Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (296)

Search Parameters:
Keywords = white possessive

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 3977 KiB  
Article
Exploring the Cytokinin Profile of Doliocarpus dentatus (Aubl.) Standl. From Guyana and Its Relationship with Secondary Metabolites: Insights into Potential Therapeutic Benefits
by Ewart A. Smith, Ainsely Lewis, Erin N. Morrison, Kimberly Molina-Bean, Suresh S. Narine and R. J. Neil Emery
Metabolites 2025, 15(8), 533; https://doi.org/10.3390/metabo15080533 - 6 Aug 2025
Abstract
Background/Objectives: Possessing red and white ecotypes, and utilized in traditional Guyanese medicine, Doliocarpus dentatus’ red ecotype is preferred locally for its purported superior therapeutic efficacy. Although therapeutic metabolites were detected in D. dentatus previously, phytohormones remain largely unexplored, until now. Cytokinins, [...] Read more.
Background/Objectives: Possessing red and white ecotypes, and utilized in traditional Guyanese medicine, Doliocarpus dentatus’ red ecotype is preferred locally for its purported superior therapeutic efficacy. Although therapeutic metabolites were detected in D. dentatus previously, phytohormones remain largely unexplored, until now. Cytokinins, phytohormones responsible for plant cell division, growth and differentiation, are gaining traction for their therapeutic potential in human health. This study screened and quantified endogenous cytokinins and correlated detected cytokinins with selected secondary metabolites. Methods: Liquid chromatography–mass spectrometry was used to acquire phytohormone and metabolite data. Bioinformatics tools were used to assess untargeted metabolomics datasets via statistical and pathway analyses, and chemical groupings of putative metabolites. Results: In total, 20 of the 35 phytohormones were detected and quantified in both ecotypes, with the red ecotype displaying higher free base and glucoside cytokinin concentrations and exhibited 6.2 times the total CK content when compared to the white ecotype. Pathway analysis revealed flavonoid and monoterpenoid biosynthesis in red and white ecotypes, respectively. Positive correlations between specific cytokinins and alkaloids, and between trans-Zeatin and isopentenyladenosine riboside with phenolic compounds were observed. Conclusions: These results suggest that the red ecotype’s elevated cytokinin levels coupled with flavonoid biosynthesis enrichment support its preference in Guyanese traditional medicine. Full article
(This article belongs to the Section Plant Metabolism)
Show Figures

Figure 1

17 pages, 1710 KiB  
Article
Physiological, Genetic, and Fermentative Traits of Oenococcus oeni Isolates from Spontaneous Malolactic Fermentation in Koshu Wine
by Misa Otoguro, Sayaka Inui, Taichi Aoyanagi, Ayana Misawa, Hiromi Nakano, Yoshimi Shimazu and Shigekazu Misawa
Fermentation 2025, 11(8), 440; https://doi.org/10.3390/fermentation11080440 - 31 Jul 2025
Viewed by 280
Abstract
Koshu wine, produced from the indigenous Japanese grape Vitis vinifera L. cv. Koshu exhibits a lower pH than other white wines, hindering malolactic fermentation (MLF) by lactic acid bacteria (LAB). Here, we aimed to isolate LAB strains capable of performing MLF under these [...] Read more.
Koshu wine, produced from the indigenous Japanese grape Vitis vinifera L. cv. Koshu exhibits a lower pH than other white wines, hindering malolactic fermentation (MLF) by lactic acid bacteria (LAB). Here, we aimed to isolate LAB strains capable of performing MLF under these challenging conditions to improve wine quality. Sixty-four Oenococcus oeni and one Lactobacillus hilgardii strain were isolated from Koshu grapes and wines that had undergone spontaneous MLF. MLF activity was assessed under varying pH, SO2, and ethanol conditions in modified basal medium (BM) and Koshu model wine media. Expression of stress-related genes was analyzed using real-time PCR. Carbon source utilization was evaluated via API 50CH assays. All isolates degraded malic acid and produced lactic acid at 15 °C and pH 3.2 in BM without reducing sugars. Seven strains, all identified as O. oeni, demonstrated MLF activity at pH 3.0 in modified BM lacking added reducing sugars or tomato juice. Six wine-derived strains tolerated up to 12% ethanol, whereas the grape-derived strain was inhibited at 10%. In a synthetic Koshu wine model (13% ethanol, pH 3.0), wine-derived isolates exhibited higher MLF activity than commercial starter strains. In high-performing strains, mleA was upregulated, and most isolates preferred fructose, arabinose, and ribose over glucose. These findings suggest that indigenous O. oeni strains from Koshu wine possess unique stress tolerance and metabolic traits, making them promising candidates for region-specific MLF starter cultures that could enhance Koshu wine quality and terroir expression. Full article
(This article belongs to the Special Issue Fermentation and Biotechnology in Wine Making)
Show Figures

