Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (485)

Search Parameters:
Keywords = wheat fractions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 449 KiB  
Article
Effects of Polysaccharides Extracted from Stem Barks on the Spontaneous Contractile Activity of the Ileal Smooth Muscle
by Ericka Lorleil Mayindza Ekaghba, Olivier Perruchon, Patrice Lerouge and Line Edwige Mengome
Molecules 2025, 30(15), 3156; https://doi.org/10.3390/molecules30153156 - 28 Jul 2025
Viewed by 126
Abstract
Decoctions of stem barks from Aucoumea klaineana, Canarium schweinfurthii, Pentadesma butyracea and Scorodophloeus zenkeri are used against affections of irritable bowel syndrome in Gabonese traditional medicine. In the present study, we aim to determine whether the bark polysaccharides may contribute to [...] Read more.
Decoctions of stem barks from Aucoumea klaineana, Canarium schweinfurthii, Pentadesma butyracea and Scorodophloeus zenkeri are used against affections of irritable bowel syndrome in Gabonese traditional medicine. In the present study, we aim to determine whether the bark polysaccharides may contribute to the activity of these plants against the symptoms of gastrointestinal disorders. To this end, we investigated the structure and the pharmacological activity of polysaccharides extracted from their stem barks. The pectic and hemicellulose polysaccharides were isolated, and their sugar compositions were determined by gas chromatography. In addition, analysis by MALDI-TOF mass spectrometry of oligosaccharides released after digestion with an endo-xylanase indicated that glucuronoarabinoxylans are the main hemicellulose of stem barks. We then evaluated the influence of the polysaccharide fractions on the spontaneous contractile activity of rat ileal smooth muscle and the cholinergic system. Spasmolytic activity of pectic fractions from all stem barks, as well as lemon polygalacturonic acid, were observed, indicating that these extracts exhibit a myorelaxant activity. In contrast, the bark hemicellulose fractions, as well as commercially available beechwood glucuronoxylan and wheat arabinoxylan, were demonstrated to be able to increase the basal contractile activity of smooth muscle. These data show that, beyond physicochemical effects affecting the bowel water content, plant polysaccharides have also an impact on the spontaneous smooth muscle contractility, the main mechanism involved in the pathophysiology of gastrointestinal disorders. Full article
(This article belongs to the Special Issue Phytochemistry, Human Health and Molecular Mechanisms)
Show Figures

Figure 1

21 pages, 2522 KiB  
Article
Long-Term Flat-Film Hole-Sowing Increases Soil Organic Carbon Stocks and Resilience Under Future Climate Change Scenarios
by Hanbing Cao, Xinru Chen, Yunqi Luo, Zhanxiang Wu, Chengjiao Duan, Mengru Cao, Jorge L. Mazza Rodrigues, Junyu Xie and Tingliang Li
Agronomy 2025, 15(8), 1808; https://doi.org/10.3390/agronomy15081808 - 26 Jul 2025
Viewed by 233
Abstract
Analyzing the soil organic carbon (SOC) stock in dryland areas of southern Shanxi, particularly under the influence of fertilization and mulching conditions, is crucial for enhancing soil fertility and crop productivity and understanding the SOC pool’s resilience to future climate change scenarios in [...] Read more.
Analyzing the soil organic carbon (SOC) stock in dryland areas of southern Shanxi, particularly under the influence of fertilization and mulching conditions, is crucial for enhancing soil fertility and crop productivity and understanding the SOC pool’s resilience to future climate change scenarios in the region. In a long-term experimental site located in Hongtong County, Shanxi Province, soil samples were collected from the 0–100 cm depth over a nine-year period. These samples were analyzed to evaluate the impact of five treatments: no fertilization and no mulching (CK), conventional farming practices (FP), nitrogen reduction and controlled fertilization (MF), nitrogen reduction and controlled fertilization with ridge-film furrow-sowing (RF), and nitrogen reduction and controlled fertilization with flat-film hole-sowing (FH). The average annual yield of wheat grain, SOC stock, water-soluble organic carbon (WSOC), particulate organic carbon (POC), light fraction organic carbon (LFOC), mineral-associated organic carbon (MOC), and heavy fraction organic carbon (HFOC) stocks were measured. The results revealed that the FH treatment not only significantly increased wheat grain yield but also significantly elevated the SOC stock by 23.71% at the 0–100 cm depth compared to CK. Furthermore, this treatment significantly enhanced the POC, LFOC, and MOC stocks by 106.43–292.98%, 36.93–158.73%, and 17.83–81.55%, respectively, within 0–80 cm. However, it also significantly decreased the WSOC stock by 34.32–42.81% within the same soil layer and the HFOC stock by 72.05–101.51% between the 20 and 100 cm depth. Notably, the SOC stock at the 0–100 cm depth was primarily influenced by the HFOC. Utilizing the DNDC (denitrification–decomposition) model, we found that future temperature increases are detrimental to SOC sequestration in dryland areas, whereas reduced rainfall is beneficial. The simulation results indicated that in a warmer climate, a 2 °C temperature increase would result in a SOC stock decrease of 0.77 to 1.01 t·ha−1 compared to a 1 °C increase scenario. Conversely, under conditions of reduced precipitation, a 20% rainfall reduction would lead to a SOC stock increase of 1.53% to 3.42% compared to a 10% decrease scenario. In conclusion, the nitrogen reduction and controlled fertilization with flat-film hole-sowing (FH) treatment emerged as the most effective practice for increasing SOC sequestration in dryland areas by enhancing the HFOC stock. This treatment also fortified the SOC pool’s capacity to withstand future climate change, thereby serving as the optimal approach for concurrently enhancing production and fertility in this region. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

