H.; Ho, W.S. Polyploidization using colchicine in horticultural plants. A review. Sci. Hortic. 2019, 246, 604–617. [Google Scholar] [CrossRef]
- Ożarowski, M.; Deja, A.; Forycka, A.; Słomski, R. Increasing the value of plant raw material by inducing genomic changes. Past and prospects for the varietal progress of medicinal plants. Herba Pol. 2023, 69, 82–92. Available online: https://herbapolonica.pl/article/01.3001.0054.2578/en (accessed on 27 December 2023).
- Maherali, H.; Walden, A.E.; Husband, B.C. Genome duplication and the evolution of physiological responses to water stress. New Phytol. 2009, 184, 721–731. [Google Scholar] [CrossRef]
- Chao, D.Y.; Dilkes, B.; Luo, H.; Douglas, A.; Yakubova, E.; Lahner, B.; Salt, D.E. Polyploids exhibit higher potassium uptake and salinity tolerance in Arabidopsis. Science 2013, 341, 658–659. Available online: https://www.researchgate.net/publication/252325402 (accessed on 24 July 2014). [CrossRef]
- Zhu, H.; Zhao, S.; Lu, X.; He, N.; Gao, L.; Dou, J.; Bie, Z.; Liu, W. Genome duplication improves the resistance of watermelon root to salt stress. Plant Physiol. Biochem. 2018, 133, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Gajek, K.; Janiak, A.A. Epigenetyczne skutki poliploidyzacji u roślin. PBK 2015, 42, 27–41. [Google Scholar]
- Warner, D.A.; Edwards, G.E. Effects of polyploidy on photosynthesis. Photosynth. Res. 1993, 35, 135–147. [Google Scholar] [CrossRef]
- Maślanka, R.; Zadrąg-Tecza, R. Duplikacja DNA—Mechanizm rozwoju nowej funkcjonalności genów. Postępy Biochem. 2015, 61, 388–397. Available online: https://www.researchgate.net/publication/297929904 (accessed on 8 June 2016). [PubMed]
- Le, K.C.; Ho, T.T.; Lee, J.D.; Paek, K.Y.; Park, S.Y. Colchicine mutagenesis from long-term cultured adventitious roots increases biomass and ginsenoside production in wild ginseng (Panax ginseng Mayer). Agronomy 2020, 10, 785. [Google Scholar] [CrossRef]
- Conant, G.C.; Birchler, J.A.; Pires, J.C. Dosage, duplication, and diploidization: Clarifying the interplay of multiple models for duplicate gene evolution over time. Curr. Opin. Plant Biol. 2014, 19, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Gaynor, M.L.; Lim-Hing, S.; Mason, C.M. Impact of genome duplication on secondary metabolite composition in non-cultivated species: A systematic meta-analysis. Ann. Bot. 2020, 126, 363–376. [Google Scholar] [CrossRef]
- Allario, T.; Brumos, J.; Colmenero-Flores, J.M.; Iglesias, D.J.; Pina, J.A.; Navarro, L.; Talon, M.; Ollitrault, P.; Morillon, R. Tetraploid Rangpur lime rootstock increases drought tolerance via enhanced constitutive root abscisic acid production. Plant Cell Environ. 2013, 36, 856–868. [Google Scholar] [CrossRef]
- Van Laere, K.; França, S.C.; Vansteenkiste, H.; Van Huylenbroeck, J.; Steppe, K.; Van Labeke, M.C. Influence of ploidy level on morphology, growth and drought susceptibility in Spathiphyllum wallisii. Acta Physiol. Plant. 2011, 33, 1149–1156. [Google Scholar] [CrossRef]
- Sattler, M.C.; Carvalho, C.R.; Clarindo, W.R. The polyploidy and its key role in plant breeding. Planta 2016, 243, 281–296. [Google Scholar] [CrossRef]
- Ramsey, J.; Schemske, D.W. Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu. Rev. Ecol. Syst. 1998, 29, 467–501. [Google Scholar] [CrossRef]
- Blakesley, D.; Allen, A.; Pellny, T.K.; Roberts, A.V. Natural and Induced Polyploidy in Acacia dealbata Link. and Acacia mangium Willd. Ann. Bot. 2002, 90, 391–398. [Google Scholar] [CrossRef] [PubMed]
- Dzialuk, A.; Chybicki, I.; Welc, M.; Śliwinska, E.; Burczyk, J. Presence of triploids among oak species. Ann. Bot. 2007, 99, 959–964. [Google Scholar] [CrossRef] [PubMed]
- Trojak-Goluch, A.; Berbeć, A. Cytological investigations of the interspecific hybrids of Nicotiana tabacum L. × N. glauca Grah. J. Appl. Genet. 2003, 44, 45–54. Available online: https://www.researchgate.net/publication/10897655 (accessed on 26 November 2014).
- Montes, E.; Coriton, O.; Eber, E.; Huteau, V.; Lacape, J.M.; Reinhardt, C.; Marais, D.; Hofs, J.L.; Chèvre, A.M.; Pannetier, C. Assessment of Gene Flow Between Gossypium hirsutum and G. herbaceum: Evidence of Unreduced Gametes in the Diploid Progenitor. G3 (Besthesda) 2017, 7, 2185–2193. [Google Scholar] [CrossRef]
- Van Laere, K.; Dewitte, A.; Van Huylenbroeck, J.; Van Bockstaele, E. Evidence for the occurrence of unreduced gametes in interspecific hybrids of Hibiscus. J. Hortic. Sci. Biotech. 2009, 84, 240–247. [Google Scholar] [CrossRef]
- Amdahl, H.; Aamlid, T.S.; Ergon, Å.; Kovi, M.R.; Marum, P.; Alsheikh, M.; Rognli, O.A. Seed yield of Norwegian and Swedish tetraploid red clover (Trifolium pratense L.) populations. Crop Sci. 2016, 56, 603–612. [Google Scholar] [CrossRef]
- Lu, M.; Zhang, P.; Kang, X. Induction of 2n female gametes in Populus adenopoda Maxim by high temperature exposure during female gametophyte development. Breed. Sci. 2013, 63, 96–103. Available online: https://www.researchgate.net/publication/236615193 (accessed on 21 March 2014). [CrossRef]
- Wang, J.; Li, D.L.; Kang, X.Y. Induction of unreduced megaspores with high temperature during megasporogenesis in Populus. Ann. For. Sci. 2012, 69, 59–67. [Google Scholar] [CrossRef]
- Luo, J.R.; Arens, P.; Niu, L.X.; van Tuyl, J.M. Induction of viable 2n pollen in sterile Oriental × Trumpet Lilium hybrids. J. Hortic. Sci. Biotech. 2016, 91, 258–263. [Google Scholar] [CrossRef]
- Yu, M.D.; Jin, C.J.; Wu, C.R.; Lu, C. Breeding of new artificial triploid mulberry variety Jialing No. 20. Acta Sericol. Sin. 2004, 30, 225–229. Available online: https://europepmc.org/article/cba/591626 (accessed on 1 January 2004).