Figure 1

15 pages, 1375 KiB  
Article
Photodegradation of Turmeric Oleoresin Under Fluorescent Light and White LED: Impacts on the Chemical Stability, Bioactivity, and Photosensitizing Property of Curcuminoids
by Heejeong Kim, Juyeon Oh and Jungil Hong
Molecules 2025, 30(15), 3187; https://doi.org/10.3390/molecules30153187 - 30 Jul 2025
Viewed by 241
Abstract
Turmeric oleoresin (TO), a natural pigment derived from Curcuma longa rhizomes, is valued for its health benefits, which are primarily attributed to its rich curcuminoid content (curcumin, demethoxycurcumin, and bisdemethoxycurcumin). Despite these benefits, curcuminoids are known to be light-sensitive and possess photosensitizing properties. [...] Read more.
Turmeric oleoresin (TO), a natural pigment derived from Curcuma longa rhizomes, is valued for its health benefits, which are primarily attributed to its rich curcuminoid content (curcumin, demethoxycurcumin, and bisdemethoxycurcumin). Despite these benefits, curcuminoids are known to be light-sensitive and possess photosensitizing properties. This study investigated the impact of common light sources, fluorescent light and white LED (both at 10 W/m2), on the chemical stability, antioxidant activity, cytotoxicity, and photosensitizing properties of TO. Exposure to both light sources significantly reduced TO’s color and fluorescence intensity, with white LED causing greater instability. HPLC analysis confirmed a decrease in individual curcuminoid levels, with curcumin degrading most rapidly under both conditions. The DPPH radical scavenging activity of irradiated TO decreased compared to fresh or dark-stored turmeric, whereas its ABTS radical scavenging activity increased upon light exposure. Photosensitizing potency, measured by formazan decolorization and lipid peroxide formation, declined as TO decomposed under light. Conversely, the cytotoxicity of TO against B16F10 melanoma cells was significantly enhanced under light exposure, though this effect was diminished significantly after 24 h of pre-irradiation. These findings underscore the instability of turmeric pigment under common lighting conditions, which should be a crucial consideration when processing, storing, and distributing turmeric-containing products. Full article
(This article belongs to the Special Issue Photochemistry in Asia)
Show Figures

Graphical abstract

20 pages, 7720 KiB  
Article
Dynamical Behaviors of a Stochastic Semi-Parametric SEIR Model with Infectivity in the Incubation Period
by Mei Li and Jing Zhang
Axioms 2025, 14(7), 535; https://doi.org/10.3390/axioms14070535 - 15 Jul 2025
Viewed by 203
Abstract
This paper investigates a stochastic semi-parametric SEIR model characterized by infectivity during the incubation period and influenced by white noise perturbations. First, based on the theory of stochastic persistence, we derive the conditions required for the disease to persist within the model. Under [...] Read more.
This paper investigates a stochastic semi-parametric SEIR model characterized by infectivity during the incubation period and influenced by white noise perturbations. First, based on the theory of stochastic persistence, we derive the conditions required for the disease to persist within the model. Under these conditions, we apply Khasminskii’s ergodic theorem and Lyapunov functions to establish that the model possesses a unique ergodic stationary distribution. Finally, we utilize Khasminskii’s periodic theorem to examine the corresponding stochastic periodic SEIR model derived from the stochastic semi-parametric SEIR model, identifying sufficient conditions for the existence of non-trivial periodic solutions. Our theoretical results are further validated through numerical simulations. Full article
Show Figures

