Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (33)

Search Parameters:
Keywords = whispering-gallery-mode microcavity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
7 pages, 1290 KiB  
Communication
Direct Nanoparticle Sensing in Liquids with Free-Space Excited Optical Whispering-Gallery-Mode Microresonators
by Davide D’Ambrosio, Saverio Avino and Gianluca Gagliardi
Sensors 2025, 25(16), 5111; https://doi.org/10.3390/s25165111 - 18 Aug 2025
Viewed by 64
Abstract
Whispering-gallery-mode (WGM) microresonators are amongst the most promising optical sensors for detecting bio-chemical targets. A number of laser interrogation methods have been proposed and demonstrated over the last decade, based on scattering and absorption losses or resonance splitting and shift, harnessing the high-quality [...] Read more.
Whispering-gallery-mode (WGM) microresonators are amongst the most promising optical sensors for detecting bio-chemical targets. A number of laser interrogation methods have been proposed and demonstrated over the last decade, based on scattering and absorption losses or resonance splitting and shift, harnessing the high-quality factor and ultra-small volume of WGMs. Actually, regardless of the sensitivity enhancement, their practical sensing operation may be hampered by the complexity of coupling devices as well as the signalprocessing required to extract the WGM response. Here, we use a silica microsphere immersed in an aqueous environment and efficiently excite optical WGMs with a free-space visible laser, thus collecting the relevant information from the transmitted and back-scattered light without any optical coupler, fiber, or waveguide. We show that a 640-nm diode laser, actively frequency-locked on resonance, provides real-time, fast sensing of dielectric nanoparticles approaching the surface with direct analog readout. Thanks to our illumination scheme, the sensor can be kept in water and operate for days without degradation or loss of sensitivity. Diverse noise contributions are carefully considered and quantified in our system, showing a minimum detectable particle size below 1 nm essentially limited by the residual laser microcavity jitter. Further analysis reveals that the inherent laserfrequency instability in the short, -mid-term operation regime sets an ultimate bound of 0.3 nm. Based on this work, we envisage the possibility to extend our method in view of developing new viable approaches for detection of nanoplastics in natural water without resorting to complex chemical laboratory methods. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

12 pages, 2191 KiB  
Article
Whispering Gallery Modes in a Micro-Cavity Within a Single Sn-Doped CdS Nanowire Featuring a Regular Hexagonal Cross-Section
by Jiangang Yu, Ziwei Li, Ye Tian, Fengchao Li, Tengteng Li, Cheng Lei and Ting Liang
Crystals 2025, 15(7), 658; https://doi.org/10.3390/cryst15070658 - 18 Jul 2025
Viewed by 326
Abstract
CdS nanowires have garnered considerable attention lately for their promising potential in next-generation nanolaser devices, attributed to their relatively high stability and exceptional emission efficiency within the Ⅱ–Ⅵ semiconductor family. In this study, tin-doped CdS nanowires with varying dimensions were synthesized, and the [...] Read more.
CdS nanowires have garnered considerable attention lately for their promising potential in next-generation nanolaser devices, attributed to their relatively high stability and exceptional emission efficiency within the Ⅱ–Ⅵ semiconductor family. In this study, tin-doped CdS nanowires with varying dimensions were synthesized, and the underlying mechanisms responsible for the formation of micro-cavities within these nanowires were systematically explored through scanning electron microscopy (SEM) analysis and photoluminescence mapping. The results show that a very distinct hexagonal-shaped micro-cavity is observed on the cross-section of CdS nanowires, and the size of the micro-cavity is determined by the radius of the nanowire. Additionally, through the use of angle-resolved micro-fluorescence Fourier imaging technology, it is found that under high excitation density conditions, the micro-cavity mode is more prominent at higher collection angles, which is consistent with the mode of the wall-pass cavity micro-cavity. Finally, the formation of the full reflection spectrum of the micro-cavity mode is confirmed through the wavelength shift and intensity shift phenomena related to the excitation power. These results further deepen our understanding of the micro-cavity modes in tin-doped cadmium sulfide nanowires, which may be of great significance for the application of these nanowires in new optical devices. Full article
Show Figures