21 pages, 3158 KiB  
Article
Estimation of Leaf, Spike, Stem and Total Biomass of Winter Wheat Under Water-Deficit Conditions Using UAV Multimodal Data and Machine Learning
by Jinhang Liu, Wenying Zhang, Yongfeng Wu, Juncheng Ma, Yulin Zhang and Binhui Liu
Remote Sens. 2025, 17(15), 2562; https://doi.org/10.3390/rs17152562 - 23 Jul 2025
Viewed by 219
Abstract
Accurate estimation aboveground biomass (AGB) in winter wheat is crucial for yield assessment but remains challenging to achieve non-destructively. Unmanned aerial vehicle (UAV)-based remote sensing offers a promising solution at the plot level. Traditional field sampling methods, such as random plant selection or [...] Read more.
Accurate estimation aboveground biomass (AGB) in winter wheat is crucial for yield assessment but remains challenging to achieve non-destructively. Unmanned aerial vehicle (UAV)-based remote sensing offers a promising solution at the plot level. Traditional field sampling methods, such as random plant selection or full-quadrat harvesting, are labor intensive and may introduce substantial errors compared to the canopy-level estimates obtained from UAV imagery. This study proposes a novel method using Fractional Vegetation Coverage (FVC) to adjust field-sampled AGB to per-plant biomass, enhancing the accuracy of AGB estimation using UAV imagery. Correlation analysis and Variance Inflation Factor (VIF) were employed for feature selection, and estimation models for leaf, spike, stem, and total AGB were constructed using Random Forest (RF), Support Vector Machine (SVM), and Neural Network (NN) models. The aim was to evaluate the performance of multimodal data in estimating winter wheat leaves, spikes, stems, and total AGB. Results demonstrated that (1) FVC-adjusted per-plant biomass significantly improved correlations with most indicators, particularly during the filling stage, when the correlation between leaf biomass and NDVI increased by 56.1%; (2) RF and NN models outperformed SVM, with the optimal accuracies being R2 = 0.709, RMSE = 0.114 g for RF, R2 = 0.66, RMSE = 0.08 g for NN, and R2 = 0.557, RMSE = 0.117 g for SVM. Notably, the RF model achieved the highest prediction accuracy for leaf biomass during the flowering stage (R2 = 0.709, RMSE = 0.114); (3) among different water treatments, the R2 values of water and drought treatments were higher 0.723 and 0.742, respectively, indicating strong adaptability. This study provides an economically effective method for monitoring winter wheat growth in the field, contributing to improved agricultural productivity and fertilization management. Full article
(This article belongs to the Section Remote Sensing in Agriculture and Vegetation)
Show Figures