Figure 1

18 pages, 4945 KiB  
Article
Overexpression of a White Clover WRKY Transcription Factor Improves Cold Tolerance in Arabidopsis
by Shuaixian Li, Meiyan Guo, Wei Hong, Manman Li, Xiaoyue Zhu, Changhong Guo and Yongjun Shu
Agronomy 2025, 15(7), 1700; https://doi.org/10.3390/agronomy15071700 - 14 Jul 2025
Viewed by 355
Abstract
Plants are frequently exposed to various abiotic stresses, among which low-temperature stress markedly impairs growth and physiological functions. WRKY transcription factors are key regulators in plant responses to abiotic stress. In this study, a novel WRKY transcription factor gene, TrWRKY79, was cloned [...] Read more.
Plants are frequently exposed to various abiotic stresses, among which low-temperature stress markedly impairs growth and physiological functions. WRKY transcription factors are key regulators in plant responses to abiotic stress. In this study, a novel WRKY transcription factor gene, TrWRKY79, was cloned from white clover. Functional characterization revealed that the full-length TrWRKY79 protein possesses typical features of transcription factors, including transcriptional activation activity located at its C-terminal domain. Heterologous expression of TrWRKY79 in Arabidopsis thaliana significantly enhanced cold tolerance under low-temperature stress. Physiological assays showed that the transgenic lines exhibited higher chlorophyll content and elevated activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) compared to wild-type plants. Furthermore, Protenix was employed to predict the potential target genes of TrWRKY transcription factors, and their expression profiles were analyzed to help elucidate the regulatory network underlying cold tolerance. qRT-PCR analysis confirmed that several cold-responsive genes, such as COR47 and ABI5, were significantly upregulated in the transgenic lines. Collectively, these findings indicate that TrWRKY79 plays a positive regulatory role in enhancing cold tolerance, providing valuable insights into the molecular mechanisms of cold resistance in white clover and offering promising candidate genes for improving stress resilience in forage crops. Full article
Show Figures

Figure 1

61 pages, 5489 KiB  
Review
Unlocking the Sublime: A Review of Native Australian Citrus Species
by Joel B. Johnson, Natasha L. Hungerford, Yasmina Sultanbawa and Michael E. Netzel
Foods 2025, 14(14), 2425; https://doi.org/10.3390/foods14142425 - 9 Jul 2025
Viewed by 1821
Abstract
Citrus fruit are well-known for their characteristic flavour and nutritional value. Global citrus production has increased by 528% between 1961 and 2021, and in Australia, citrus is the most exported fresh fruit product by volume. There are six described Citrus species endemic to [...] Read more.
Citrus fruit are well-known for their characteristic flavour and nutritional value. Global citrus production has increased by 528% between 1961 and 2021, and in Australia, citrus is the most exported fresh fruit product by volume. There are six described Citrus species endemic to Australia: C. australasica (Australian finger lime), C. australis (round lime), C. garrawayi (Mount White lime), C. glauca (desert lime), C. gracilis (Humpty Doo lime), and C. inodora (Russell River lime). Australian Citrus possess unique flavours, aromas, and phytochemical profiles, suggesting a potential use as novelty crops and/or ‘functional foods’. Furthermore, the native Australian Citrus germplasm is a valuable source of desirable traits in citrus breeding, including drought, cold, heat, salinity, and disease resistance. These may help solve some challenges facing citrus growers globally, including disease, a declining soil quality, changing climates, and narrowing profit margins. However, many Australian citrus species’ nutritional value, chemical composition, and bioactive properties remain unknown. This review focuses on these under-investigated native Citrus species, their distribution, production, physiology, disease tolerance, traditional use, taxonomy, flavour, nutritional composition, bioactivity, and commercial production. It concludes with a perspective on the future of these native species in the Australian and global citrus context. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

