Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = whitebark pine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 5021 KB  
Article
Leaf Essential Oil Compositions and Enantiomeric Distributions of Monoterpenoids in Pinus Species: Pinus albicaulis, Pinus flexilis, Pinus lambertiana, Pinus monticola, and Pinus sabiniana
by Alicia Moore, Elizabeth Ankney, Kathy Swor, Ambika Poudel, Prabodh Satyal and William N. Setzer
Molecules 2025, 30(2), 244; https://doi.org/10.3390/molecules30020244 - 9 Jan 2025
Cited by 4 | Viewed by 1481
Abstract
Members of the Pinus genus are well known for their medicinal properties, which can be attributed to their essential oils. In this work, we have examined the leaf essential oils of five understudied Pinus species collected from various locations in western North America. [...] Read more.
Members of the Pinus genus are well known for their medicinal properties, which can be attributed to their essential oils. In this work, we have examined the leaf essential oils of five understudied Pinus species collected from various locations in western North America. The essential oils were obtained by hydrodistillation and analyzed by gas chromatographic methods, including enantioselective gas chromatography. Pinus albicaulis was dominated by (+)-δ-3-carene; Pinus flexilis was dominated by α-pinene (mostly (+)-α-pinene) and (−)-β-pinene; Pinus lambertiana was dominated by (−)-β-pinene; Pinus monticola was dominated by (−)-β-pinene, (+)-δ-3-carene, and (−)-α-pinene; and Pinus sabiniana was rich in (−)-α-pinene and limonene. While this work adds to our knowledge of Pinus essential oils, additional research is needed to more fully appreciate the geographic and altitudinal variations in the volatile compositions of these Pinus species. Full article
(This article belongs to the Special Issue Chemical Analyses and Applications of Essential Oils)
Show Figures

Figure 1

18 pages, 1072 KB  
Article
Using Paleoecological Methods to Study Long-Term Disturbance Patterns in High-Elevation Whitebark Pine Ecosystems
by Jordin Hartley, Jennifer Watt and Andrea Brunelle
Fire 2024, 7(11), 411; https://doi.org/10.3390/fire7110411 - 12 Nov 2024
Cited by 1 | Viewed by 1486
Abstract
Pinus albicaulis (whitebark pine) is a keystone species, providing food and habitat to wildlife, in high-elevation ecological communities. In recent years, this important species has been negatively impacted by changes in fire regimes, increased Dendroctonus ponderosae (mountain pine beetle) outbreaks associated with human [...] Read more.
Pinus albicaulis (whitebark pine) is a keystone species, providing food and habitat to wildlife, in high-elevation ecological communities. In recent years, this important species has been negatively impacted by changes in fire regimes, increased Dendroctonus ponderosae (mountain pine beetle) outbreaks associated with human landscape and climate modification, and the continued impact of the non-native Cronartium ribicola (white pine blister rust). This research investigates changes in fire occurrence, the establishment of Pinus albicaulis, and fuel availability at a high-elevation site in the Sawtooth National Recreation Area, Idaho, USA. Charcoal and pollen analyses were used to reconstruct fire and vegetation patterns for Phyllis Lake, Idaho, USA, over the past ~8200 cal y BP. We found that significant fire episodes occurred when the pollen accumulation rates (PARs) indicated more arboreal fuel availability, and we identified that Pinus albicaulis became well established at the site ~7200 cal y BP. The high-elevation nature of Phyllis Lake (2800 m) makes this record unique, as there are not many paleorecords at this high elevation from the Northern Rocky Mountains, USA. Additional high-elevation sites in Pinus albicaulis habitats will provide critical insight into the long-term dynamics of this threatened species. Full article
(This article belongs to the Special Issue Effects of Fires on Forest Ecosystems)
Show Figures