Figure 1

10 pages, 3122 KiB  
Article
Low-Frequency Magnetic Sensing Using Magnetically Modulated Microcavity Resonant Mode
by Xinrong Yang, Jiamin Rong, Enbo Xing, Jianglong Li, Yujie Zhang, Yanru Zhou, Wenyao Liu, Huanfei Wen, Jun Tang and Jun Liu
Micromachines 2025, 16(4), 405; https://doi.org/10.3390/mi16040405 - 29 Mar 2025
Viewed by 498
Abstract
We propose a low-frequency magnetic sensing method using a magnetically modulated microcavity resonant mode. Our magnetically sensitive unit with periodically changing magnetic poles is formed by combining an AC excitation coil with a microcavity. The microcavity vibrates at the frequency of the AC [...] Read more.
We propose a low-frequency magnetic sensing method using a magnetically modulated microcavity resonant mode. Our magnetically sensitive unit with periodically changing magnetic poles is formed by combining an AC excitation coil with a microcavity. The microcavity vibrates at the frequency of the AC amplitude-modulated signal and changes its resonant mode when the sensing unit interacts with a low-frequency magnetic field. Signal processing is performed on the resonant spectrum to obtain low-frequency magnetic signals. The results of the experiment show that the measured sensitivity to a 0.5 Hz magnetic field is 12.49 V/mT, and a bias instability noise of 16.71 nT is achieved. We have extended the measurable frequency range of the whispering gallery mode microcavity magnetometer and presented a development in microcavity magnetic sensing and optical readout. Full article
Show Figures

Figure 1

12 pages, 4728 KiB  
Article
A Widely and Continuously Tunable Single-Mode Transmitter Based on a Hybrid Microcavity Laser
by Miao-Qing Wang, Bin Zhang, Zhen-Ning Zhang, You-Zeng Hao, Zun-Hao Hu, Yue-De Yang, Jin-Long Xiao, António L. Teixeira and Yong-Zhen Huang
Photonics 2024, 11(11), 1080; https://doi.org/10.3390/photonics11111080 - 17 Nov 2024
Viewed by 1195
Abstract
A method for achieving the single-mode and efficient unidirectional emission of a whispering gallery mode (WGM) semiconductor laser is presented herein. Hybrid square-rectangular lasers (HSRLs) and hybrid square/rhombus-rectangular lasers (HSRRLs) consisting of a Fabry–Pérot (FP) cavity and a square or rhombus cavity microcavity [...] Read more.
A method for achieving the single-mode and efficient unidirectional emission of a whispering gallery mode (WGM) semiconductor laser is presented herein. Hybrid square-rectangular lasers (HSRLs) and hybrid square/rhombus-rectangular lasers (HSRRLs) consisting of a Fabry–Pérot (FP) cavity and a square or rhombus cavity microcavity are described. In addition, a transmitter optical subassembly (TOSA) based on an HSRRL chip was fabricated, which has a wide and continuous wavelength tuning range. Wavelength channels from 1555.75 nm to 1568.15 nm with a spacing of 50 GHz were demonstrated with a good side mode suppression ratio (SMSR) and good output power. These devices have the potential to meet the typical requirements of optical communication networks. Full article
(This article belongs to the Special Issue Advanced Lasers and Their Applications, 2nd Edition )
Show Figures

Figure 1

11 pages, 4574 KiB  
Article
Single-Mode Control and Individual Nanoparticle Detection in the Ultraviolet Region Based on Boron Nitride Microdisk with Whispering Gallery Mode
by Jiaxing Li, Qiang Li, Ransheng Chen, Qifan Zhang, Wannian Fang, Kangkang Liu, Feng Li and Feng Yun
Nanomaterials 2024, 14(6), 501; https://doi.org/10.3390/nano14060501 - 11 Mar 2024
Viewed by 1800
Abstract
Optical microcavities are known for their strongly enhanced light–matter interactions. Whispering gallery mode (WGM) microresonators have important applications in nonlinear optics, single-mode output, and biosensing. However, there are few studies on resonance modes in the ultraviolet spectrum because most materials with high absorption [...] Read more.
Optical microcavities are known for their strongly enhanced light–matter interactions. Whispering gallery mode (WGM) microresonators have important applications in nonlinear optics, single-mode output, and biosensing. However, there are few studies on resonance modes in the ultraviolet spectrum because most materials with high absorption properties are in the ultraviolet band. In this study, the performance of a microdisk cavity based on boron nitride (BN) was simulated by using the Finite-difference time-domain (FDTD) method. The WGM characteristics of a single BN microdisk with different sizes were obtained, wherein the resonance modes could be regulated from 270 nm to 350 nm; additionally, a single-mode at 301.5 nm is achieved by cascading multiple BN microdisk cavities. Moreover, we found that a BN microdisk with a diameter of 2 μm has a position-independent precise sensitivity for the nanoparticle of 140 nm. This study provides new ideas for optical microcavities to achieve single-mode management and novel coronavirus size screening, such as SARS-CoV-2, in the ultraviolet region. Full article
(This article belongs to the Special Issue Semiconductor Nanomaterials for Optoelectronic Applications)
Show Figures