16 pages, 6071 KiB  
Article
Identification and Expression Analysis of C2H2-Type Zinc Finger Protein (C2H2-ZFP) Genes in Bougainvillea in Different Colored Bracts
by Yushan Wang, Yanping Hu, Wen Liu, Wengang Yu, Jian Wang and Yang Zhou
Horticulturae 2025, 11(6), 659; https://doi.org/10.3390/horticulturae11060659 - 10 Jun 2025
Viewed by 412
Abstract
Bougainvillea spp. possesses vibrantly pigmented bracts that exhibit high ornamental value. Zinc finger proteins (ZFPs), one of the most extensive transcription factor families in plants, are implicated in diverse biological functions, including plant morphogenesis, transcriptional regulation, and responses to abiotic stress. Nevertheless, their [...] Read more.
Bougainvillea spp. possesses vibrantly pigmented bracts that exhibit high ornamental value. Zinc finger proteins (ZFPs), one of the most extensive transcription factor families in plants, are implicated in diverse biological functions, including plant morphogenesis, transcriptional regulation, and responses to abiotic stress. Nevertheless, their regulatory roles in bract pigmentation in Bougainvillea remain unexplored. In the present investigation, 105 BbZFP genes were identified from the Bougainvillea genome via bioinformatic analyses and subsequently categorized into five subgroups according to the quantity and arrangement of their structural domains. Analysis of physicochemical characteristics demonstrated that the BbZFP family encompasses both acidic and basic proteins, all of which are hydrophilic and predominantly classified as unstable proteins. Gene structure analysis revealed that the majority of BbZFP genes comprise between one and five– introns. Cis-regulatory element analysis suggested that BbZFP promoter regions harbor multiple elements associated with abiotic stress responses, hormonal regulation, and light responsiveness, implying their possible participation in these physiological processes. Transcriptomic data analysis revealed distinct expression patterns of BbZFP genes among bracts of different colors. A quantitative real-time polymerase chain reaction (RT-qPCR) further confirmed that Bou_68928, Bou_1096, Bou_4400, and Bou_17631 were markedly upregulated in yellow bracts relative to white bracts, suggesting their involvement in flavonoid biosynthesis regulation. Meanwhile, Bou_1096 and Bou_17631 exhibited markedly elevated expression in red-purple bracts compared to white bracts, potentially regulating betacyanin biosynthesis in Bougainvillea. These findings offer candidate genes for molecular breeding strategies aimed at enhancing floral coloration in Bougainvillea. The next step will involve elucidating the functions of these genes in bract coloration. Full article
(This article belongs to the Special Issue Color Formation and Regulation in Horticultural Plants)
Show Figures

Figure 1

31 pages, 1013 KiB  
Review
Reviewing Treatment Options for Organohalogen Contamination: From Established Methods to Fungal Prospects
by Gerardo Aguilar, Leadin Khudur, Attila Tottszer, Julie A. Besedin, Sali K. Biek and Andrew S. Ball
Environments 2025, 12(6), 194; https://doi.org/10.3390/environments12060194 - 9 Jun 2025
Viewed by 1772
Abstract
Persistent organohalogen pollutants—including halogenated nitrophenols (HNCs), trichloroethylene (TCE), and per- and polyfluoroalkyl substances (PFAS)—pose serious environmental and health risks due to their stability, toxicity, and bioaccumulation potential. This review critically assesses current remediation technologies including advanced oxidation processes (AOPs), adsorption, membrane filtration, and [...] Read more.
Persistent organohalogen pollutants—including halogenated nitrophenols (HNCs), trichloroethylene (TCE), and per- and polyfluoroalkyl substances (PFAS)—pose serious environmental and health risks due to their stability, toxicity, and bioaccumulation potential. This review critically assesses current remediation technologies including advanced oxidation processes (AOPs), adsorption, membrane filtration, and thermal treatments. While these methods can be effective, they are often limited by high costs, energy demands, toxic byproduct formation, and sustainability concerns. Emerging biological approaches offer promising alternatives. Among these, fungal-based degradation methods (mycodegradation) remain significantly underrepresented in the literature, despite fungi demonstrating a high tolerance to contaminants and the ability to degrade structurally complex compounds. Key findings reveal that white-rot fungi such as Phanerochaete chrysosporium and Trametes versicolor possess enzymatic systems capable of breaking down persistent organohalogens under conditions that inhibit bacterial activity. This review also identifies critical research gaps, including the need for direct comparative studies between fungal and bacterial systems. The findings suggest that integrating mycodegradation into broader treatment frameworks could enhance the environmental performance and reduce the long-term remediation costs. Overall, this review highlights the importance of diversifying remediation strategies to include scalable, low-impact biological methods for addressing the global challenge of organohalogen contamination. Full article
Show Figures