- Serapiglia, M.J.; Gouker, F.E.; Smart, L.B. Early selection of novel triploid hybrids of shrub willow with improved biomass yield relative to diploids. BMC Plant Biol. 2014, 14, 74. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Clausen, R.E.; Goodspeed, T.H. Interspecific Hybridization in Nicotiana. II. A Tetraploid glutinosa-tabacum Hybrid, an Experimental Verification of Winge’s Hypothesis. Genet 1925, 10, 278–284. [Google Scholar] [CrossRef]
- Domański, L.; Flis, B.; Jakuczun, H.; Zimnoch-Guzowska, E. Zmienność cech technologicznych i morfologicznych bulw ziemniaka w potomstwie uzyskanym z krzyżowań interploidalnych 4x−2x. Biul. Inst. Hod. Aklim. Rośl 2010, 257/258, 57–69. [Google Scholar] [CrossRef]
- Beatson, R.A.; Brewer, V.R. Regional trial evaluation and cultivar selection of triploid hop hybrids. New Zealand J. Crop Hortic. Sci. 1994, 22, 1–6. [Google Scholar] [CrossRef]
- Clifton-Brown, J.; Chiang, Y.C.; Hodkinson, T. Miscanthus: Genetic Resources and Breeding Potential to Enhance Bioenergy Production. In Genetic Improvement of Bioenergy Crops; Vermerris, W., Ed.; Springer: New York, NY, USA, 2008; pp. 273–294. [Google Scholar] [CrossRef]
- Heaton, E.; Dohleman, F.; Miguez, F.; Juvik, J.; Lozovaya, V.; Widholm, J.; Zabotina, O.; Mcisaac, G.; Mcisaac, F.; David, M.; et al. Miscanthus: A promising biomass crop. Adv. Bot. Res. 2010, 56, 75–137. [Google Scholar] [CrossRef]
- Podwyszyńska, M.; Mynett, K.; Markiewicz, M.; Pluta, S.; Marasek-Ciołakowska, A. Chromosome doubling in genetically diverse bilberry (Vaccinium myrtillus L.) accessions and evaluation of tetraploids in terms of phenotype and ability to cross with Highbush Blueberry (V. corymbosum L.). Agronomy 2021, 11, 2584. [Google Scholar] [CrossRef]
- Mo, L.; Chen, J.; Lou, X.; Xu, Q.; Dong, R.; Tong, Z.; Huang, H.; Lin, E. Colchicine-induced polyploidy in Rhododendron fortunei Lindl. Plants 2020, 9, 424. [Google Scholar] [CrossRef]
- Švécarová, M.; Navrátilová, B.; Hašler, P.; Ondřej, V. Artificial induction of tetraploidy in Humulus lupulus L. using oryzalin. Acta Agrobot. 2019, 72, 1764. [Google Scholar] [CrossRef]
- Kumar, M.K.; Rani, M.U. Colchiploidy in Fruit Breeding. A review. Horticulturae 2013, 2, 325–326. Available online: https://www.researchgate.net/publication/305329449 (accessed on 15 July 2016).
- Manzoor, A.; Ahmad, T.; Bashir, M.A.; Hafiz, I.A.; Silvestri, C. Studies on colchicine induced chromosome doubling for enhancement of quality traits in ornamental plants. Plants 2019, 8, 194. [Google Scholar] [CrossRef]
- Petersen, K.K.; Hagberg, P.; Kristiansen, K. Colchicine and Oryzalin Mediated Chromosome Doubling in Different Genotypes of Miscanthus sinensis. PCTOC 2003, 73, 137–146. Available online: https://www.researchgate.net/publication/226751502 (accessed on 2 February 2015). [CrossRef]
- Talebi, S.F.; Saharkhiz, M.J.; Kermani, M.J.; Sharafi, Y.; Fard, F.R. Effect of different antimitotic agents on polyploidy induction of anise hyssop (Agastache foeniculum L.). Caryologia 2017, 70, 184–193. [Google Scholar] [CrossRef]
- Parsons, J.L.; Martin, S.L.; James, T.; Golenia, G.; Boudko, E.A.; Hepworth, S.R. Polyploidization for the genetic improvement of Cannabis sativa. Front. Plant. Sci. 2019, 10, 476. [Google Scholar] [CrossRef] [PubMed]
- Susanti, D.; Parjanto, P.; Haryanti, S. Stevia Local Tawangmangu Generation M1 Result of Oryzalin Treatment. J. Biodjati. 2024, 9, 102–116. [Google Scholar] [CrossRef]
- Yemets, A.I.; Blume, Y.B. Progress in plant polyploidization based on anti-microtubular drugs. Open Hortic. J. 2008, 1, 15–20. Available online: https://www.researchgate.net/publication/228789478 (accessed on 30 May 2014). [CrossRef]
- Dixit, V.; Chaudhary, B.R. Colchicine-induced tetraploidy in garlic (Allium sativum L.) and its effect on allicin concentration. J. Hortic. Sci. Biotechnol. 2014, 89, 585–591. [Google Scholar] [CrossRef]
- Alavi, J.; Maroufi, A.; Mirzaghaderi, G. Trifluralin-mediated polyploidization of fenugreek (Trigonella feonum-graecum L.) using in vitro embryo culture. Acta Physiol. Plant. 2022, 44, 97. [Google Scholar] [CrossRef]
- Dwiati, M.; Hasam, W.N.; Susanto, A.H. Oryzalin-induced polyploidy in Vanda limbata (Blume): Phenotypic assessment. Acta Biochim. Indones. 2025, 8, 197. [Google Scholar] [CrossRef]
- Dhooghe, E.; Grunewald, W.; Leus, L.; Van Labeke, M.C. In vitro polyploidisation of Helleborus species. Euphytica 2009, 165, 89–95. Available online: https://www.researchgate.net/publication/226188624 (accessed on 16 November 2017). [CrossRef]
- Teoh, E.S. Secondary Metabolites of Plants. In Medicinal Orchids of Asia; Springer: Cham, Switzerland, 2016; pp. 59–73. [Google Scholar] [CrossRef]
- Salam, U.; Ullah, S.; Tang, Z.-H.; Elateeq, A.A.; Khan, Y.; Khan, J.; Khan, A.; Ali, S. Plant Metabolomics: An Overview of the Role of Primary and Secondary Metabolites against Different Environmental Stress Factors. Life 2023, 13, 706. [Google Scholar] [CrossRef]
- Vergara, F.; Kikuchi, J.; Breuer, C. Artificial autopolyploidization modifies the tricarboxylic acid cycle and GABA shunt in Arabidopsis thaliana Col-0. Sci. Rep. 2016, 6, 26515. [Google Scholar] [CrossRef]
- Mishra, B.K.; Pathak, S.; Sharma, A.; Trivedi, P.K.; Shukla, S. Modulated gene expression in newly synthesized autotetraploid of Papaver somniferum L. South Afr. J. Bot. 2010, 76, 447–452. [Google Scholar] [CrossRef]
- Kolińska, A.; Marciniak, P.; Adamski, Z.; Rosiński, G. Alkaloidy—Naturalne substancje kardioaktywne. KOSMOS 2016, 65, 247–256. Available online: https://bibliotekanauki.pl/articles/1034670 (accessed on 5 August 2025).