Figure 1

11 pages, 2702 KiB  
Article
Low-Threshold Anti-Stokes Raman Microlaser on Thin-Film Lithium Niobate Chip
by Jianglin Guan, Jintian Lin, Renhong Gao, Chuntao Li, Guanghui Zhao, Minghui Li, Min Wang, Lingling Qiao and Ya Cheng
Materials 2024, 17(5), 1042; https://doi.org/10.3390/ma17051042 - 24 Feb 2024
Cited by 2 | Viewed by 2031
Abstract
Raman microlasers form on-chip versatile light sources by optical pumping, enabling numerical applications ranging from telecommunications to biological detection. Stimulated Raman scattering (SRS) lasing has been demonstrated in optical microresonators, leveraging high Q factors and small mode volume to generate downconverted photons based [...] Read more.
Raman microlasers form on-chip versatile light sources by optical pumping, enabling numerical applications ranging from telecommunications to biological detection. Stimulated Raman scattering (SRS) lasing has been demonstrated in optical microresonators, leveraging high Q factors and small mode volume to generate downconverted photons based on the interaction of light with the Stokes vibrational mode. Unlike redshifted SRS, stimulated anti-Stokes Raman scattering (SARS) further involves the interplay between the pump photon and the SRS photon to generate an upconverted photon, depending on a highly efficient SRS signal as an essential prerequisite. Therefore, achieving SARS in microresonators is challenging due to the low lasing efficiencies of integrated Raman lasers caused by intrinsically low Raman gain. In this work, high-Q whispering gallery microresonators were fabricated by femtosecond laser photolithography assisted chemo-mechanical etching on thin-film lithium niobate (TFLN), which is a strong Raman-gain photonic platform. The high Q factor reached 4.42 × 106, which dramatically increased the circulating light intensity within a small volume. And a strong Stokes vibrational frequency of 264 cm−1 of lithium niobate was selectively excited, leading to a highly efficient SRS lasing signal with a conversion efficiency of 40.6%. And the threshold for SRS was only 0.33 mW, which is about half the best record previously reported on a TFLN platform. The combination of high Q factors, a small cavity size of 120 μm, and the excitation of a strong Raman mode allowed the formation of SARS lasing with only a 0.46 mW pump threshold. Full article
Show Figures

Figure 1

12 pages, 3055 KiB  
Article
Ultrafast Antisolvent Growth of Single-Crystal CsPbBr3 Microcavity for Whispering-Gallery-Mode Lasing
by Li Zhang, Xinxin Li, Yimeng Song and Bingsuo Zou
Nanomaterials 2023, 13(14), 2116; https://doi.org/10.3390/nano13142116 - 20 Jul 2023
Cited by 1 | Viewed by 2135
Abstract
In recent years, all-inorganic cesium lead bromide (CsPbBr3) perovskites have garnered considerable attention for their prospective applications in green photonics and optoelectronic devices. However, the development of efficient and economical methods to obtain high-quality micron-sized single-crystalline CsPbBr3 microplatelets (MPs) has [...] Read more.
In recent years, all-inorganic cesium lead bromide (CsPbBr3) perovskites have garnered considerable attention for their prospective applications in green photonics and optoelectronic devices. However, the development of efficient and economical methods to obtain high-quality micron-sized single-crystalline CsPbBr3 microplatelets (MPs) has become a challenge. Here, we report the synthesis of CsPbBr3 MPs on Si/SiO2 substrate by optimizing the ultrafast antisolvent method (FAS). This technique is able to produce well-dispersed, uniformly sized, and morphologically regular tetragonal phase single crystals, which can give strong green emission at room temperature, with excellent stability and excitonic character. Moreover, the crystals demonstrated lasing with a whispering gallery mode with a low threshold. These results suggest that the single-crystalline CsPbBr3 MPs synthesized by this method are of high optical quality, holding vast potential for future applications in photonic devices. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Figure 1