Figure 1

18 pages, 1981 KiB  
Article
Ultrasound-Assisted Extraction Optimization and Cultivar Screening for Polyphenol Recovery from Thinned Peach Fruit: A Comprehensive Evaluation of 179 Cultivars
by Shenge Li, Jianlan Xu, Zhixiang Cai, Shaolei Guo, Mingliang Yu and Zhijun Shen
Foods 2025, 14(11), 1897; https://doi.org/10.3390/foods14111897 - 27 May 2025
Viewed by 531
Abstract
Thinned peach fruit represents a substantial source of polyphenols, primarily due to its early developmental stage. Utilizing ultrasound-assisted extraction optimized through a Box–Behnken design, we determined the optimal extraction parameters to be 45 min, 360 W, a liquid-to-solid ratio of 15:1 mL/g, and [...] Read more.
Thinned peach fruit represents a substantial source of polyphenols, primarily due to its early developmental stage. Utilizing ultrasound-assisted extraction optimized through a Box–Behnken design, we determined the optimal extraction parameters to be 45 min, 360 W, a liquid-to-solid ratio of 15:1 mL/g, and a temperature of 70 °C. Under these conditions, the total phenolic content (TPC) achieved was 1.12 g GAE/kg FW, with an extraction efficiency of 97.06%. Additionally, an extensive evaluation of 179 peach cultivars revealed that wild accessions possessed significantly higher polyphenol content, including TPC, total flavonoid content (TFC), and total anthocyanin content (TAC), alongside enhanced antioxidant activities as measured by ferric reducing antioxidant power (FRAP), 2,2′-Azino-di-3-ethylbenzthiazoline Sulfonic Acid (ABTS), and 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assays, in comparison to landraces and cultivated varieties. Notably, the wild accession ‘Gansu Peach 2’ exhibited the highest TPC (2.61 g GAE/kg FW), whereas the landrace ‘Early White Blossom Peach’ demonstrated the highest TFC (137.32 g RTE/kg FW), TAC (25.30 g PAE/kg FW), and antioxidant capacity. Additionally, as expected, significant positive correlations (0.73 < r < 0.96) were also observed between polyphenol components and antioxidant activities (p < 0.0001). This study establishes a foundational framework for the utilization of thinned peach fruit as valuable polyphenol-rich resources. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Graphical abstract