- Berkov, S.; Philipov, S. Alkaloid Production in Diploid and Autotetraploid Plants of Datura stramonium L. Pharm. Biol. 2002, 40, 617–621. [Google Scholar] [CrossRef]
- Dehghan, E.; Häkkinen, S.T.; Oksman-Caldentey, K.M.; Ahmadi, F.S. Production of tropane alkaloids in diploid and tetraploid plants and in vitro hairy root cultures of Egyptian henbane (Hyoscyamus muticus L.). PCTOC 2012, 110, 35–44. Available online: https://www.researchgate.net/publication/222711154 (accessed on 20 May 2014).
- Xing, S.H.; Guo, X.B.; Wang, Q.; Pan, Q.F.; Tian, Y.S.; Liu, P.; Zhao, J.Y.; Wang, G.F.; Sun, X.F.; Tang, K.X. Induction and flow cytometry identification of tetraploids from seed-derived explants through colchicine treatments in Catharanthus roseus L. G. Don. J. Biomed. Biotechnol. 2011, 2011, 793198. [Google Scholar] [CrossRef]
- Nourozi, E.; Hedayati, A.; Madani, H.; Hosseini, B.; Hemmaty, S. In vitro synthetic polyploidization and enhancement of anticancer compounds in Catharanthus roseus L.G. Don important cultivars. Sci. Rep. 2025, 15, 6563. [Google Scholar] [CrossRef] [PubMed]
- Shmeit, Y.H.; Fernandez, E.; Novyb, P.; Kloucek, P.; Orosz, M.; Kokoska, L. Autopolyploidy effect on morphological variation and essential oil content in Thymus vulgaris L. Sci. Hortic. 2020, 263, 109095. [Google Scholar] [CrossRef]
- Das, M. Chamomile: Medicinal, Biochemical, and Agricultural Aspects, 1st ed.; CRC Press: New York, NY, USA, 2014; pp. 295–300. [Google Scholar] [CrossRef]
- Navrátilová, B.; Švécarová, M.; Bednář, J.; Ondřej, V. In Vitro plyploidization of Thymus vulgaris L. and its effect on composition of essential oils. Agronomy 2021, 11, 596. [Google Scholar] [CrossRef]
- Mohammadi, V.; Talebi, S.; Ahmadnasab, M.; Mollahassanzadeh, H. The effect of induced polyploidy on phytochemistry, cellular organelles and the expression of genes involved in thymol and carvacrol biosynthetic pathway in thyme (Thymus vulgaris). Front. Plant Sci. 2023, 14, 1228844. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.; Bhattacharya, S.; Dutta, A.; Tauchen, J.; Landa, P.; Urbanová, K.; Houdková, M.; Fernández-Cusimamani, E.; Leuner, O. Synthetic polyploidization inducesenhanced phytochemical profile and biological activities in Thymus vulgaris L. essential oil. Sci. Rep. 2024, 14, 5608. [Google Scholar] [CrossRef]
- Bharati, R.; Gupta, A.; Novy, P.; Severová, L.; Šrédl, K.; Žiarovská, J.; Fernández-Cusimamani, E. Synthetic polyploid induction influences morphological, physiological, and photosynthetic characteristics in Melissa officinalis L. Front. Plant Sci. 2023, 14, 1332428. [Google Scholar] [CrossRef]
- Biendl, M.; Pinzl, C. Hops and Health, 2nd ed.; German Hop Museum Wonlzach: Wonlzach, Germany, 2008; pp. 49–92. [Google Scholar]
- Krajl, D. Diploid and tetraploid crossing of hop (Humulus lupulus L.). Kmetijstvo 1973, 21, 155–174. [Google Scholar]
- Kawka, M.; Trojak- Goluch, A. Poliploidy tytoniu i chmielu–metody otrzymywania, ocena fenotypu, składu chemicznego oraz wykorzystanie w hodowli. Stud. I Rap. IUNG-PIB 2022, 68, 11–128. [Google Scholar] [CrossRef]
- Trojak-Goluch, A.; Skomra, U. Artificially induced polyploidization in Humulus lupulus L. and its effect on morphological and chemical traits. Breed. Sci. 2013, 63, 393–399. [Google Scholar] [CrossRef]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci. 2016, 29, 14. [Google Scholar] [CrossRef]
- Khezri, M.; Asghari-Zakaria, R.; Zare, N.; Johari-Ahar, M. Tetraploidy induction increases galegine content in Galega officinalis L. J. Appl. Res. Med. Aromat. Plants 2021, 26, 100366. [Google Scholar] [CrossRef]
- Kasmiyati, S.; Kristiani, E.B.E.; Herawati, M.M. Effect of induced polyploidy on plant growth, chlorophyll and flavonoid content of Artemisia cina. Biosaintifika J. Biol. Educ. 2020, 12, 90–96. [Google Scholar] [CrossRef]
- Tavan, M.; Sarikhani, H.; Mirjalili, M.H.; Rigano, M.M.; Azizi, A. Triterpenic and phenolic acids production changed in Salvia officinalis via in vitro and in vivo polyploidization: A consequence of altered genes expression. Phytochem 2021, 189, 112803. [Google Scholar] [CrossRef]
- Hassanzadeh, F.; Asghari–Zakaria, R.; Hosseinpour Azad, N. Polyploidy Induction in Salvia officinalis L. and Its Effects on Some Morphological and Physiological Characteristics. CYTOLOGIA 2020, 85, 157–162. Available online: https://www.researchgate.net/publication/3424500 (accessed on 1 February 2017).