Figure 1

21 pages, 4693 KB  
Article
Study of the Genetic Mechanisms of Siberian Stone Pine (Pinus sibirica Du Tour) Adaptation to the Climatic and Pest Outbreak Stresses Using Dendrogenomic Approach
by Serafima V. Novikova, Natalia V. Oreshkova, Vadim V. Sharov, Dmitry A. Kuzmin, Denis A. Demidko, Elvina M. Bisirova, Dina F. Zhirnova, Liliana V. Belokopytova, Elena A. Babushkina and Konstantin V. Krutovsky
Int. J. Mol. Sci. 2024, 25(21), 11767; https://doi.org/10.3390/ijms252111767 - 1 Nov 2024
Cited by 2 | Viewed by 2142
Abstract
A joint analysis of dendrochronological and genomic data was performed to identify genetic mechanisms of adaptation and assess the adaptive genetic potential of Siberian stone pine (Pinus sibirica Du Tour) populations. The data obtained are necessary for predicting the effect of climate [...] Read more.
A joint analysis of dendrochronological and genomic data was performed to identify genetic mechanisms of adaptation and assess the adaptive genetic potential of Siberian stone pine (Pinus sibirica Du Tour) populations. The data obtained are necessary for predicting the effect of climate change and mitigating its negative consequences. Presented are the results of an association analysis of the variation of 84,853 genetic markers (single nucleotide polymorphisms—SNPs) obtained by double digest restriction-site associated DNA sequencing (ddRADseq) and 110 individual phenotypic traits, including dendrophenotypes based on the dynamics of tree-ring widths (TRWs) of 234 individual trees in six natural populations of Siberian stone pine, which have a history of extreme climatic stresses (e.g., droughts) and outbreaks of defoliators (e.g., pine sawfly [Neodiprion sertifer Geoff.]). The genetic structure of studied populations was relatively weak; samples are poorly differentiated and belong to genetically similar populations. Genotype–dendrophenotype associations were analyzed using three different approaches and corresponding models: General Linear Model (GLM), Bayesian Sparse Linear Mixed Model (BSLMM), and Bayesian-information and Linkage-disequilibrium Iteratively Nested Keyway (BLINK), respectively. Thirty SNPs were detected by at least two different approaches, and two SNPs by all three. In addition, three SNPs associated with mean values of recovery dendrophenotype (Rc) averaged across multiple years of climatic stresses were also found by all three methods. The sequences containing these SNPs were annotated using genome annotation of a very closely related species, whitebark pine (P. albicaulis Engelm.). We found that most of the SNPs with supposedly adaptive variation were located in intergenic regions. Three dendrophenotype-associated SNPs were located within the 10 Kbp regions and one in the intron of the genes encoding proteins that play a crucial role in ensuring the integrity of the plant’s genetic information, particularly under environmental stress conditions that can induce DNA damage. In addition, we found a correlation of individual heterozygosity with some dendrophenotypes. Heterosis was observed in most of these statistically significant cases; signs of homeostasis were also detected. Although most of the identified SNPs were not assigned to a particular gene, their high polymorphism and association with adaptive traits likely indicate high adaptive potential that can facilitate adaptation of Siberian stone pine populations to the climatic stresses and climate change. Full article
(This article belongs to the Special Issue Genomic Perspective on Forest Genetics and Phytopathobiomes)
Show Figures

Figure 1

20 pages, 4526 KB  
Article
Transcriptional Profiling of Early Defense Response to White Pine Blister Rust Infection in Pinus albicaulis (Whitebark Pine)
by Laura Figueroa-Corona, Kailey Baesen, Akriti Bhattarai, Angelia Kegley, Richard A. Sniezko, Jill Wegrzyn and Amanda R. De La Torre
Genes 2024, 15(5), 602; https://doi.org/10.3390/genes15050602 - 9 May 2024
Viewed by 2378
Abstract
Pathogen perception generates the activation of signal transduction cascades to host defense. White pine blister rust (WPBR) is caused by Cronartium ribicola J.C. Fisch and affects a number of species of Pinus. One of the most severely affected species is Pinus albicaulis [...] Read more.
Pathogen perception generates the activation of signal transduction cascades to host defense. White pine blister rust (WPBR) is caused by Cronartium ribicola J.C. Fisch and affects a number of species of Pinus. One of the most severely affected species is Pinus albicaulis Engelm (whitebark pine). WPBR resistance in the species is a polygenic and complex trait that requires an optimized immune response. We identified early responses in 2-year-old seedlings after four days of fungal inoculation and compared the underlying transcriptomic response with that of healthy non-inoculated individuals. A de novo transcriptome assembly was constructed with 56,796 high quality-annotations derived from the needles of susceptible and resistant individuals in a resistant half-sib family. Differential expression analysis identified 599 differentially expressed transcripts, from which 375 were upregulated and 224 were downregulated in the inoculated seedlings. These included components of the initial phase of active responses to abiotic factors and stress regulators, such as those involved in the first steps of flavonoid biosynthesis. Four days after the inoculation, infected individuals showed an overexpression of chitinases, reactive oxygen species (ROS) regulation signaling, and flavonoid intermediates. Our research sheds light on the first stage of infection and emergence of disease symptoms among whitebark pine seedlings. RNA sequencing (RNA-seq) data encoding hypersensitive response, cell wall modification, oxidative regulation signaling, programmed cell death, and plant innate immunity were differentially expressed during the defense response against C. ribicola. Full article
(This article belongs to the Section Genes & Environments)
Show Figures