Figure 1

15 pages, 3249 KiB  
Article
Optimizing Anaerobic Acidogenesis: Synergistic Effects of Thermal Pretreatment of Composting, Oxygen Regulation, and Additive Supplementation
by Dongmei Jiang, Yalin Wang, Zhenzhen Guo, Xiaoxia Hao, Hanyu Yu and Lin Bai
Sustainability 2025, 17(14), 6494; https://doi.org/10.3390/su17146494 - 16 Jul 2025
Viewed by 263
Abstract
Anaerobic acidogenic fermentation presents a promising approach for sustainable carbon emission mitigation in livestock waste management, addressing critical environmental challenges in agriculture. This study systematically investigated the synergistic effects of composting-assisted pretreatment coupled with micro-aeration and methanogenesis suppression to enhance volatile fatty acid [...] Read more.
Anaerobic acidogenic fermentation presents a promising approach for sustainable carbon emission mitigation in livestock waste management, addressing critical environmental challenges in agriculture. This study systematically investigated the synergistic effects of composting-assisted pretreatment coupled with micro-aeration and methanogenesis suppression to enhance volatile fatty acid (VFA) production from swine manure supplemented with wheat straw, valorizing agricultural waste while reducing greenhouse gas emissions. The experimental protocol involved sequential optimization of pretreatment conditions (12 h composting followed by 10 min thermal pretreatment at 85 °C), operational parameters (300 mL micro-aeration and 30 mmol/L 2-bromoethanesulfonate (BES) supplementation), and their synergistic integration. The combined strategy achieved peak VFA production (5895.92 mg/L, p < 0.05), with butyric acid constituting the dominant fraction (2004.42 mg/L, p < 0.05). Enzymatic analysis demonstrated significantly higher activities of key hydrolytic enzymes (protease, α-glucosidase) and acidogenic enzymes (butyrate kinase, acetate kinase) in the synergistic treatment group compared to individual BES-supplemented or micro-aeration-only groups (p < 0.05). This integrated approach provides a technically feasible and environmentally sustainable pathway for circular resource recovery, contributing to low-carbon agriculture and waste-to-value conversion. Full article
Show Figures

Figure 1

18 pages, 6408 KiB  
Article
Contrasting Impacts of Urbanization and Cropland Irrigation on Observed Surface Air Temperature in Northern China
by Xiaoyu Xu, Shiguang Miao, Yizhou Zhang and Jingjing Dou
Remote Sens. 2025, 17(13), 2256; https://doi.org/10.3390/rs17132256 - 30 Jun 2025
Viewed by 209
Abstract
Urbanization and cropland irrigation modify land surface water and energy budgets in different ways; however, few observational studies have explicitly quantified their contrasts. Using high-resolution observations from over 2000 surface weather stations and urban and irrigation fraction data, this study investigated the individual [...] Read more.
Urbanization and cropland irrigation modify land surface water and energy budgets in different ways; however, few observational studies have explicitly quantified their contrasts. Using high-resolution observations from over 2000 surface weather stations and urban and irrigation fraction data, this study investigated the individual and combined effects of urbanization and cropland irrigation on surface air temperature over the Beijing–Tianjin–Hebei (BTH) region in China, where highly urbanized areas and heavily irrigated croplands exist together. The results indicate that (1) the daytime irrigation cooling (with surface air temperature decreasing by ~0.1–0.5 °C at irrigated stations) was non-negligible in late autumn, early winter, and later spring months, when winter wheat irrigation mainly occurred over the BTH region, while a slight warming was observed at many irrigated stations during the nighttime. By contrast, urban warming was most pronounced in the nighttime, especially in winter, and the daytime warming at urban sites was much weaker and comparable to the magnitude of cooling induced by concurrent irrigation for winter wheat. (2) Collectively, the vast stretches of irrigated croplands helped mitigate urban warming, and their combined effect on the daytime surface air temperature over the whole region resulted in a slight cooling of ~0.2 °C in some of the winter wheat-growing months. (3) The contrasting temperature changes due to urbanization and irrigation were spatially variable. Beijing was predominantly characterized by urban warming, while Shijiazhuang, with extensive irrigation, exhibited irrigation cooling (or slight warming) during the daytime (or nighttime) in most of the winter wheat-growing months, which could be a possible contributor to the daytime cooling (or stronger nighttime warming) at urban sites. This work highlights the temperature contrasts between urban areas and surrounding irrigated croplands, as well as the potential role of extensive irrigation in mitigating (or enhancing) daytime (or nighttime) urban warming. Full article
Show Figures