- Kasmiyati, S.; Kristiani, E.B.E.; Herawati, M.M.; Sukmana, A.B.A. Antibacterial Activity and Flavonoids Content of Artemisia cina Berg. ex Poljakov Ethyl Acetate Extracts. Biosaintifika J. Biol. Educ. 2021, 13, 106–112. [Google Scholar] [CrossRef]
- Lavania, U.C. Genomic and ploidy manipulation for enhanced production of phyto-pharmaceuticals. Plant Genet. Res. 2005, 3, 170–177. [Google Scholar] [CrossRef]
- Evans, W.C.; Evans, D. Phytochemical variation within a species. In Trease and Evans’ Pharmacognosy; W.B. Saunders: London, UK, 2009; pp. 106–116. [Google Scholar]
- Skomra, U.; Koziara-Ciupa, M. Stability of the hop bitter acids during long-term storage of cones with different maturity degree. PJA 2020, 40, 16–24. [Google Scholar] [CrossRef]
- Trojak-Goluch, A.; Skomra, U. Ploidy variation and agronomic performance of F1 hybrids of tetraploid and diploid forms of Humulus lupulus L. Breed. Sci. 2020, 70, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.J.; Cao, Q.Z.; Zhang, X.Q.; Jia, G.X. Effects of polyploidization on photosynthetic characteristics in three Lilium species. Sci. Hortic. 2021, 284, 110098. [Google Scholar] [CrossRef]
- Oberprieler, C.; Talianova, M.; Griesenbeck, J. Effects of polyploidy on the coordination of gene expression between organellar and nuclear genomes in Leucanthemum Mill. (Compositae, Anthemideae). Ecol. Evol. 2019, 9, 9100–9110. [Google Scholar] [CrossRef] [PubMed]
- Warner, D.A.; Ku, M.S.B.; Edwards, G.E. Photosynthesis, leaf anatomy, and cellular constituents in the polyploid C4 grass Panicum virgatum. Plant Physiol. 1987, 84, 461–466. [Google Scholar] [CrossRef]
- Cao, Q.; Zhang, X.; Gao, X.; Wang, L.; Jia, G. Effects of ploidy level on the cellular, photochemical and photosynthetic characteristics in Lilium FO hybrids. Plant Physiol. Biochem. 2018, 133, 50–56. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, H.; He, T.; Gao, R.; Guo, G.; Lu, R.; Chen, Z.; Liu, C. Comparative Analysis of Morphology, Photosynthetic Physiology, and Transcriptome Between Diploid and Tetraploid Barley Derived from Microspore Culture. Front. Plant Sci. 2021, 12, 626916. [Google Scholar] [CrossRef] [PubMed]
- Podwyszyńska, M.; Markiewicz, M.; Klamkowski, K.; Broniarek, A.; Marasek-Ciołakowska, A. The genetic background of the phenotypic variability observed in apple autotetraploids. Acta Hortic. 2021, 1307, 177–186. [Google Scholar] [CrossRef]
- Hejnák, V.; Hniličková, H.; Hnilička, F.; Andr, J. Gas exchange and Triticum sp. with different ploidy in relation to irradiance. Plant Soil. Environ. 2016, 62, 47–52. [Google Scholar] [CrossRef]
- Gao, S.; Yan, Q.; Chen, L.; Song, Y.; Li, J.; Fu, C.; Dong, M. Effects of ploidy level and haplotype on variation of photosynthetic traits: Novel evidence from two Fragaria species. PLoS ONE 2017, 12, e0179899. [Google Scholar] [CrossRef] [PubMed]
- Šmarda, P.; Klem, K.; Knápek, O.; Veselá, B.; Veselá, K.; Holub, P.; Kuchař, V.; Šilerová, A.; Horová, L.; Bureš, P. Growth, physiology, and stomatal parameters of plant polyploids grown under ice age, present-day, and future CO2 concentrations. New Phytol. 2023, 239, 399–414. [Google Scholar] [CrossRef] [PubMed]
- Vyas, P.; Bisht, M.S.; Miyazawa, S.-I.; Yano, S.; Noguchi, K.; Terashima, I.; Funayama-Noguchi, S. Effects of polyploidy on photosynthetic properties and anatomy in leaves of Phlox drummondii. Funct. Plant Biol. 2007, 34, 673–682. [Google Scholar] [CrossRef]
- Xiao, J.; Xiong, Z.; Huang, J.; Zhang, Z.; Cai, D.; Xiong, D.; Cui, K.; Peng, S.; Huang, J. Differences in Grain Yield and Nitrogen Uptake between Tetraploid and Diploid Rice: The Physiological Mechanisms under Field Conditions. Plants 2024, 13, 2884. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Zhou, X.; Huang, Q. The mechanism of starch content increase in grain of autotetraploid rice (Oryza sativa L.). Photosynthetica 2019, 57, 680–687. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, S.; Ren, T.; Niu, M.; Liu, X.; Liu, C.; Wang, H.; Yin, W.; Xia, X. Crucial abiotic stress regulatory network of NF-Y transcription factor in plants. Int. J. Mol. Sci. 2023, 24, 4426. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, Y.; Zhu, J.K. Thriving under stress: How plants balance growth and the stress response. Dev. Cell. 2020, 55, 529–543. [Google Scholar] [CrossRef]
- Li, X.; Zhang, L.; Wei, X.; Datta, T.; Wie, F.; Xie, Z. Polyploidization: A Biological Force That Enhances Stress Resistance. Int. J. Mol. Sci. 2024, 25, 1957. [Google Scholar] [CrossRef]
- Saleh, B.; Allario, T.; Dambier, D.; Ollitrault, P.; Morillon, R. Tetraploid citrus rootstocks are more tolerant to salt stress than diploid. Compt. Rend. Biol. 2008, 331, 703–710. [Google Scholar] [CrossRef] [PubMed]
- Deng, B.; Du, W.; Liu, C.; Sun, W.; Tian, S.; Dong, H. Antioxidant response to drought, cold and nutrient stress in two ploidy levels of tobacco plants: Low resource requirement confers polytolerance in polyploids? Plant Growth Regul. 2011, 66, 37–47. [Google Scholar] [CrossRef]
- Del Pozo, J.C.; Ramirez-Parra, E. Deciphering the molecular bases for drought tolerance in Arabidopsis autotetraploids. Plant Cell Environ. 2014, 37, 2722–2737. [Google Scholar] [CrossRef]