Figure 1

18 pages, 12175 KB  
Article
Climate Change-Driven Cumulative Mountain Pine Beetle-Caused Whitebark Pine Mortality in the Greater Yellowstone Ecosystem
by William W. Macfarlane, Brian Howell, Jesse A. Logan, Ally L. Smith, Cashe C. Rasmussen and Robert E. Spangler
Forests 2023, 14(12), 2361; https://doi.org/10.3390/f14122361 - 30 Nov 2023
Cited by 2 | Viewed by 2831
Abstract
An aerial survey method called the Landscape Assessment System (LAS) was used to assess mountain pine beetle (Dendroctonus ponderosae)-caused mortality of whitebark pine (Pinus albicaulis) across the Greater Yellowstone Ecosystem (59,000 km2; GYE). This consisted of 11,942 [...] Read more.
An aerial survey method called the Landscape Assessment System (LAS) was used to assess mountain pine beetle (Dendroctonus ponderosae)-caused mortality of whitebark pine (Pinus albicaulis) across the Greater Yellowstone Ecosystem (59,000 km2; GYE). This consisted of 11,942 km of flightlines, along which 4434 geo-tagged, oblique aerial photos were captured and processed. A mortality rating of none to severe (0–4.0 recent attack or 5.0–5.4 old attack) was assigned to each photo based on the amount of red (recent attack) and gray (old attack) trees visible. The method produced a photo inventory of 74 percent of the GYE whitebark pine distribution. For the remaining 26 percent of the distribution, mortality levels were estimated based on an interpolated mortality surface. Catchment-level results combining the photo-inventoried and interpolated mortality indicated that 44 percent of the GYE whitebark pine distribution showed severe old attack mortality (5.3–5.4 rating), 37 percent showed moderate old attack mortality (5.2–5.29 rating), 19 percent showed low old attack mortality (5.1–5.19 rating) and less than 1 percent showed trace levels of old attack mortality (5.0–5.09). No catchments were classified as recent attacks indicating that the outbreak of the early 2000’s has ended. However, mortality continues to occur as chronic sub-outbreak-level mortality. Ground verification using field plots indicates that higher LAS mortality values are moderately correlated with a higher percentage of mortality on the ground. Full article
Show Figures