Figure 1

17 pages, 4941 KiB  
Article
Estimating Soil Cd Contamination in Wheat Farmland Using Hyperspectral Data and Interpretable Stacking Ensemble Learning
by Liang Zhong, Meng Ding, Shengjie Yang, Xindan Xu, Jianlong Li and Zhengguo Sun
Agronomy 2025, 15(7), 1574; https://doi.org/10.3390/agronomy15071574 - 27 Jun 2025
Viewed by 269
Abstract
Soil heavy metal pollution threatens agricultural safety and human health, with Cd exceeding standards being the most common problem in contaminated farmland. The development of hyperspectral remote sensing technology has provided a novel methodology of quickly and non-destructively monitoring heavy metal contamination in [...] Read more.
Soil heavy metal pollution threatens agricultural safety and human health, with Cd exceeding standards being the most common problem in contaminated farmland. The development of hyperspectral remote sensing technology has provided a novel methodology of quickly and non-destructively monitoring heavy metal contamination in soil. This study aims to explore the potential of an interpretable Stacking ensemble learning model for the estimation of soil Cd contamination in farmland hyperspectral data. We assume that this method can improve the modeling accuracy. We chose Zhangjiagang City, Jiangsu Province, China, as the study area. We gathered soil samples from wheat fields and analyzed soil spectral data and Cd level in the lab. First, we pre-processed the spectra utilizing fractional-order derivative (FOD) and standard normal variate (SNV) transforms to highlight the spectral features. Second, we applied the competitive adaptive reweighted sampling (CARS) feature selection algorithm to identify the significant wavelengths correlated with soil Cd content. Then, we constructed and compared the estimation accuracy of multiple machine learning models and a Stacking ensemble learning method and utilized the Optuna method for hyperparameter optimization. Ultimately, the SHAP method was used to shed light on the model’s decision-making process. The results show that (1) FOD can further highlight the spectral features, thereby strengthening the correlation between soil Cd content and wavelength; (2) the CARS algorithm extracted 3.4–6.8% of the feature wavelengths from the full spectrum, and most of them were the wavelengths with high correlation with soil Cd; (3) the optimal estimation precision was achieved using the FOD1.5-SNV spectral pre-processing combined with the Stacking model (R2 = 0.77, RMSE = 0.05 mg/kg, RPD = 2.07), and the model effectively quantitatively estimated soil Cd contamination; and (4) SHAP further revealed the contribution of each base model and characteristic wavelengths in the Stacking modeling process. This research confirms the advantages of the interpretable Stacking model in hyperspectral estimation of Cd contamination in farmland wheat soil. Furthermore, it offers a foundational reference for the future implementation of quantitative and non-destructive regional monitoring of heavy metal contamination in farmland soil. Full article
Show Figures

Figure 1

13 pages, 1908 KiB  
Article
Effect of Crop Type Shift on Soil Phosphorus Morphology and Microbial Functional Diversity in a Typical Yellow River Irrigation Area
by Zijian Xie, Rongbo Zhao, Bo Bo, Chunhua Li, Yang Wang, Yu Chu and Chun Ye
Microorganisms 2025, 13(7), 1458; https://doi.org/10.3390/microorganisms13071458 - 23 Jun 2025
Viewed by 323
Abstract
The Hetao irrigation area is one of the largest irrigation areas in the Yellow River Basin and a typical salinized agricultural area. Crop type shifts in this area can alter soil phosphorus (P) morphology and microbial functional diversity, thereby influencing soil P losses. [...] Read more.
The Hetao irrigation area is one of the largest irrigation areas in the Yellow River Basin and a typical salinized agricultural area. Crop type shifts in this area can alter soil phosphorus (P) morphology and microbial functional diversity, thereby influencing soil P losses. However, few studies have elucidated the underlying mechanisms. In this study, soil samples were collected from four different crop planting areas: sunflower field (SF), corn field (CF), wheat land (WL), and vegetable and fruit land (VFL). Subsequently, the physicochemical properties, P fractions, and phosphate-solubilizing microorganisms (PSMs) were analyzed. The results indicated that when other lands shifted to SF, the soil pH increased significantly. Simultaneously, SOM, TN, and TP decreased significantly during the crop type conversion. Analysis of P fraction revealed that moderately active P, including NaOH-Pi, NaOH-Po, and HCl-Pi, were the dominant fractions in the tested soils. Among them, HCl-Pi was the major component of moderately active P. The soil P leaching change point in the tested are was 6.25 mg Olsen-P kg−1. The probabilities of P leaching in WL, VFL, CF, and SF were 91.7%, 83.8%, 83.8%, and 66.7%, respectively. Additionally, the sum of the relative abundances of the three PSMs in SF, VFL, WL, and CF were 8.81%, 11.88%, 8.03%, and 10.29%, respectively. The shift in crop type to SF exacerbated the soil degradation process. Both TP and residual P in the soil decreased. However, the NaHCO3 slightly increased, which may have been due to the increased abundance of Thiobacillus and Escherichia. Full article
Show Figures