- Wójcik, D.; Marat, M.; Marasek-Ciołakowska, A.; Klamkowski, K.; Buler, Z.; Podwyszyńska, M.; Tomczyk, P.P.; Wójcik, K.; Treder, W.; Filipczak, J. Apple Autotetraploids—Phenotypic Characterisation and Response to Drought Stress. Agron. J. 2022, 12, 161. [Google Scholar] [CrossRef]
- Jiang, J.; Yang, N.; Li, L.; Qin, G.; Ren, K.; Wang, H.; Deng, J.; Ding, D. Tetraploidy in Citrus wilsonii Enhances Drought Tolerance via Synergistic Regulation of Photosynthesis, Phosphorylation, and Hormonal Changes. Front. Plant Sci. 2022, 13, 875011. [Google Scholar] [CrossRef]
- Fariaszewska, A.; Aper, J.; Van Huylenbroeck, J.; Baert, J.; De Riek, J.; Staniak, M.; Pecio, Ł. Mild drought stress-induced changes in yield, physiological processes and chemical composition in Festuca, Lolium and Festuoliu. J. Agron. Crop Sci. 2017, 203, 103–116. [Google Scholar] [CrossRef]
- Diallo, A.M.; Nielsen, L.R.; Kjaer, E.D.; Petersen, K.K.; Raebild, A. Polyploidy can Confer Superiority to West African Acacia senegal (L.) Willd. Trees. Front. Plant Sci. 2016, 7, 821. [Google Scholar] [CrossRef]
- Xu, J.; Jin, J.; Zhao, H.; Li, K. Drought stress tolerance analysis of Populus ussuriensis clones with different ploidies. J. For. Res. 2018, 30, 1267–1275. [Google Scholar] [CrossRef]
- Ruiz, M.; Quiñones, A.; Martínez-Cuenca, M.R.; Aleza, P.; Morillon, R.; Navarro, L.; Primo-Millo, E.; Martínez-Alcántara, B. Tetraploidy enhances the ability to exclude chloride from leaves in carrizo citrange seedlings. J. Plant Physiol. 2016, 205, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Zhao, L.; Zhang, H.; Yang, Z.; Wang, H.; Wen, S.; Zhang, C.; Rustgi, S.; Wettstein, D.; Liu, B. Evolution of physiological responses to salt stress in hexaploid wheat. PNAS 2014, 111, 11882–11887. [Google Scholar] [CrossRef]
- Tu, Y.; Jiang, A.; Gan, L.; Hossain, M.; Zhang, J.; Peng, B.; Xiong, Y.; Song, Z.; Cai, D.; Xu, W.; et al. Genome duplication improves rice root resistance to salt stress. Rice 2014, 2, 15. Available online: https://www.researchgate.net/publication/265299607 (accessed on 3 August 2015). [CrossRef]
- Duan, Y.; Lei, T.; Li, W.; Jiang, M.; Zhao, Z.; Yu, X.; Li, Y.; Yang, L.; Li, J.; Gao, S. Enhanced Na+ and Cl- sequestration and secretion selectivity contribute to high salt tolerance in the tetraploid recretohalophyte Plumbago auriculata Lam. Planta 2023, 257, 52. [Google Scholar] [CrossRef]
- Yan, K.; Wu, C.; Zhang, L.; Chen, X. Contrasting photosynthesis and photoinhibition in tetraploid and its autodiploid honeysuckle (Lonicera japonica Thunb.) under salt stress. Front. Plant Sci. 2015, 6, 227. [Google Scholar] [CrossRef]
- Yan, K.; Cui, J.; Zhi, Y.; Su, H.; Yu, S.; Zhou, S. Deciphering salt tolerance in tetraploid honeysuckle (Lonicera japonica Thunb.) from ion homeostasis, water balance and antioxidant defense. Plant Physiol. Biochem. 2023, 195, 266–274. [Google Scholar] [CrossRef]
- Meng, F.; Luo, Q.; Wang, Q.; Zhang, X.; Qi, Z.; Xu, F.; Lei, X.; Cao, Y.; Soon Chow, W.; Sun, G. Physiological and proteomic responses to salt stress in chloroplasts of diploid and tetraploid black locust (Robinia pseudoacacia L.). Sci. Rep. 2016, 6, 23098. [Google Scholar] [CrossRef]
- Bonnin, M.; Favreau, B.; Soriano, A.; Leonhardt, N.; Oustric, J.; Lourkisti, R.; Ollitrault, P.; Morillon, R.; Berti, L.; Santini, J. Insight into Physiological and Biochemical Determinants of Salt Stress Tolerance in Tetraploid Citrus. Antioxidant 2023, 12, 1640. [Google Scholar] [CrossRef]
- Sallam, A.; Alqudah, A.M.; Dawood, M.F.; Baenziger, P.S.; Börner, A. Drought stress tolerance in wheat and barley: Advances in physiology, breeding and genetics research. Int. J. Mol. Sci. 2019, 20, 3137. [Google Scholar] [CrossRef]
- Bai, T.; Li, Z.; Song, C.; Song, S.; Jiao, J.; Liu, Y.; Dong, Z.; Zheng, X. Contrasting Drought Tolerance in Two Apple Cultivars Associated with Difference in Leaf Morphology and Anatomy. Am. J. of Plant Sci. 2019, 10, 709–722. [Google Scholar] [CrossRef]
- Alcázar, R.; Bueno, M.; Tiburcio, A.F. Polyamines: Small Amines with Large Effects on Plant Abiotic Stress Tolerance. Cells 2020, 9, 2373. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Graether, S.; Hu, L.; Zhang, W. Editorial: The role of stress proteins in plants under abiotic stress. Front. Plant Sci. 2023, 14, 1193542. [Google Scholar] [CrossRef] [PubMed]
- Correia, S.; Braga, A.; Martins, J.; Correia, B.; Pinto, G.; Canhoto, J. Effects of Polyploidy on Physiological Performance of Acclimatized Solanum betaceum Cav. Plants under Water Deficit. Forests 2023, 14, 208. [Google Scholar] [CrossRef]
- Martignago, D.; Rico-Medina, A.; Blasco-Escaméz, D.; Fontanet-Manzaneque, J.B.; Caño-Delgado, A.I. Drought resistance by engineering plant tissue-specific responses. Front. Plant Sci. 2020, 10, 1676. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Li, T.; Teng, X.; Yang, F.; Ma, X.; Han, J.; Zhou, L.; Bian, Z.; Wei, H.; Deng, H.; et al. Autotetraploidy of rice does not potentiate the tolerance to drought stress in the seedling stage. Rice 2024, 17, 40. [Google Scholar] [CrossRef]
- Hussain, S.; Shaukat, M.; Ashraf, M.; Zhu, C.; Jin, Q.; Zhang, J. Salinity Stress in Arid and Semi-Arid Climates: Effects and Management in Field Crops. In Climate Change and Agriculture; Hussain, S., Ed.; IntechOpen: London, UK, 2019; pp. 1–26. Available online: https://www.researchgate.net/publication/334442624_ (accessed on 13 July 2019).