19 pages, 2883 KiB  
Article
Back to the Wastes: The Potential of Agri-Food Residues for Extracting Valuable Plant Cell Wall Polysaccharides
by Susana Saez-Aguayo, Dayan Sanhueza, Paloma Fuenzalida, María Paz Covarrubias, Michael Handford, Raúl Herrera and María Alejandra Moya-León
Int. J. Mol. Sci. 2025, 26(10), 4942; https://doi.org/10.3390/ijms26104942 - 21 May 2025
Viewed by 518
Abstract
The agro-industrial sector generates large volumes of fruit waste each year, leading to environmental concerns and sustainability challenges. In this study, we evaluate the potential of fruit residues—apple, pear, blueberry, tomato, papaya, and a mixed fruit juice blend—as alternative sources of high-value polysaccharides, [...] Read more.
The agro-industrial sector generates large volumes of fruit waste each year, leading to environmental concerns and sustainability challenges. In this study, we evaluate the potential of fruit residues—apple, pear, blueberry, tomato, papaya, and a mixed fruit juice blend—as alternative sources of high-value polysaccharides, including pectins, hemicelluloses, and cellulose. Additionally, white strawberry, included as a reference from fresh fruit rather than agro-industrial waste, was analyzed to expand the comparative framework. These biopolymers, naturally derived from the plant cell wall, are renewable and biodegradable, and they possess physicochemical properties suitable for applications in food, pharmaceutical, cosmetic, textile, and bioenergy industries. Using a combination of cell wall fractionation, biochemical characterization, and immunodetection of specific structural domains, we identified significant variability in polysaccharide composition and structure among the samples. Blueberry, pear, and apple residues showed high levels of rhamnogalacturonan-I (RG-I) with extensive branching, while variations in rhamnogalacturonan-II (RG-II) dimerization and the degree of methylesterification of homogalacturonan were also observed. These structural differences are key to determining the gelling properties and functional potential of pectins. In the hemicellulose fractions, xylans and xyloglucans with distinct substitution patterns were especially abundant in apple and pear waste. Our findings demonstrate that fruit processing waste holds significant promise as a sustainable source of structurally diverse polysaccharides. These results support the reintegration of agro-industrial residues into production chains and emphasize the need for environmentally friendly extraction methods to enable industrial recovery and application. Overall, this study contributes to advancing a circular bioeconomy by transforming underutilized plant waste into valuable functional materials. Full article
Show Figures

Figure 1

20 pages, 5974 KiB  
Article
Studies on the Efficient Extraction of Ovotransferrin and the Effect of Heating Treatment on Its Structure and Activity
by Yujie Su, Qianwen Zhao, Cuihua Chang, Junhua Li, Lulu Guo, Shende Hu, Zijian Huang, Luping Gu and Yanjun Yang
Foods 2025, 14(5), 905; https://doi.org/10.3390/foods14050905 - 6 Mar 2025
Viewed by 1077
Abstract
Ovotransferrin (OVT) is very rich in nutritional value and possesses a variety of biological activities. However, there is a lack of suitable OVT extraction methods that are simple and suitable for large-scale production. For this reason, this study explored a new method of [...] Read more.
Ovotransferrin (OVT) is very rich in nutritional value and possesses a variety of biological activities. However, there is a lack of suitable OVT extraction methods that are simple and suitable for large-scale production. For this reason, this study explored a new method of ovalbumin OVT extraction based on mesophilic treatment. The effects of different heat treatment conditions on the physicochemical properties and bioactivities of the prepared OVT and their influence mechanisms were investigated. The results showed that OVT could be efficiently extracted from egg white by moderate heat treatment. Based on single factor experiments, response surface methodology was used to determine the effects of heat treatment time, temperature and pH on the extraction rate of OVT. The yield was 93.65 ± 0.53% under the optimal extraction conditions (62.5 °C, 75 min, pH 8). SDS-PAGE and FT-IR showed that changes in the influencing factors during heating had different effects on OVT. In addition, different extraction parameters had different effects on the iron-binding and antioxidant capacities of OVT. This study provides a fast and efficient preparation method for OVT from egg white, which lays the foundation for the wide application of OVT. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