Figure 1

18 pages, 2391 KB  
Article
First Report of Fungal Endophyte Communities and Non-Defensive Phytochemistry of Biocontrol-Inoculated Whitebark Pine Seedlings in a Restoration Planting
by Ehren R. V. Moler, Keith Reinhardt, Richard A. Sniezko and Ken Aho
Forests 2022, 13(6), 824; https://doi.org/10.3390/f13060824 - 25 May 2022
Cited by 2 | Viewed by 2800
Abstract
Plant endosymbionts (endophytes) influence host plant health and express genotype-dependent ecological relationships with plant hosts. A fungal species intended to confer host plant resistance to a forest pathogen was used as inoculum to test for effects of inoculation on disease resistance, microbiomes, and [...] Read more.
Plant endosymbionts (endophytes) influence host plant health and express genotype-dependent ecological relationships with plant hosts. A fungal species intended to confer host plant resistance to a forest pathogen was used as inoculum to test for effects of inoculation on disease resistance, microbiomes, and phytochemistry of a threatened pine species planted in a restoration setting. Correlations of inoculation presence/absence, phytochemistry, spatial location of seedlings, maternal seed sources, and fungal endophytic communities in the foliage of six-year-old whitebark pine (Pinus albicaulis) seedlings were assessed five years after an experimental inoculation of seedlings with foliar endophytic fungi cultured from whitebark pine trees at Crater Lake National Park, including Paramyrothecium roridum. We hypothesized that P. roridum would modify host microbiomes in a manner that combats white pine blister rust disease. Our assessment of seedlings in the field five years after inoculation allowed us to consider whether inoculation stimulated long-lasting changes in microbiome communities and whether effects varied by seedling genetic family. Tests for effects of endophyte inoculation on disease resistance were inconclusive due to current low levels of rust infection observed at the field site. Foliar fungal endophyte richness and Shannon diversity varied with maternal seed sources. Isotopic stoichiometry and phytochemistry did not vary with seedling spatial proximity, inoculation treatment, or maternal seed family. However, endophyte community composition varied with both seedling spatial proximity and maternal seed sources. Endophytic communities did not vary with the inoculation treatment, and the hypothesized biocontrol was not detected in inoculated seedlings. We draw three conclusions from this work: (1) fungal microbiomes of whitebark pine seedlings across our study site did not vary with host phytochemical signatures of ecophysiological status, (2) the inoculation of P. albicaulis seedlings with a mixture of fungal endophytes did not lead to persistent systemic changes in seedling foliar microbiomes, and (3) in correspondence with other studies, our data suggest that maternal seed source and spatial patterns influence fungal endophyte community composition. Full article
Show Figures

Figure 1

14 pages, 2158 KB  
Article
Harvest Retention Survivorship of Endangered Whitebark Pine Trees
by Michael P. Murray, Jenny Berg and David J. Huggard
Forests 2021, 12(6), 654; https://doi.org/10.3390/f12060654 - 21 May 2021
Cited by 2 | Viewed by 2968
Abstract
Whitebark pine (Pinus albicaulis Engelm.) is a widely distributed high-elevation species in western North America that is threatened primarily by an introduced disease and other disturbances. In British Columbia, this tree is a component of harvested forests, yet knowledge of post-harvest survivorship [...] Read more.
Whitebark pine (Pinus albicaulis Engelm.) is a widely distributed high-elevation species in western North America that is threatened primarily by an introduced disease and other disturbances. In British Columbia, this tree is a component of harvested forests, yet knowledge of post-harvest survivorship and factors that promote successful retention is lacking. Our objectives are to describe the temporal attrition of retained mature whitebark pine trees and to identify factors that likely influence survivorship during the critical initial post-harvest period. We assessed five separate harvest units in southeastern British Columbia. Dendrochronological investigation revealed that retained trees experienced high annual mortality rates (3–16%) across harvest sites during the initial five-year post-harvest period. By eight years post-harvest, retention survivorship ranged from 17–80%. After eight years post-harvest, mortality rates drastically declined. The preponderance of fallen stems oriented towards the northeast suggests that storm system events arriving from the Pacific Ocean are the most significant drivers of blowdown. We estimate that survivorship is positively associated with shorter tree heights and longer crown lengths, a lack of disease cankers, a greater presence of rodent wounding, and higher numbers of surrounding retained trees. We found little effect based on slope and aspect. As these trees are an endangered species, harvest operations should be practiced cautiously in associated forests. We recommend carefully selecting retention trees, ensuring an adequate number of neighbor trees, and orienting retention patches to avoid predominant storm wind directions. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