- Chen, G.; Zheng, D.; Feng, N.; Zhou, H.; Mu, D.; Zhao, L.; Shen, X.; Rao, G.; Meng, F.; Huang, A. Physiological mechanisms of ABA-induced salinity tolerance in leaves and roots of rice. Sci. Rep. 2022, 12, 8228. [Google Scholar] [CrossRef]
- Dubcovsky, J.; Dvorak, J. Genome plasticity a key factor in the success of polyploid wheat under domestication. Science 2007, 29, 1862–1866. Available online: https://www.researchgate.net/publication/6237790 (accessed on 1 April 2014). [CrossRef]
- Mishra, S.; Mehrotra, S.; Srivastava, V. Editorial: Stress-mediated regulation of plant specialized metabolism. Front. Plant Sci. 2023, 14, 1290281. [Google Scholar] [CrossRef]
- Mouhaya, W.; Allario, T.; Brumos, J.; Andrés, F.; Froelicher, Y.; Luro, F.; Talon, M.; Ollitrault, P.; Morillon, R. Sensitivity to high salinity in tetraploid citrus seedlings increases with water availability and correlates with expression of candidate genes. Funct. Plant Biol. 2010, 37, 674–685. [Google Scholar] [CrossRef]
- Tsai, Y.; Liao, Y.; Wei, T.; Yeh, D. Triploid Formation and Heat Tolerance of Angelonia angustifolia with Various Ploidy Levels. Hort. Sci. 2024, 59, 1656–1660. [Google Scholar] [CrossRef]
- Rajametov, S.N.; Yang, E.Y.; Cho, M.C.; Chae, S.Y.; Jeong, H.B.; Chae, W.B. Heat-tolerant hot pepper exhibits constant photosynthesis via increased transpiration rate, high proline content and fast recovery in heat stress condition. Sci. Rep. 2021, 11, 14328. [Google Scholar] [CrossRef] [PubMed]
- Li, W.D.; Hu, X.; Liu, J.K.; Jiang, G.M.; Li, O.; Xing, D. Chromosome doubling can increase heat tolerance in Lonicera japonica as indicated by chlorophyll fluorescence imaging. Biol. Plant 2011, 55, 279–284. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Hu, C.G.; Yao, J.L. Tetraploidization of diploid Dioscorea results in activation of the antioxidant defense system and increased heat tolerance. J. Plant Physiol. 2010, 167, 88–94. [Google Scholar] [CrossRef]
- Kim, H.E.; Han, J.E.; Lee, H.; Kim, J.H.; Kim, H.H.; Lee, K.Y.; Shin, J.H.; Kim, H.K.; Park, S.Y. Tetraploidization Increases the Contents of Functional Metabolites in Cnidium officinale. Agronomy 2021, 11, 1561. [Google Scholar] [CrossRef]
- Tossi, V.E.; Martínez Tosar, L.J.; Laino, L.E.; Iannicelli, J.; Regalado, J.J.; Escandón, A.S.; Baroli, I.; Causin, H.F.; Pitta-Álvarez, S.I. Impact of polyploidy on plant tolerance to abiotic and biotic stresses. Front. Plant Sci. 2022, 13, 869423. [Google Scholar] [CrossRef]
- Decanter, L.; Colling, G.; Elvinger, N.; Heiðmarsson, S.; Matthies, D. Ecological niche differences between two polyploid cytotypes of Saxifraga rosacea. Am. J. Bot. 2020, 107, 423–435. [Google Scholar] [CrossRef]
- Tiwana, A.S.; Thummalakunta, S.P.; Gupta, S.; Singh, V.; Kataria, R.C. The Influence of Geographical Factors on Polyploidy in Angiosperms with Cartographic Evidence from the Northwestern Himalayas: A Review. Nat. Environ. Pollut. Technol. 2023, 22, 293–301. [Google Scholar] [CrossRef]
- Klatt, S.; Schinkel, C.; Kirchheimer, B.; Dullinger, S.; Hörandl, E. Effects of cold treatments on fitness and mode of reproduction in the diploid and polyploid alpine plant Ranunculus kuepferi (Ranunculaceae). Ann. Bot. 2018, 121, 1287–1298. Available online: https://www.researchgate.net/publication/323318404 (accessed on 23 April 2018). [CrossRef]
- Jiang, Y.; Liu, S.; Hu, J.; He, G. Polyploidization of Plumbago auriculata Lam. in vitro and its characterization including cold tolerance. PCTOC 2020, 140, 315–325. [Google Scholar] [CrossRef]
- Oustric, J.; Morillon, R.; Luro, F.; Herbette, S.; Lourkisti, R.; Giannettini, J.; Berti, L.; Santini, J. Tetraploid Carrizo citrange rootstock (Citrus sinensis Osb. × Poncirus trifoliata L. Raf.) enhances natural chilling stress tolerance of common clementine (Citrus clementina Hort. ex Tan). J. Plant Physiol. 2017, 214, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Zhou, M.; Zhang, G.; He, L.; Yan, C.; Wan, M.; Hu, J.; He, W.; Zeng, D.; Zhu, B.; et al. Development of homozygous tetraploid potato and whole genome doubling-induced the enrichment of H3K27ac and potentially enhanced resistance to cold-induced sweetening in tubers. Hortic. Res. 2023, 10, uhad017. [Google Scholar] [CrossRef] [PubMed]
- Denaeghel, H.E.R.; Van Laere, K.; Leus, L.; Lootens, P.; Van Huylenbroeck, J.; Van Labeke, M.C. The Variable Effect of Polyploidization on the Phenotype in Escallonia. Front. Plant Sci. 2018, 9, 354. [Google Scholar] [CrossRef] [PubMed]
- Lagibo, A.D.; Kobza, F.; Suchankova, P. Polyploidy effects on frost tolerance and winter survival of garden pansy genotypes. Hort. Sci. 2005, 32, 138–146. [Google Scholar] [CrossRef]
- Burdon, J.J.; Marshall, D.R. Evaluation of Australian native species of Glycine for resistance to soybean rust. Plant Dis. 1981, 65, 44–45. [Google Scholar] [CrossRef]
- Levin, D.A. Polyploidy and novelty in flowering plants. Am. Nat. 1983, 122, 1–25. [Google Scholar] [CrossRef]
- Chowdhury, J.B.; Ghai, B.S.; Sareen, P.K. Studies on the Cytology and Fertility in the Induced Polyploids of Self-Incompatible Brassica campestris var. Brown sarson. Cytologia 1968, 33, 269–275. Available online: https://www.jstage.jst.go.jp/article/cytologia1929/33/2/33_2_269/_pdf (accessed on 5 August 2025). [CrossRef][Green Version]
- Van Hieu, P. Polyploid Gene Expression and Regulation in Polysomic Polyploids. Am. J. Plant Sci. 2019, 10, 1409–1443. [Google Scholar] [CrossRef]