17 pages, 7144 KiB  
Article
Synergistic Effects of Hollow Glass Microspheres and Sisal Fibers in Natural Gypsum-Based Composites: Achieving Lightweight, High-Strength, and Aesthetically Superior Construction Materials
by Chang Chen, Yuan Gao, Shaowu Jiu, Yanxin Chen and Yan Liu
Buildings 2025, 15(5), 830; https://doi.org/10.3390/buildings15050830 - 5 Mar 2025
Viewed by 787
Abstract
This study explores the synergistic development of natural gypsum-based composites (NGBCs) with enhanced multifunctional characteristics, employing hollow glass microspheres (HGMs) as density-reducing agents and sisal fibers (SFs) as mechanical reinforcement phases while maintaining superior whiteness properties. Five HGM variants with precisely graded particle [...] Read more.
This study explores the synergistic development of natural gypsum-based composites (NGBCs) with enhanced multifunctional characteristics, employing hollow glass microspheres (HGMs) as density-reducing agents and sisal fibers (SFs) as mechanical reinforcement phases while maintaining superior whiteness properties. Five HGM variants with precisely graded particle sizes (20, 40, 60, 80, and 100 μm) were systematically incorporated into the composite matrix. Sisal fibers with controlled length parameters (10–15 mm) were uniformly dispersed within the gypsum matrix. The multifunctional effects of these additives were comprehensively assessed via integrated mechanical characterization, spectrophotometric whiteness evaluation, and microstructural interrogation. The findings revealed that the incorporation of HGMs resulted in a significant decrease in the NGBC density while concurrently enhancing whiteness; they also exerted an adverse impact on both processability and mechanical properties. Moreover, the fusion of HGMs and SFs within the NGBCs achieved an optimal balance between lightness and strength. The peak density of NGBCs was ascertained to be 1.41 g/cm3, complemented by flexural and compressive strengths of 6.12 and 9.78 MPa, respectively. Such optimizations were realized with HGMs at a particle size of 80 um and a composition of 20 vol.%, alongside sisal fibers present at a concentration of 0.3 vol.%. The current research affords significant revelations regarding the fabrication of architectural gypsum materials that are lightweight, possess high tensile strength, exhibit an aesthetically appealing finish, and demonstrate superior whiteness, presenting a prospective resolution for applications within the high-performance construction sector. Full article
(This article belongs to the Special Issue Innovative Composite Materials in Construction)
Show Figures

Figure 1

17 pages, 6109 KiB  
Article
Comparative Metabolomic and Transcriptomic Analyses Uncover Variation in Pigment Accumulation Profiles in Alpinia hainanensis Bracts
by Tong Zhao, Qianxia Yu, Huanfang Liu and Zehong Wei
Horticulturae 2025, 11(3), 266; https://doi.org/10.3390/horticulturae11030266 - 1 Mar 2025
Cited by 1 | Viewed by 829
Abstract
Alpinia hainanensis is a famous flowering herbaceous plant with valuable ornamental value that is distinguished by its brightly colored labellum. A. hainanensis ‘Shengzhen’ has been identified to possess a novel ornamental feature: its inflorescence is adorned with charming pink bracts. Although flavonoids are [...] Read more.
Alpinia hainanensis is a famous flowering herbaceous plant with valuable ornamental value that is distinguished by its brightly colored labellum. A. hainanensis ‘Shengzhen’ has been identified to possess a novel ornamental feature: its inflorescence is adorned with charming pink bracts. Although flavonoids are recognized as the primary pigments that color most flowers, the role of their metabolic pathways in shaping the bract color of A. hainanensis ‘Shengzhen’ has not yet been fully explored. This research performed transcriptomic and metabolomic analyses on the floral bracts of both wild-type (white bract) and ‘Shengzhen’ cultivar (pink bract) of A. hainanensis. The results identified 565 flavonoid metabolites, including 19 anthocyanins. The ‘Shengzhen’ cultivar showed a higher accumulation of 17 anthocyanins (seven cyanidins, two delphinidins, one pelargonidin, three peonidins, and four petunidins) compared to the wild type. A combined transcriptomic and metabonomic investigation revealed significant links between four differentially expressed genes and seven anthocyanins. The key genes responsible for flavonoid and anthocyanin synthesis, such as AhPAL, AhC4H, AhCHI, AhF3H, AhDFR, AhFLS, and AhF3′5′H, were further analyzed to explain the differences in pigmentation. This study offers a fresh perspective on anthocyanin accumulation in Alpinia, paving the way for future flower color breeding efforts in the genus. Full article
(This article belongs to the Special Issue Color Formation and Regulation in Horticultural Plants)
Show Figures