10 pages, 1465 KiB  
Communication
Spatial Multiplexing of Whispering Gallery Mode Sensors
by Stephen Holler and Matthew Speck
Sensors 2023, 23(13), 5925; https://doi.org/10.3390/s23135925 - 26 Jun 2023
Cited by 3 | Viewed by 2038
Abstract
Whispering gallery mode resonators have proven to be robust and sensitive platforms for the trace detection of chemical and/or biological analytes. Conventional approaches using serially addressed resonators face challenges in simultaneous multi-channel (i.e., multi-species) detection. We present an alternative monitoring scheme that allows [...] Read more.
Whispering gallery mode resonators have proven to be robust and sensitive platforms for the trace detection of chemical and/or biological analytes. Conventional approaches using serially addressed resonators face challenges in simultaneous multi-channel (i.e., multi-species) detection. We present an alternative monitoring scheme that allows for the spatial multiplexing of whispering gallery mode resonators with the simultaneous observation of the resonance spectra from each of them. By imaging arrays of microspheres and monitoring the glare spot intensities through image processing routines, resonance spectra from multiple resonators may be simultaneously recorded without interference or confounding effects of serial excitation/detection. We demonstrate our multiplexed imaging approach with bulk refractive index variations and virus–antibody binding. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

12 pages, 3420 KiB  
Article
Thermo-Optical Control of Raman Solitons in a Functionalized Silica Microsphere
by Elena A. Anashkina, Maria P. Marisova and Alexey V. Andrianov
Micromachines 2022, 13(10), 1616; https://doi.org/10.3390/mi13101616 - 27 Sep 2022
Cited by 8 | Viewed by 2124
Abstract
The investigation of optical microcavity solitons is in demand both for applications and basic science. Despite the tremendous progress in the study of microresonator solitons, there is still no complete understanding of all features of their nonlinear dynamics in various regimes. Controlling soliton [...] Read more.
The investigation of optical microcavity solitons is in demand both for applications and basic science. Despite the tremendous progress in the study of microresonator solitons, there is still no complete understanding of all features of their nonlinear dynamics in various regimes. Controlling soliton properties is also of great interest. We proposed and investigated experimentally and theoretically a simple and easily reproducible way to generate Raman solitons with controllable spectral width in an anomalous dispersion region in a functionalized silica microsphere with whispering gallery modes (WGMs) driven in a normal dispersion regime. To functionalize the microsphere, coating (TiO2 + graphite powder) was applied at the pole. The coating is used for effective thermalization of the radiation of an auxiliary laser diode launched through the fiber stem holding the microsphere to control detuning of the pump frequency from exact resonance due to the thermo-optical shift of the WGM frequencies. We demonstrated that the thermo-optical control by changing the power of an auxiliary diode makes it possible to switch on/off the generation of Raman solitons and control their spectral width, as well as to switch Raman generation to multimode or single-mode. We also performed a detailed theoretical analysis based on the Raman-modified Lugiato–Lefever equation and explained peculiarities of intracavity nonlinear dynamics of Raman solitons. All experimental and numerically simulated results are in excellent agreement. Full article
(This article belongs to the Special Issue Micro/Nano Resonators, Actuators, and Their Applications)
Show Figures

Figure 1

12 pages, 3390 KiB  
Article
Antisymmetric Mode Cancellation for High-Q Cavities in a Double-Disk
by Seung Hyeon Hong, Young Jin Lee, Seokhyeon Hong, Youngsoo Kim and Soon-Hong Kwon
Photonics 2022, 9(8), 572; https://doi.org/10.3390/photonics9080572 - 14 Aug 2022
Cited by 2 | Viewed by 2673
Abstract
High-quality factor dielectric microcavities like whispering-gallery-mode resonators can be widely applied in fields such as laser, optical sensor, switch, and filter. We propose the whispering-gallery-mode double-disk cavity comprising dielectric disks apart along the face of the disk. The electric field of each disk [...] Read more.
High-quality factor dielectric microcavities like whispering-gallery-mode resonators can be widely applied in fields such as laser, optical sensor, switch, and filter. We propose the whispering-gallery-mode double-disk cavity comprising dielectric disks apart along the face of the disk. The electric field of each disk with opposite phases was excited; the emitted radiation field was annihilated by destructive interference. We numerically achieved a 5.67-fold enhancement in quality factor at the double-disk cavity with a radius, thickness, and gap distance of 850 nm, 220 nm, and 220 nm, respectively, compared to a single dielectric disk with the same structural conditions. Full article
Show Figures