- Busey, P.; Glibin-Davis, R.M.; Center, B.J. Resistance in Stenotaphrum to the sting nematode. Crop Sci. 1993, 33, 1066–1070. [Google Scholar] [CrossRef]
- Chen, M.; Wang, F.; Zhang, Z.; Fu, J.; Ma, Y. Characterization of fungi resistance in two autotetraploid apple cultivars. Sci. Hortic. 2017, 220, 27–35. [Google Scholar] [CrossRef]
- Švara, A.; Ilnikar, K.; Carpentier, S.; De Storme, N.; De Coninck, B.; Keulemans, W. Polyploidy affects the development of Venturia inaequalis in scab-resistant and -susceptible apple cultivars. Sci. Hortic. 2021, 290, 110436. [Google Scholar] [CrossRef]
- Hjalmarsson, I.; Wallace, B. Gooseberry and currant in Sweden: History and cultivar development. Plant Breed. Rev. 2007, 29, 145–175. [Google Scholar] [CrossRef]
- Mehlferber, E.C.; Song, M.J.; Pelaez, J.N.; Jaenisch, J.; Coate, J.E.; Koskella, B.; Rothfels, C.J. Polyploidy and microbiome associations mediate similar responses to pathogens in Arabidopsis. Curr. Biol. 2022, 32, 2719–2729. [Google Scholar] [CrossRef]
- Abeysinghe, J.K.; Lam, K.M.; Ng, D.W.K. Differential regulation and interaction of homoeologous WRKY 18 and WRKY 40 in Arabidopsis allotetraploids and biotic stress responses. Plant J. 2019, 97, 352–367. [Google Scholar] [CrossRef]
- Roach, J.A.; Verma, S.; Peres, N.A.; Jamieson, A.R.; van de Weg, W.E.; Bink, M.; Bassil, N.; Lee, S.; Whitaker, V.M. FaRXf1: A locus conferring resistance to angular leaf spot caused by Xanthomonas fragariae in octoploid strawberry. Theor. Appl. Genet. 2016, 129, 1191–1201. [Google Scholar] [CrossRef]
- Münzbergová, Z. Ploidy level interacts with population size and habitat conditions to determine the degree of herbivory damage in plant populations. Oikos 2006, 115, 443–452. [Google Scholar] [CrossRef]
- Harms, N.; Shearer, J.; Cronin, J.T.; Gaskin, J.F. Geographic and genetic variation in susceptibility of Butomus umbellatus to foliar fungal pathogens. Biol. Invasion 2021, 22, 535–548. [Google Scholar] [CrossRef]
- Sasnauskas, A.; Stanienė, G.; Gelvonauskiene, D.; Siksnianas, T.; Stanys, V.; Bobinas, C.; Rugienius, R.; Baniulis, D. Morphological traits in Ribes nigrum polyploids. Acta Hortic. 2007, 760, 405–408. [Google Scholar] [CrossRef]
- Madlung, A.; Wendel, J.F. Genetic and epigenetic aspects of polyploid evolution in plants. Cytogenet. Genome Res. 2013, 140, 270–285. [Google Scholar] [CrossRef]
- Richards, C.L.; Alonso, C.; Becker, C.; Bossdorf, O.; Bucher, E.; Colomé-Tatché, M.; Durka, W.; Engelhardt, J.; Gaspar, B.; Gogol-Döring, A.; et al. Ecological plant epigenetics: Evidence from model and non-model species, and the way forward. Ecol. Lett. 2017, 20, 1576–1590. [Google Scholar] [CrossRef]
- Sahu, P.P.; Pandey, G.; Sharma, N.; Puranik, S.; Muthamilarasan, M.; Prasad, M. Epigenetic mechanisms of plant stress responses and adaptation. Plant Cell Rep. 2013, 32, 1151–1159. [Google Scholar] [CrossRef] [PubMed]
- Sha, A.H.; Lin, X.H.; Huang, J.B.; Zhang, D.P. Analysis of DNA methylation related to rice adult plant resistance to bacterial blight based on methylation-sensitive AFLP (MSAP) analysis. Mol. Genet. Genom. 2005, 273, 484–490. [Google Scholar] [CrossRef]
- Schinkel, C.C.F.; Syngelaki, E.; Kirchheimer, B.; Dullinger, S.; Klatt, S.; Hörandl, E. Epigenetic Patterns and Geographical Parthenogenesis in the Alpine Plant Species Ranunculus kuepferi (Ranunculaceae). Int. J. Mol. Sci. 2020, 21, 3318. [Google Scholar] [CrossRef]
- Wang, L.; Cao, S.; Wang, P.; Lu, K.; Song, Q.; Zhao, F.J.; Chen, Z.J. DNA hypomethylation in tetraploid rice potentiates stress-responsive gene expression for salt tolerance. Proc. Natl. Acad. Sci. USA 2021, 118, e2023981118. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Lin, J.; Liu, X.; Chu, W.; Li, J.; Gao, Y.; An, K.; Song, W.; Xin, M.; Yao, Y.; et al. Histone acetyltransferase TaHAG1 acts as a crucial regulator to strengthen salt tolerance of hexaploid wheat. Plant Physiol. 2021, 186, 1951–1969. [Google Scholar] [CrossRef] [PubMed]
Species | Stress | Response | Ploidy Level | References |
---|---|---|---|---|
Abiotic Stresses | ||||
Nicotiana benthamiana L. | Mild drought | Lower H2O2 accumulation and a stronger ability to scavenge ROS; higher activity of SOD, CAT, and APX enzymes; more antioxidant accumulation; low ROS accumulation; slight damage; a higher Pn and a slower decline in Ci compared to allotetraploid | Octaploid (2n = 8× 4) | [110] |
Severe drought | Lower CO2 consumption and higher photosynthetic rate compared to allotetraploid | |||
Arabidopsis thaliana (L.) Heynh. | Drought | Higher survival rates after two weeks of water deprivation; increased tolerance to drought due to a reduced stomatal transpiration rate through controlling the density and closure of stomata compared to diploids | Tetraploid (2n = 4× 2) | [111] |
Malus × domestica Borkh | Significantly higher chlorophyll content index (CCI); higher water potential; higher physiological parameters such as Pn and Tr than in diploid | Tetraploid (2n = 4×) | [112] | |
Citrus × wilsonii Tan. | A significantly smaller decrease in soil moisture content, RWC of roots, and RWC of leaves occurred after 21 days of drought stress; a significantly greater decrease in leaf water potential and electrolyte leakage; lesser declines for Pn, Gs, Fv/Fm, while a greater decline for Tr; higher photosynthetic activities than in diploid | Tetraploid (2n = 4×) | [113] | |