Figure 1

20 pages, 509 KiB  
Article
Staying or Moving: Racial Differences in Single Mothers’ Residential Stability
by Ryan Gabriel, Peter Polhill and Adrienne Waite
Soc. Sci. 2025, 14(3), 149; https://doi.org/10.3390/socsci14030149 - 28 Feb 2025
Viewed by 677
Abstract
In this study, we investigate the residential stability and mobility patterns of Black single mothers compared to White single mothers. Using data from the Panel Study of Income Dynamics from 1970 to 2015, linked to the U.S. Census for contextual characteristics, our multilevel [...] Read more.
In this study, we investigate the residential stability and mobility patterns of Black single mothers compared to White single mothers. Using data from the Panel Study of Income Dynamics from 1970 to 2015, linked to the U.S. Census for contextual characteristics, our multilevel linear probability models reveal substantial racial disparities. Black single mothers have a lower probability of remaining in non-poor neighborhoods rather than migrating to poor neighborhoods relative to White single mothers. Conversely, Black single mothers possess a higher probability of remaining in poor neighborhoods instead of moving to non-poor ones in relation to White single mothers. When economic resources are allowed to vary between Black and White single mothers, even higher-income Black single mothers cannot convert these resources into remaining in or migrating to non-poor neighborhoods at the same rate as White single mothers. Full article
(This article belongs to the Special Issue Exploring Residential Mobility in a Changing Society)
Show Figures

Figure 1

25 pages, 15664 KiB  
Article
Color Mechanism Analysis and Origin Comparison of Pink-Purple Sapphires from Vietnam and Madagascar
by Qiurong Guo, Pengyu Li, Mingying Wang, Siyi Zhao, Sichun Yang and Guanghai Shi
Crystals 2025, 15(3), 229; https://doi.org/10.3390/cryst15030229 - 27 Feb 2025
Viewed by 738
Abstract
Extensive research has already been conducted on sapphires, yet there remains a notable absence of methods available to identify the provenance of pink-purple sapphires, particularly those originating from Vietnam and Madagascar. This study examined pink-purple sapphires from Vietnam and Madagascar by conducting basic [...] Read more.
Extensive research has already been conducted on sapphires, yet there remains a notable absence of methods available to identify the provenance of pink-purple sapphires, particularly those originating from Vietnam and Madagascar. This study examined pink-purple sapphires from Vietnam and Madagascar by conducting basic gemological tests, microscopic observations, infrared spectroscopy, Raman spectroscopy, UV–Vis–NIR spectroscopy, and LA ICP MS, while also drawing comparisons with pink-red corundum from other locations. In appearance, the Vietnamese samples have a foggy appearance and orange iridescence, while the Madagascan samples show a relatively strong purple hue. The color origin analysis reveals that the absorption peaks of the ultraviolet spectrum caused by Cr3+ in the yellow-green and blue-purple regions account for the pink color of the Vietnamese and Madagascan samples. The lower UV wavelength position of the two main peaks in the Madagascan samples, as compared to the Vietnamese ones, indicates that Fe3+ d–d transitions, as well as transitions between Fe2+—Ti4+ and Fe3+—Ti3+ ions, enhance blue light transmission and cause the samples to tend towards a purple hue. Regarding inclusions, the Vietnamese samples are characterized by white and blue bands, cloudy inclusions, and extensive yellow-orange staining, whereby the cloudy inclusions give them their special appearance, and their calcite and apatite inclusions indicate that they come from marble-type deposits. The presence of many small-grained zircon formations, especially clusters, in the Madagascan samples indicates that they come from alkaline basalt. Chemical analysis confirmed the origin of the samples from the two locations. Compared with the pink-red corundum of the same marble type (Myanmar and Yunnan, China), the Vietnamese samples have lower V, Mg, and Ga contents and a higher Fe content. Compared with the pink-red corundum of the high-iron type (Thailand, Cambodia, and Tanzania), the Madagascan samples have lower Fe and higher Ga contents overall. This study possesses considerable significance in tracing and identifying the origin of pink-purple sapphires. Full article
(This article belongs to the Section Mineralogical Crystallography and Biomineralization)
Show Figures

Figure 1

Back to TopTop