19 pages, 3776 KB  
Article
Biophysical Gradients and Performance of Whitebark Pine Plantings in the Greater Yellowstone Ecosystem
by David Laufenberg, David Thoma, Andrew Hansen and Jia Hu
Forests 2020, 11(1), 119; https://doi.org/10.3390/f11010119 - 19 Jan 2020
Cited by 4 | Viewed by 4293
Abstract
Research Highlights: The efficacy of planting for restoration is important for ecosystem managers. Planting efforts represent an opportunity for conserving and managing species during a population crisis. Background and Objectives: Federal agencies have been planting whitebark pine (WBP), an important subalpine species that [...] Read more.
Research Highlights: The efficacy of planting for restoration is important for ecosystem managers. Planting efforts represent an opportunity for conserving and managing species during a population crisis. Background and Objectives: Federal agencies have been planting whitebark pine (WBP), an important subalpine species that is late to mature and long-lived, for three decades in the Greater Yellowstone Ecosystem (GYE). These efforts have been met with varying success, and they have not been evaluated beyond the first five years post-planting. Ecosystem managers will continue to plant WBP in the GYE for years to come, and this research helps to inform and identify higher quality habitat during a period of changing climate and high GYE WBP mortality rates. Materials and Methods: We use a combination of field sampling and a water balance model to investigate local biophysical gradients as explanatory variables for WBP performance at twenty-nine GYE planting sites. Results: We found that the WBP growth rate was positively correlated with actual evapotranspiration (AET) and was greatest when cumulative growing season AET was above 350 mm. Growth rate was not strongly affected by competition at the levels found in this study. However, site density change over time was negatively affected by mean growing season temperature and when more than five competitors were present within 3.59 m radius. Conclusions: If they make it to maturity, trees that are planted this season will not begin to produce cones until the latter half of this century. We recommend planting efforts that optimize AET for growth rate objectives, minimize water deficit (WD) that cause stress and mortality, and removing competitors if they exceed five within a short distance of seedlings. Full article
(This article belongs to the Special Issue Ecology and Restoration of Whitebark Pine)
Show Figures

Figure 1

11 pages, 4379 KB  
Article
An Economical Approach to Distinguish Genetically Needles of Limber from Whitebark Pine
by Franklin Alongi, Andrew J. Hansen, David Laufenberg, Robert E. Keane, Kristin Legg and Matt Lavin
Forests 2019, 10(12), 1060; https://doi.org/10.3390/f10121060 - 22 Nov 2019
Cited by 4 | Viewed by 4654
Abstract
Whitebark pine is difficult to distinguish from limber pine when seed cones are not present. This is often the case because of young stand age, growth at environmental extremes, or harvesting by vertebrate species. Developing an economical genetic identification tool that distinguishes non-cone-bearing [...] Read more.
Whitebark pine is difficult to distinguish from limber pine when seed cones are not present. This is often the case because of young stand age, growth at environmental extremes, or harvesting by vertebrate species. Developing an economical genetic identification tool that distinguishes non-cone-bearing limber from whitebark pine, therefore, could aid many kinds of research on these species. Phylogenetic studies involving limber and whitebark pine suggest that chloroplast DNA sequences differ between these species. We therefore wanted to identify chloroplast loci that could differentiate limber from whitebark pine trees by taking an economical approach involving restriction-site analysis. We generated chloroplast DNA barcode sequences sampled from limber and whitebark pine trees that we identified using attached seed cones. We searched for nucleotide differences associated with restriction endonuclease recognition sites. Our analyses revealed that matK and the psbA-trnH spacer each readily amplified and harbored multiple DNA-sequence differences between limber and whitebark pine. The matK coding sequence of whitebark pine has a BsmAI restriction site not found in limber pine. The psbA-trnH spacer of limber pine has two PsiI restriction sites, neither of which is found in whitebark pine. DNA-sequence and restriction-site analysis of the psbA-trnH spacer from 111 trees showed complete congruence between visually and genetically identified limber (n = 68) and whitebark (n = 43) pine trees. We conclude that restriction site analysis of the chloroplast psbA-trnH spacer and matK involves both minimal technical expertize and research funds. These findings should be of value to foresters interested in species identification and distribution modeling, as well as the analysis of fossil pine pollen, given that gymnosperms transmit chloroplast DNA paternally. Full article
(This article belongs to the Special Issue Ecology and Restoration of Whitebark Pine)
Show Figures