Citrus × limonia Osbeck | After 11 days of drought, significantly lower Gs values and twice the ABA content in the leaves, as well as five times the ABA content in the roots | Tetraploid (2n = 4×) | [31] | |
Lolium perenne L. | Significantly higher values of Pn, Gs, and Tr in the variety Meltador compared to diploid variety Melluck | Tetraploid (2n = 4×) | [114] | |
L. multiflorum Lam. | Significantly higher values of Pn, Gs, and Tr in the variety Melmia compared to diploid variety Meldiva | Tetraploid (2n = 4×) | ||
Festuca pratensis Huds. | Significantly higher values of Pn, Gs, and Tr in the variety Merifest Tp compared to diploid variety Merifest | Tetraploid (2n = 4×) | ||
Acacia senegal (L.) Willd | Plants taller than diploids characterised by wider stomata (54%), lower stomata density (31%), and larger seed length and width (10–12%) | Tetraploid (2n = 4×) | [115] | |
Populus ussuriensis Kom. | Less leaf injury (leaf blade discolouration and small necroses) than in diploids under six days of drought stress; significantly lower relative electrical conductivity (REC) and malondialdehyde (MDA) content in leaves; significantly higher activity of the antioxidant enzymes SOD, POD, and CAT than in diploids | Tetraploid (2n = 4×) | [116] | |
Slight discolouration of the leaf blades after six days drought stress; significantly lower relative electrical conductivity of leaves (REC) and malondialdehyde (MDA) content than in diploids and tetraploids; significantly higher activity of SOD, POD, and CAT than in diploids and tetraploids | Triploid (2n = 3×1) | |||
Chamerion angustifolium (L.) Holub | Lower stomata density, larger stomata size and larger leaves than in diploids; 87% higher hydraulic conductivity (KH) and 81% higher specific hydraulic conductivity (KS); 20% larger mean hydraulic vessel diameter and 26% fewer vessels than in diploid | Tetraploid (2n = 4× = 72) | [22] | |
Citrus triptera x Citrus sinensis (Carrizo citrange CC) | Salt | Chloride uptake and translocation from roots to shoots 1.4-fold higher in diploids than in tetraploids, CO2 assimilation rate 1.5-fold lower; root hydraulic conductance and leaf transpiration rate 58% and 17% lower, respectively, in tetraploids than in diploids; net CO2 assimilation rate 1.5-fold higher than in diploids; much lower leaf damage | Tetraploid (2n = 4×) | [117] |
Triticum aestivum L. | Significantly higher survival rate than the diploid and tetraploid plants (species); stronger root Na+ retention capacity from diploids; higher Gs and Pn than both diploids and tetraploids; much higher chlorophyll and starch contents than in tetraploids | Hexaploid (2n = 6× 3) | [118] | |
Oryza sativa L. | Significantly lower the restriction degree of root length; more significant increase in fresh weight of total roots; increased proline content; marked decrease in soluble sugars and malondialdehyde in roots; a significant decrease in Na+ content compared to diploid | Tetraploid (2n = 4×) | [119] | |
Plumbago auriculata Lam. | Morphology, photosynthetic efficiency, and chloroplast structure modified less than in diploids; significantly higher proline and soluble sugar content than in diploids, while H2O2 and MDA content lower; an increased accumulation of Na+ in stems and leaves and an increased accumulation of Cl− in roots but less K+ loss in roots compared with diploid | Tetraploid (2n = 4×) | [120] | |
Lonicera japonica Thunb. | Much smaller decreases in leaf photosynthetic rate and carboxylation efficiency, no significant changes in Fv/Fm; normal coordination between PSII and PSI; higher leaf photosynthetic activity than in diploids | Tetraploid (2n = 4×) | [121] | |
Greater stability of the photosynthetic apparatus; greater root Na+ exclusion; lower reduction in leaf relative water content; increased accumulation of chlorogenic acid and phenolics in leaves; elevated leaf phenylalanine ammonia-lyase activity and transcription; better maintenance of homeostasis in the leaves than in diploids | Tetraploid (2n = 4×) | [122] | ||
Robinia pseudoacacia L. | Greater H2O2 accumulation and higher levels of important antioxidants (SOD, APX, GST, GR, DHAR, MDHAR) compared with diploids; significantly higher Pn, Gs, Ci | Tetraploid (2n = 4×) | [123] | |
Poncirus trifoliata (L.) Raf. | Lower level of MDA in leaves and roots; significantly higher proline accumulation in the roots than in diploids | Tetraploid (2n = 4×) | [124] | |
Citrus reshni Hort. ex Tan |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koziara-Ciupa, M.; Trojak-Goluch, A. The Effect of Polyploidisation on the Physiological Parameters, Biochemical Profile, and Tolerance to Abiotic and Biotic Stresses of Plants. Agronomy 2025, 15, 1918. https://doi.org/10.3390/agronomy15081918
Koziara-Ciupa M, Trojak-Goluch A. The Effect of Polyploidisation on the Physiological Parameters, Biochemical Profile, and Tolerance to Abiotic and Biotic Stresses of Plants. Agronomy. 2025; 15(8):1918. https://doi.org/10.3390/agronomy15081918
Chicago/Turabian StyleKoziara-Ciupa, Marta, and Anna Trojak-Goluch. 2025. "The Effect of Polyploidisation on the Physiological Parameters, Biochemical Profile, and Tolerance to Abiotic and Biotic Stresses of Plants" Agronomy 15, no. 8: 1918. https://doi.org/10.3390/agronomy15081918
APA StyleKoziara-Ciupa, M., & Trojak-Goluch, A. (2025). The Effect of Polyploidisation on the Physiological Parameters, Biochemical Profile, and Tolerance to Abiotic and Biotic Stresses of Plants. Agronomy, 15(8), 1918. https://doi.org/10.3390/agronomy15081918