Figure 1

21 pages, 1372 KiB  
Article
Biochemical Analysis of Wheat Milling By-Products for Their Valorization as Potential Food Ingredients
by Chiara Suanno, Lorenzo Marincich, Simona Corneti, Iris Aloisi, Luca Pincigher, Elisa Papi, Luigi Parrotta, Fabiana Antognoni and Stefano Del Duca
Int. J. Mol. Sci. 2025, 26(12), 5830; https://doi.org/10.3390/ijms26125830 - 18 Jun 2025
Viewed by 320
Abstract
Wheat bran forms the outermost part of the kernel, which is typically discarded as a by-product. Depending on the milling process, bran can be separated into four fractions: coarse bran (CB), coarse weatings (CW), fine weatings (FW), and low-grade flour (LGF). This study [...] Read more.
Wheat bran forms the outermost part of the kernel, which is typically discarded as a by-product. Depending on the milling process, bran can be separated into four fractions: coarse bran (CB), coarse weatings (CW), fine weatings (FW), and low-grade flour (LGF). This study aimed to analyze the macronutrient and bioactive compound profiles of these four by-products across five cultivars and two wheat mixtures. Dietary fibers, free and bound phenolics, phytic acid, fatty acids, and aleurone layer markers were examined in all samples. The results indicate that insoluble fibers, phenolic compounds, and phytic acid decreased from CB to LGF, whereas soluble fiber content exhibited a greater variability among fractions. In all samples, coarse bran was the richest fraction in the protein 7S globulin. The same fraction from the two commercial mixtures and Manitoba cultivar exhibited significantly higher levels of bound ferulic acid compared to the other cultivars (+34%). Manitoba CB also had the highest oleic acid content (18.04% of total lipid content) among all samples, followed by the Rumeno cultivar (17.75%), which also had the highest linolenic acid content (6.35%). Given their health-promoting and technological potential, these by-products could be selectively used to enrich food products and dietary supplements with functional nutrients. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

20 pages, 3756 KiB  
Article
Reducing Cd Uptake by Wheat Through Rhizosphere Soil N-C Cycling and Bacterial Community Modulation by Urease-Producing Bacteria and Organo-Fe Hydroxide Coprecipitates
by Junqing Zhang, Shuangjiao Tang, Hao Wei, Lunguang Yao, Zhaojin Chen, Hui Han, Mingfei Ji and Jianjun Yang
Microorganisms 2025, 13(6), 1412; https://doi.org/10.3390/microorganisms13061412 - 17 Jun 2025
Viewed by 435
Abstract
The bioavailability of heavy metals is profoundly influenced by their interactions with active soil components (microorganisms, organic matter, and iron minerals). However, the effects of urease-producing bacteria combined with organo-Fe hydroxide coprecipitates (OFCs) on Cd accumulation in wheat, as well as the mechanisms [...] Read more.
The bioavailability of heavy metals is profoundly influenced by their interactions with active soil components (microorganisms, organic matter, and iron minerals). However, the effects of urease-producing bacteria combined with organo-Fe hydroxide coprecipitates (OFCs) on Cd accumulation in wheat, as well as the mechanisms underlying these effects, remain unclear. In this study, pot experiments integrated with high-throughput sequencing were employed to investigate the impacts of the urease-producing bacterial strain TJ6, ferrihydrite (Fh), and OFCs on Cd enrichment in wheat grains, alongside the underlying soil–microbial mechanisms. The results demonstrate that the strain TJ6-Fh/OFC consortium significantly (p < 0.05) reduced (50.1–66.7%) the bioavailable Cd content in rhizosphere soil while increasing residual Cd fractions, thereby decreasing (77.4%) Cd accumulation in grains. The combined amendments elevated rhizosphere pH (7.35), iron oxide content, and electrical conductivity while reducing (14.5–21.1%) dissolved organic carbon levels. These changes enhanced soil-colloid-mediated Cd immobilization and reduced Cd mobility. Notably, the NH4+ content and NH4+/NO3 ratio were significantly (p < 0.05) increased, attributed to the ureolytic activity of TJ6, which concurrently alkalinized the soil and inhibited Cd uptake via competitive ion channel interactions. Furthermore, the relative abundance of functional bacterial taxa (Proteobacteria, Gemmatimonadota, Enterobacter, Rhodanobacter, Massilia, Nocardioides, and Arthrobacter) was markedly increased in the rhizosphere soil. These microbes exhibited enhanced abilities to produce extracellular polymeric substances, induce phosphate precipitation, facilitate biosorption, and promote nutrient (C/N) cycling, synergizing with the amendments to immobilize Cd. This study for the first time analyzed the effect and soil science mechanism of urease-producing bacteria combined with OFCs in blocking wheat’s absorption of Cd. Moreover, this study provides foundational insights and a practical framework for the remediation of Cd-contaminated wheat fields through microbial–organic–mineral collaborative strategies. Full article
Show Figures