Figure 1

22 pages, 2815 KB  
Article
Whitebark Pine in Crater Lake and Lassen Volcanic National Parks: Assessment of Stand Structure and Condition in a Management and Conservation Perspective
by Jenell I. Jackson, Sean B. Smith, Jonathan C.B. Nesmith, Leigh Ann Starcevich, Jennifer S. Hooke, Steve Buckley and Erik S. Jules
Forests 2019, 10(10), 834; https://doi.org/10.3390/f10100834 - 21 Sep 2019
Cited by 6 | Viewed by 4584
Abstract
Whitebark pine (Pinus albicaulis. Engelm.) is vulnerable to a number of threats including an introduced pathogen (Cronartium ribicola J.C. Fisch.), epidemic levels of native mountain pine beetle (Dendroctonus ponderosae Hopkins), fire suppression, and climate change. To describe the structure of [...] Read more.
Whitebark pine (Pinus albicaulis. Engelm.) is vulnerable to a number of threats including an introduced pathogen (Cronartium ribicola J.C. Fisch.), epidemic levels of native mountain pine beetle (Dendroctonus ponderosae Hopkins), fire suppression, and climate change. To describe the structure of whitebark pine populations in two national parks in the southern Cascades (Crater Lake, Oregon, USA (CRLA) and Lassen Volcanic, California, USA (LAVO) National Parks), we surveyed trees in 30 × 50 × 50 m plots in both parks. We used these plots to describe the extent of white pine blister rust (the disease caused by Cronartium ribicola), mountain pine beetle occurrence, and to elucidate factors influencing the presence of pests and pathogens, cone production, and canopy kill. In each plot, we recorded data related to tree health, including symptoms of blister rust and mountain pine beetle, and reproductive vigor (cone production). In both parks, encroachment from other species, particularly mountain hemlock (Tsuga mertensiana (Bong.) Carrière), was negatively associated with cone production. In CRLA, water stress was a good predictor of blister rust infection and cone production. For CRLA and LAVO, the presence of mountain pine beetle and blister rust was associated with higher canopy kill for whitebark pine. Lastly, we found evidence for a pest-pathogen interaction, mountain pine beetle attack was greater for trees that showed symptoms of blister rust infection in CRLA. Our results indicate that whitebark pine populations in the southern Cascade Range are experiencing moderate levels of blister rust infection compared with other sites across the species range, and that competition from shade-tolerant species may result in an additional threat to whitebark pine in both parks. We present our findings in the context of park management and situate them in range-wide and regional conservation strategies aimed at the protection and restoration of a declining species. Full article
(This article belongs to the Special Issue Ecology and Restoration of Whitebark Pine)
Show Figures

Figure 1

17 pages, 2525 KB  
Article
Survival of Whitebark Pine Seedlings Grown from Direct Seeding: Implications for Regeneration and Restoration under Climate Change
by Elizabeth R. Pansing and Diana F. Tomback
Forests 2019, 10(8), 677; https://doi.org/10.3390/f10080677 - 11 Aug 2019
Cited by 13 | Viewed by 4905
Abstract
Whitebark pine populations are declining nearly range-wide, primarily from the exotic fungal pathogen that causes white pine blister rust (WPBR). Climate change is expected to exacerbate these declines by decreasing climatically suitable areas. Planting WPBR-resistant seedlings is a key restoration action, but it [...] Read more.
Whitebark pine populations are declining nearly range-wide, primarily from the exotic fungal pathogen that causes white pine blister rust (WPBR). Climate change is expected to exacerbate these declines by decreasing climatically suitable areas. Planting WPBR-resistant seedlings is a key restoration action, but it is costly, time consuming, and labor intensive. Direct seeding—sowing seeds rather than planting seedlings—may reduce costs and open remote areas to restoration; however, its efficacy remains largely unexplored. In this case study, we estimated the annual survival rates (ASR) of seedlings grown from directly sown seeds, and the effect of elevation zone and microsite type on survival. For five years we monitored 184 caches containing one or more seedlings within one study area in the Greater Yellowstone Ecosystem. Seed caches were originally stratified between subalpine forest and treeline and among three microsite types defined by a nurse object: Rocks, trees, and no object. To estimate ASR, we selected the most parsimonious model of a set using AICc. ASR was best described by elevation zone and year and ranged from 0.571 to 0.992. The odds of seedling survival were 2.62 times higher at treeline than in subalpine forest and were 4.6 to 36.2 times higher in 2016–2018 than 2014. We estimated the probability that a whitebark pine seed cache would contain one or more living seedlings six years after sowing to be 0.175 and 0.0584 for treeline and subalpine caches, respectively. We estimated that 1410 and 4229 caches ha−1 would need to be sown at treeline and in subalpine forest, respectively, to attain target restoration densities of 247 established trees ha−1. Our findings, although based on one study area, suggest that climate change may be increasing treeline regeneration, and that direct seeding may be a viable restoration option and climate change mitigation tool for whitebark pine. Full article
(This article belongs to the Special Issue Ecology and Restoration of Whitebark Pine)
Show Figures