Figure 1

27 pages, 7813 KiB  
Review
Liquid Crystal Biosensors: Principles, Structure and Applications
by Haonan Wang, Tianhua Xu, Yaoxin Fu, Ziyihui Wang, Mark S. Leeson, Junfeng Jiang and Tiegen Liu
Biosensors 2022, 12(8), 639; https://doi.org/10.3390/bios12080639 - 14 Aug 2022
Cited by 46 | Viewed by 7441
Abstract
Liquid crystals (LCs) have been widely used as sensitive elements to construct LC biosensors based on the principle that specific bonding events between biomolecules can affect the orientation of LC molecules. On the basis of the sensing interface of LC molecules, LC biosensors [...] Read more.
Liquid crystals (LCs) have been widely used as sensitive elements to construct LC biosensors based on the principle that specific bonding events between biomolecules can affect the orientation of LC molecules. On the basis of the sensing interface of LC molecules, LC biosensors can be classified into three types: LC–solid interface sensing platforms, LC–aqueous interface sensing platforms, and LC–droplet interface sensing platforms. In addition, as a signal amplification method, the combination of LCs and whispering gallery mode (WGM) optical microcavities can provide higher detection sensitivity due to the extremely high quality factor and the small mode volume of the WGM optical microcavity, which enhances the interaction between the light field and biotargets. In this review, we present an overview of the basic principles, the structure, and the applications of LC biosensors. We discuss the important properties of LC and the principle of LC biosensors. The different geometries of LCs in the biosensing systems as well as their applications in the biological detection are then described. The fabrication and the application of the LC-based WGM microcavity optofluidic sensor in the biological detection are also introduced. Finally, challenges and potential research opportunities in the development of LC-based biosensors are discussed. Full article
(This article belongs to the Special Issue Frontiers in Liquid Crystal-Based Biosensors)
Show Figures

Figure 1

9 pages, 1607 KiB  
Article
Electrically Tunable Polymer Whispering-Gallery-Mode Laser
by Fangyuan Liu, Junhua Tong, Zhiyang Xu, Kun Ge, Jun Ruan, Libin Cui and Tianrui Zhai
Materials 2022, 15(14), 4812; https://doi.org/10.3390/ma15144812 - 10 Jul 2022
Cited by 7 | Viewed by 2659
Abstract
Microlasers hold great promise for the development of photonics and optoelectronics. At present, tunable microcavity lasers, especially regarding in situ dynamic tuning, are still the focus of research. In this study, we combined a 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (PMN-PT) [...] Read more.
Microlasers hold great promise for the development of photonics and optoelectronics. At present, tunable microcavity lasers, especially regarding in situ dynamic tuning, are still the focus of research. In this study, we combined a 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (PMN-PT) piezoelectric crystal with a Poly [9,9-dioctylfluorenyl-2,7-diyl] (PFO) microring cavity to realize a high-quality, electrically tunable, whispering-gallery-mode (WGM) laser. The dependence of the laser properties on the diameter of the microrings, including the laser spectrum and quality (Q) value, was investigated. It was found that with an increase in microring diameter, the laser emission redshifted, and the Q value increased. In addition, the device effectively achieved a blueshift under an applied electric field, and the wavelength tuning range was 0.71 nm. This work provides a method for in situ dynamic spectral modulation of microcavity lasers, and is expected to provide inspiration for the application of integrated photonics technology. Full article
(This article belongs to the Special Issue Microcavity Optics: Materials, Physics and Devices)
Show Figures