Figure 1

18 pages, 3628 KiB  
Article
Processing Suitability of Physical Modified Non-GMO High-Amylose Wheat Flour as a Resistant Starch Ingredient in Cookies
by Yujin Moon and Meera Kweon
Molecules 2025, 30(12), 2619; https://doi.org/10.3390/molecules30122619 - 17 Jun 2025
Viewed by 334
Abstract
High-amylose wheat (HAW), developed through non-genetic modification, addresses the growing demand for clean-label and nutritionally enhanced food products. This study systematically investigated the effects of heat-moisture treatment (HMT; 20% and 25% moisture levels) on the physicochemical properties and cookie-making performance of HAW flour [...] Read more.
High-amylose wheat (HAW), developed through non-genetic modification, addresses the growing demand for clean-label and nutritionally enhanced food products. This study systematically investigated the effects of heat-moisture treatment (HMT; 20% and 25% moisture levels) on the physicochemical properties and cookie-making performance of HAW flour (HAWF) and soft wheat flour (SWF). HMT promoted moisture-induced agglomeration, leading to increased particle size, reduced damaged starch content, and enhanced water and sucrose solvent retention capacities. Although the amylose content remained largely unchanged, pasting behavior was differentially affected, with increased viscosities in SWF and slight decreases in HAWF. Thermal analyses demonstrated elevated gelatinization temperatures, indicating improved thermal stability, while X-ray diffraction revealed alterations in starch crystallinity. Furthermore, HMT weakened gluten strength and modified dough rheology, effects more pronounced in HAWF. Cookies prepared from HMT-treated flours exhibited larger diameters, greater spread ratios, and reduced heights. In vitro digestibility assays showed a marked reduction in rapidly digestible starch and increases in slowly digestible and resistant starch fractions, particularly in HAWF cookies. Collectively, these findings establish HMT as an effective strategy for modulating flour functionality and enhancing cookie quality, while concurrently improving the nutritional profile through the alteration of starch digestibility characteristics. Full article
(This article belongs to the Section Food Chemistry)
Show Figures

Figure 1

21 pages, 3985 KiB  
Article
Can the Urea Fatty Fraction Support Sustainable Agriculture in the Improvement of Soil Properties?
by Barbara Filipek-Mazur, Barbara Wiśniowska-Kielian, Leszek Wojnar and Krystyna Ciarkowska
Sustainability 2025, 17(12), 5529; https://doi.org/10.3390/su17125529 - 16 Jun 2025
Viewed by 323
Abstract
One of the assumptions of the circular economy is the introduction of nitrogen (N) fertilizers into soil in the form of by-products, such as urea fatty fraction (UFF). Another recommended sustainable agriculture treatment is to plough post-harvest straw into soil to improve the [...] Read more.
One of the assumptions of the circular economy is the introduction of nitrogen (N) fertilizers into soil in the form of by-products, such as urea fatty fraction (UFF). Another recommended sustainable agriculture treatment is to plough post-harvest straw into soil to improve the organic matter (OM) balance. We aimed to verify the efficacy of UFF as a N fertilizer applied with wheat or rape straw by examining its effect on the total carbon and N contents, pH, enzyme activity, OM mineralization and stabilization of soil. For this, we conducted a 120-day-long incubation experiment in which we compared the effect of UFF fertilizer applied with urea (both with and without a Ure inhibitor) on soil properties. Our main findings were that UFF acidified the soil (pH was lowered to 5.93) more than the urea (pH was above 6). Both fertilizers administered with straw slightly increased the soil carbon (to above 14 g kg1) and N contents (to around 1.4 g kg−1) compared to the control treatment and caused an increase in enzyme activity at the beginning of the experiment, followed by a gradual decrease. The UFF application accelerated the OM decomposition, although urea had a more stabilizing effect on the OM expressed by larger (above 16%) areas occupied by stable, aggregated OM than UFF (below 10%). We concluded that UFF can replace urea as an environmentally friendly N fertilizer, and that it has a similar effect to urea on soil properties. Full article
Show Figures