Figure 1

16 pages, 2907 KB  
Article
Climatic Correlates of White Pine Blister Rust Infection in Whitebark Pine in the Greater Yellowstone Ecosystem
by David P. Thoma, Erin K. Shanahan and Kathryn M. Irvine
Forests 2019, 10(8), 666; https://doi.org/10.3390/f10080666 - 7 Aug 2019
Cited by 18 | Viewed by 6357
Abstract
Whitebark pine, a foundation species at tree line in the Western U.S. and Canada, has declined due to native mountain pine beetle epidemics, wildfire, and white pine blister rust. These declines are concerning for the multitude of ecosystem and human benefits provided by [...] Read more.
Whitebark pine, a foundation species at tree line in the Western U.S. and Canada, has declined due to native mountain pine beetle epidemics, wildfire, and white pine blister rust. These declines are concerning for the multitude of ecosystem and human benefits provided by this species. An understanding of the climatic correlates associated with spread is needed to successfully manage impacts from forest pathogens. Since 2000 mountain pine beetles have killed 75% of the mature cone-bearing trees in the Greater Yellowstone Ecosystem, and 40.9% of monitored trees have been infected with white pine blister rust. We identified models of white pine blister rust infection which indicated that an August and September interaction between relative humidity and temperature are better predictors of white pine blister rust infection in whitebark pine than location and site characteristics in the Greater Yellowstone Ecosystem. The climate conditions conducive to white pine blister rust occur throughout the ecosystem, but larger trees in relatively warm and humid conditions were more likely to be infected between 2000 and 2018. We mapped the infection probability over the past two decades to identify coarse-scale patterns of climate conditions associated with white pine blister rust infection in whitebark pine. Full article
(This article belongs to the Special Issue Ecology and Restoration of Whitebark Pine)
Show Figures

Graphical abstract

20 pages, 7226 KB  
Article
Whitebark Pine Recruitment in Sierra Nevada Driven by Range Position and Disturbance History
by Michèle R. Slaton, Martin MacKenzie, Tanya Kohler and Carlos M. Ramirez
Forests 2019, 10(5), 455; https://doi.org/10.3390/f10050455 - 25 May 2019
Cited by 9 | Viewed by 4010
Abstract
Effective restoration of whitebark pine populations will require a solid understanding of factors affecting seedling recruitment success, which may vary by site and biogeographic region. We examined the relationship between whitebark pine seedling recruitment, disturbance history, and range position in three independent studies [...] Read more.
Effective restoration of whitebark pine populations will require a solid understanding of factors affecting seedling recruitment success, which may vary by site and biogeographic region. We examined the relationship between whitebark pine seedling recruitment, disturbance history, and range position in three independent studies in the southern Sierra Nevada, California (CA), USA. In 66 plots broadly distributed across watersheds, we found that whitebark pine seedling density and proportion were greatest at upper elevations, and where canopy cover of whitebark pine was higher (density ranged 0–383 seedlings/ha; x ¯ = 4, σX = 1). Seedling density and proportion were also greater in plots that had recently experienced loss of canopy cover from insects, avalanche, windthrow, or other disturbance effects. In a second study conducted in popular recreational areas, including campgrounds and trailheads, the response of whitebark pine recruitment to disturbance was strongly dependent on the relative position of stands within the range, or proximity to other forest types. Both studies indicated that low to moderate levels of disturbance enhanced whitebark pine recruitment, especially at its range edge, a finding consistent with the early seral status of whitebark observed in previous studies conducted elsewhere in North America. In our third study, a case study at the June Mt. Ski Area, we demonstrate the potential for a downward shift in the whitebark-lodgepole pine ecotone as a result of insect-caused disturbance. Full article
(This article belongs to the Special Issue Ecology and Restoration of Whitebark Pine)
Show Figures