Figure 1

12 pages, 3433 KiB  
Article
Prefab Hollow Glass Microsphere-Based Immunosensor with Liquid Crystal Sensitization for Acute Myocardial Infarction Biomarker Detection
by Panpan Niu, Junfeng Jiang, Kun Liu, Shuang Wang, Tianhua Xu, Ziyihui Wang, Tong Wang, Xuezhi Zhang, Zhenyang Ding, Yize Liu and Tiegen Liu
Biosensors 2022, 12(7), 439; https://doi.org/10.3390/bios12070439 - 22 Jun 2022
Cited by 4 | Viewed by 2751
Abstract
Quantitative detection of cardiac troponin biomarkers in blood is an important method for clinical diagnosis of acute myocardial infarction (AMI). In this work, a whispering gallery mode (WGM) microcavity immunosensor based on a prefab hollow glass microsphere (HGMS) with liquid crystal (LC) sensitization [...] Read more.
Quantitative detection of cardiac troponin biomarkers in blood is an important method for clinical diagnosis of acute myocardial infarction (AMI). In this work, a whispering gallery mode (WGM) microcavity immunosensor based on a prefab hollow glass microsphere (HGMS) with liquid crystal (LC) sensitization was proposed and experimentally demonstrated for label-free cardiac troponin I-C (cTnI-C) complex detection. The proposed fiber-optic immunosensor has a simple structure; the tiny modified HGMS serves as the key sensing element and the microsample reservoir simultaneously. A sensitive LC layer with cTnI-C recognition ability was deposited on the inner wall of the HGMS microcavity. The arrangement of LC molecules is affected by the cTnI-C antigen—antibody binding in the HGMS, and the small change of the surface refractive index caused by the binding can be amplified owing to the birefringence property of LC. Using the annular waveguide of the HGMS, the WGMs were easily excited by the coupling scanning laser with a microfiber, and an all-fiber cTnI-C immunosensor can be achieved by measuring the resonant wavelength shift of the WGM spectrum. Moreover, the dynamic processes of the cTnI-C antigen—antibody binding and unbinding was revealed by monitoring the wavelength shift continuously. The proposed immunosensor with a spherical microcavity can be a cost-effective tool for AMI diagnosis. Full article
(This article belongs to the Special Issue Electrochemistry and Spectroscopy-Based Biosensors)
Show Figures

Figure 1

23 pages, 8193 KiB  
Review
Optical Whispering-Gallery-Mode Microbubble Sensors
by Xuyang Zhao, Zhihe Guo, Yi Zhou, Junhong Guo, Zhiran Liu, Yuxiang Li, Man Luo and Xiang Wu
Micromachines 2022, 13(4), 592; https://doi.org/10.3390/mi13040592 - 9 Apr 2022
Cited by 52 | Viewed by 6417
Abstract
Whispering-gallery-mode (WGM) microbubble resonators are ideal optical sensors due to their high quality factor, small mode volume, high optical energy density, and geometry/design/structure (i.e., hollow microfluidic channels). When used in combination with microfluidic technologies, WGM microbubble resonators can be applied in chemical and [...] Read more.
Whispering-gallery-mode (WGM) microbubble resonators are ideal optical sensors due to their high quality factor, small mode volume, high optical energy density, and geometry/design/structure (i.e., hollow microfluidic channels). When used in combination with microfluidic technologies, WGM microbubble resonators can be applied in chemical and biological sensing due to strong light–matter interactions. The detection of ultra-low concentrations over a large dynamic range is possible due to their high sensitivity, which has significance for environmental monitoring and applications in life-science. Furthermore, WGM microbubble resonators have also been widely used for physical sensing, such as to detect changes in temperature, stress, pressure, flow rate, magnetic field and ultrasound. In this article, we systematically review and summarize the sensing mechanisms, fabrication and packing methods, and various applications of optofluidic WGM microbubble resonators. The challenges of rapid production and practical applications of WGM microbubble resonators are also discussed. Full article
(This article belongs to the Special Issue Microfluidics and Lab-on-a-Chip Applications for Biosensing)
Show Figures

Graphical abstract

10 pages, 2512 KiB  
Article
Magnetic Field Sensing Based on Whispering Gallery Mode with Nanostructured Magnetic Fluid-Infiltrated Photonic Crystal Fiber
by Chencheng Zhang, Shengli Pu, Zijian Hao, Boyu Wang, Min Yuan and Yuxiu Zhang
Nanomaterials 2022, 12(5), 862; https://doi.org/10.3390/nano12050862 - 3 Mar 2022
Cited by 63 | Viewed by 4353
Abstract
A kind of novel and compact magnetic field sensor has been proposed and investigated experimentally. The proposed sensor consists of a tapered single mode fiber coupled with a nanostructured magnetic fluid-infiltrated photonic crystal fiber, which is easy to be fabricated. The response of [...] Read more.
A kind of novel and compact magnetic field sensor has been proposed and investigated experimentally. The proposed sensor consists of a tapered single mode fiber coupled with a nanostructured magnetic fluid-infiltrated photonic crystal fiber, which is easy to be fabricated. The response of magnetic fluid to magnetic field is used to measure the intensity of magnetic field via whispering gallery mode. The magnetic field-dependent shift in resonance wavelength is observed. The maximum magnetic field intensity sensitivity is 53 pm/mT. The sensor sensitivity is inversely proportional to the thickness of the photonic crystal fiber cladding. Full article
Show Figures

Figure 1

Back to TopTop