Figure 1

15 pages, 1425 KiB  
Article
Valorization of Carob and Brewer’s Spent Grain as Growth-Substrate Supplements in Tenebrio molitor Rearing
by Irene Ferri, Matilda Rachele Dametti, Sara Frazzini, Matteo Dell’Anno and Luciana Rossi
Animals 2025, 15(12), 1697; https://doi.org/10.3390/ani15121697 - 8 Jun 2025
Cited by 1 | Viewed by 582
Abstract
Background: Agro-industrial by-products, such as carob and brewer’s spent grain (BSG), have gained increasing attention as sustainable feed ingredients capable of enhancing the nutritional and functional value of Tenebrio molitor larvae. This study aimed to evaluate the effects of carob and BSG supplementation [...] Read more.
Background: Agro-industrial by-products, such as carob and brewer’s spent grain (BSG), have gained increasing attention as sustainable feed ingredients capable of enhancing the nutritional and functional value of Tenebrio molitor larvae. This study aimed to evaluate the effects of carob and BSG supplementation of growth substrates on larval performance and the functional properties of the resulting insect meals. Methods: Seven-week-old larvae were reared for 14 days on the following three diets: control (wheat bran), wheat bran + carob (Trt1), and wheat bran + BSG (Trt2). Larval weight, substrate consumption, and survival were recorded. After processing, insect meals were analyzed for chemical composition, total phenolic content (TPC), and antioxidant activity in both water- and lipid-soluble extracted fractions. Results: Both treatment groups showed significantly higher final weights than the control (Ctrl: 104.9 ± 2.69 g; Trt1: 114.8 ± 1.26 g; Trt2: 116.9 ± 1.07 g; p < 0.05). TPC was highest in the control for both fractions, and the antioxidant activity was similar between the Ctrl and Trt1 groups in the water-soluble fraction but significantly lower in the Trt2 group (p < 0.05). Conclusions: These findings highlight the potential of carob and BSG for sustainable insect farming, though their functional benefits may depend on the inclusion levels and their interaction with insect metabolism. Full article
(This article belongs to the Section Animal System and Management)
Show Figures

Figure 1

21 pages, 9234 KiB  
Article
Effects of Aqueous Extracts from Wheat Bran Layers on the Functional Properties of Wheat Starch and Gluten
by Bingbing Wu, Chunlei Yu, Zhongwei Chen and Bin Xu
Foods 2025, 14(11), 1988; https://doi.org/10.3390/foods14111988 - 4 Jun 2025
Viewed by 527
Abstract
Wheat bran (WB) is rich in bioactive compounds, but its incorporation into food products often negatively affects dough properties. The soluble components in WB, including polysaccharides, minerals, and proteins, exhibit significant variations across different bran layers and may dissolve and interact with flour [...] Read more.
Wheat bran (WB) is rich in bioactive compounds, but its incorporation into food products often negatively affects dough properties. The soluble components in WB, including polysaccharides, minerals, and proteins, exhibit significant variations across different bran layers and may dissolve and interact with flour components during food processing, affecting dough properties. This study aims to investigate the influence of aqueous extracts from different WB layers (aleurone layer, AL; non-aleurone layer, NAL) and their components on the functional properties of wheat starch and gluten. The results indicate that the AL-rich fraction yielded a higher extract content (30.6%) compared to the NAL-rich fraction (15.1%), attributable to the higher cellular content in the AL. Both the extracts and residues from AL and NAL significantly lowered the denaturation temperature of wheat gluten. The aqueous extracts reduced the storage (G′) and loss (G″) moduli of wheat gluten, primarily attributed to the effect of polysaccharide components, whereas the protein and ash fractions elevated the G′ and G″ at suitable dosages. The extracts elevated the gelatinization temperature of starch, but reduced enthalpy (ΔH). Moreover, the pasting viscosity of starch with WB extract decreased due to the combined effects of protein and ash fractions. These findings provide insights into the roles of water extracts from different WB layers and their components in modulating wheat-based product quality. This study also offers a theoretical basis for optimizing WB utilization in foods, thus providing a theoretical foundation for promoting whole-wheat foods or foods containing WB. Full article
Show Figures