Figure 1

24 pages, 4183 KB  
Article
Whitebark and Foxtail Pine in Yosemite, Sequoia, and Kings Canyon National Parks: Initial Assessment of Stand Structure and Condition
by Jonathan C.B. Nesmith, Micah Wright, Erik S. Jules and Shawn T. McKinney
Forests 2019, 10(1), 35; https://doi.org/10.3390/f10010035 - 7 Jan 2019
Cited by 19 | Viewed by 7267
Abstract
The Inventory & Monitoring Division of the U.S. National Park Service conducts long-term monitoring to provide park managers information on the status and trends in biological and environmental attributes including white pines. White pines are foundational species in many subalpine ecosystems and are [...] Read more.
The Inventory & Monitoring Division of the U.S. National Park Service conducts long-term monitoring to provide park managers information on the status and trends in biological and environmental attributes including white pines. White pines are foundational species in many subalpine ecosystems and are currently experiencing population declines. Here we present results on the status of whitebark and foxtail pine in the southern Sierra Nevada of California, an area understudied relative to other parts of their ranges. We selected random plot locations in Yosemite, Sequoia, and Kings Canyon national parks using an equal probability spatially-balanced approach. Tree- and plot-level data were collected on forest structure, composition, demography, cone production, crown mortality, and incidence of white pine blister rust and mountain pine beetle. We measured 7899 whitebark pine, 1112 foxtail pine, and 6085 other trees from 2012–2017. All factors for both species were spatially highly variable. Whitebark pine occurred in nearly-pure krummholz stands at or near treeline and as a minor component of mixed species forests. Ovulate cones were observed on 25% of whitebark pine and 69% of foxtail pine. Whitebark pine seedlings were recorded in 58% of plots, and foxtail pine seedlings in only 21% of plots. Crown mortality (8% in whitebark, 6% in foxtail) was low and significantly higher in 2017 compared to previous years. Less than 1% of whitebark and zero foxtail pine were infected with white pine blister rust and <1% of whitebark and foxtail pine displayed symptoms of mountain pine beetle attack. High elevation white pines in the southern Sierra Nevada are healthy compared to other portions of their range where population declines are significant and well documented. However, increasing white pine blister rust and mountain pine beetle occurrence, coupled with climate change projections, portend future declines for these species, underscoring the need for broad-scale collaborative monitoring. Full article
(This article belongs to the Special Issue Ecology and Restoration of Whitebark Pine)
Show Figures

Figure 1

35 pages, 6389 KB  
Article
Landscape Topoedaphic Features Create Refugia from Drought and Insect Disturbance in a Lodgepole and Whitebark Pine Forest
by Jennifer Cartwright
Forests 2018, 9(11), 715; https://doi.org/10.3390/f9110715 - 18 Nov 2018
Cited by 15 | Viewed by 6317
Abstract
Droughts and insect outbreaks are primary disturbance processes linking climate change to tree mortality in western North America. Refugia from these disturbances—locations where impacts are less severe relative to the surrounding landscape—may be priorities for conservation, restoration, and monitoring. In this study, hypotheses [...] Read more.
Droughts and insect outbreaks are primary disturbance processes linking climate change to tree mortality in western North America. Refugia from these disturbances—locations where impacts are less severe relative to the surrounding landscape—may be priorities for conservation, restoration, and monitoring. In this study, hypotheses concerning physical and biological processes supporting refugia were investigated by modelling the landscape controls on disturbance refugia that were identified using remotely sensed vegetation indicators. Refugia were identified at 30-m resolution using anomalies of Landsat-derived Normalized Difference Moisture Index in lodgepole and whitebark pine forests in southern Oregon, USA, in 2001 (a single-year drought with no insect outbreak) and 2009 (during a multi-year drought and severe outbreak of mountain pine beetle). Landscape controls on refugia (topographic, soil, and forest characteristics) were modeled using boosted regression trees. Landscape characteristics better explained and predicted refugia locations in 2009, when forest impacts were greater, than in 2001. Refugia in lodgepole and whitebark pine forests were generally associated with topographically shaded slopes, convergent environments such as valleys, areas of relatively low soil bulk density, and in thinner forest stands. In whitebark pine forest, refugia were associated with riparian areas along headwater streams. Spatial patterns in evapotranspiration, snowmelt dynamics, soil water storage, and drought-tolerance and insect-resistance abilities may help create refugia from drought and mountain pine beetle. Identification of the landscape characteristics supporting refugia can help forest managers target conservation resources in an era of climate-change exacerbation of droughts and insect outbreaks. Full article
(This article belongs to the Special Issue Ecology and Restoration of Whitebark Pine)
Show Figures

Figure 1

Back to TopTop