Graphical abstract

19 pages, 1401 KiB  
Article
The Role of Molecular and Structural Characteristics of Starch, Hydrocolloids, and Gluten in Bread In Vitro Digestibility
by Julian de la Rosa-Millan
Polysaccharides 2025, 6(2), 46; https://doi.org/10.3390/polysaccharides6020046 - 3 Jun 2025
Viewed by 979
Abstract
Starch is one of the leading nutritional carbohydrates in the human diet; its characteristics, such as digestion rate, depend on molecular structure, and in particular, the molecular composition, type and length of amylopectin chains, which are known to present a parabolic behavior with [...] Read more.
Starch is one of the leading nutritional carbohydrates in the human diet; its characteristics, such as digestion rate, depend on molecular structure, and in particular, the molecular composition, type and length of amylopectin chains, which are known to present a parabolic behavior with respect to digestion rate. Amylopectin with a higher density of small branches (Chains A) and those abundant in long chains (B2/B3) often present a marked resistance to digestion and could be a challenge in bread production since both fermentation and digestion could be further modulated in the presence of hydrocolloids or gluten. The objective of this work was to analyze different mixtures of starches (rice, potato, and corn) with hydrocolloids (guar and xanthan gum) and vital gluten to understand the relationship between chain length and molecular characteristics with respect to speed of digestion and glycemic index, and their incorporation into a bread loaf at 50 and 100% wheat flour substitution. A Plackett–Burman design was used to design the mixtures. Mixtures were characterized in terms of amylose/amylopectin content, fast, slow, and resistant (SDS, RS) starch digestion fractions, in vitro glycemic index, molecular weight (Mw), radius of gyration (Rz) of amylopectin, chain length distribution, and textural analysis. In the bread, a tendency to increase the SDS was observed when the mixtures included rice or potato, which can be related to the relationship between Mw and size and the prevalence of B2 and B3 chains. The Rz and RS content were related to average chain size and amylose content. The use of vital gluten was a determinant in achieving volume and textural characteristics in the final products and significantly affected the proportions of SDS and RS. By combining the molecular characteristics of starch with hydrocolloids, we can obtain food ingredients for specific applications, such as gluten-free products. Full article
Show Figures

Figure 1

22 pages, 1299 KiB  
Article
Combined Effects of Biochar and Rhamnolipid on Phenanthrene Biodegradation in Agricultural Soil: Bioavailability and Microbial Community Dynamics
by Meng Zhang, Yuke Kang, Jie Ran, Jichao Song, Zhongyi Wang, Jiawang Li and Liyuan Chen
Agriculture 2025, 15(11), 1116; https://doi.org/10.3390/agriculture15111116 - 22 May 2025
Viewed by 486
Abstract
The present study investigated the combined effects of wheat straw biochar (BC) and biosurfactant rhamnolipid (RL) on the biodegradation kinetics of phenanthrene by indigenous microorganisms in agricultural soil, focusing on dynamic responses of both bioavailability and community structure. The combined treatment (BC + [...] Read more.
The present study investigated the combined effects of wheat straw biochar (BC) and biosurfactant rhamnolipid (RL) on the biodegradation kinetics of phenanthrene by indigenous microorganisms in agricultural soil, focusing on dynamic responses of both bioavailability and community structure. The combined treatment (BC + RL, 60.63%) significantly enhanced phenanthrene biodegradation compared to RL alone (54.74%) and the control (45.98%), while BC amendment alone (42.55%) notably inhibited biodegradation by reducing phenanthrene bioavailability despite increasing bacterial abundance, enzyme activity, and community diversity. Both RL and BC + RL treatments promoted bioavailability by transforming phenanthrene from tightly bound (very slowly desorbing fraction, Fvslow) to readily bioavailable fractions (rapidly and slowly desorbing fractions, Frapid and Fslow), as revealed by sequential Tenax extraction. The RL-mediated increase in phenanthrene bioavailability to microbes by 11.93–17.90% via solubilization greatly enriched PAH-degrading bacterial genera and the nidA gene, contributing to enhanced biodegradation. The BC + RL combination outperformed the single application of RL in improving phenanthrene biodegradation due to their synergy in stimulating microbial population and activity (e.g., Bacillus, Massilia, Sphingomonas, and polyphenol oxidase) as a growth stimulus. These findings demonstrate that BC and RL co-application enhances PAH removal through improved bioavailability and optimized microbial communities, offering a promising strategy for soil bioremediation to ensure agricultural product safety. Full article
(This article belongs to the Section Ecosystem, Environment and Climate Change in Agriculture)
Show Figures

Figure 1

Back to TopTop