Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (277)

Search Parameters:
Keywords = wedge shape

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 7690 KB  
Article
CFD-DEM Analysis of Floating Ice Accumulation and Dynamic Flow Interaction in a Coastal Nuclear Power Plant Pump House
by Shilong Li, Chao Zhan, Qing Wang, Yan Li, Zihao Yang and Ziqing Ji
J. Mar. Sci. Eng. 2025, 13(11), 2122; https://doi.org/10.3390/jmse13112122 - 10 Nov 2025
Viewed by 178
Abstract
A coupled CFD-DEM model was adopted to investigate the floating ice accumulation mechanism and its disturbance to the flow field in the pump house of coastal nuclear power plants in cold regions. Based on numerical simulations, the motion, accumulation, and flow interaction characteristics [...] Read more.
A coupled CFD-DEM model was adopted to investigate the floating ice accumulation mechanism and its disturbance to the flow field in the pump house of coastal nuclear power plants in cold regions. Based on numerical simulations, the motion, accumulation, and flow interaction characteristics of floating ice under various release positions and heights were analyzed. The results indicate that the release height significantly governs the accumulation morphology and hydraulic response. The release height critically determines ice accumulation patterns and hydraulic responses. For inlet scenarios, lower heights induce a dense, wedge-shaped accumulation at the coarse trash rack, increasing thickness by 57.69% and shifting the accumulation 38.16% inlet-ward compared to higher releases. Conversely, higher releases enhance dispersion, expanding disturbances to the central pump house and intensifying flow heterogeneity. In bottom release cases, lower heights form wall-adhering accumulations, while higher releases cause ice to rise into mid-upper layers, thereby markedly intensifying local vortices (peak intensity 79.68, approximately 300% higher). Spatial release locations induce 2.7–4.8-fold variations in flow disturbance intensity across monitoring points. These findings clarify the combined impact of the release height and location on the ice accumulation and flow field dynamics, offering critical insights for the anti-ice design and flow safety assessment of pump houses. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

15 pages, 3266 KB  
Article
Experimental and Numerical Research on p-y Curve of Offshore Photovoltaic Pile Foundations on Sandy Soil Foundation
by Sai Fu, Hongxin Chen, Guo-er Lv, Xianlin Jia and Xibin Li
J. Mar. Sci. Eng. 2025, 13(10), 1959; https://doi.org/10.3390/jmse13101959 - 13 Oct 2025
Viewed by 347
Abstract
While methods like cyclic triaxial testing and p-y model updating theory exist in geotechnical and offshore wind engineering, they have not been systematically applied to solve the specific deformation problems of offshore PV piles. This study investigates a specific offshore photovoltaic (PV) project [...] Read more.
While methods like cyclic triaxial testing and p-y model updating theory exist in geotechnical and offshore wind engineering, they have not been systematically applied to solve the specific deformation problems of offshore PV piles. This study investigates a specific offshore photovoltaic (PV) project in Qinhuangdao City, Hebei Province. Initially, field tests of horizontal static load on steel pipe pile foundations were conducted. A finite element model (FEM) of single piles was subsequently developed and validated. Further analysis examined the failure modes, initial stiffness, and ultimate resistance of offshore PV single piles in sandy soil foundations under varying pile diameters and embedment depths. The hyperbolic p-y curve model was modified by incorporating pile diameter size effects and embedment depth considerations. Key findings reveal the following: (1) The predominant failure mechanism of fixed offshore PV monopiles manifests as wedge-shaped failure in shallow soil layers. (2) Conventional API specifications and standard hyperbolic models demonstrate significant deviations in predicting p-y (horizontal soil resistance-pile displacement) curves, whereas the modified hyperbolic model shows good agreement with field measurements and numerical simulations. This research provides critical data support and methodological references for calculating the horizontal bearing capacity of offshore PV steel pipe pile foundations. Full article
(This article belongs to the Special Issue Advances in Offshore Foundations and Anchoring Systems)
Show Figures

Figure 1

12 pages, 1812 KB  
Article
The Optimal Fibular Strut Bone Graft Fixation Angle for Unstable Proximal Humerus Fractures: A Finite Element Analysis
by Hyun Seok Song, Hui-Gyeong Gong, Hyun-Ju Lee, Hyungsuk Kim and Ki-Sik Tae
Bioengineering 2025, 12(10), 1078; https://doi.org/10.3390/bioengineering12101078 - 3 Oct 2025
Viewed by 753
Abstract
Adding a fibular strut bone graft to locking plate fixation has been introduced to improve stability and prevent varus collapse. The purpose of this study was to perform finite element analysis (FEA) of the biomechanical characteristics of different insertion angles of the fibular [...] Read more.
Adding a fibular strut bone graft to locking plate fixation has been introduced to improve stability and prevent varus collapse. The purpose of this study was to perform finite element analysis (FEA) of the biomechanical characteristics of different insertion angles of the fibular strut graft in proximal humerus fractures. Proximal humerus fractures with metaphyseal comminution and instability were simulated by creating wedge-shaped osteotomies medially and laterally for varus and valgus models, respectively. Three-dimensional finite element models were reconstructed from computed tomography images. A locking compression plate with a length of 90 mm (three holes) was applied to the proximal humerus fracture model. Fibular allografts were inserted at 0° and 30° to the humeral shaft. Axial and traction forces of 70°, 90°, and 110° relative to the vertical axis were applied to each model to simulate stress on the plate and graft. At axial loads, stresses in both the plate and the graft were lower when the graft was inserted at 0° than at 30°. Under traction loads, plate stress was lower with 30° insertion. Graft stress was also lower with 30° in most experimental conditions in both the valgus and varus models. These findings suggest that oblique insertion may provide biomechanical advantages under traction forces in unstable proximal humerus fractures. Full article
(This article belongs to the Section Biomechanics and Sports Medicine)
Show Figures

Figure 1

18 pages, 3597 KB  
Article
A Pipeline Hoop Stress Measurement Method Based on Propagation Path Correction of LCR Waves
by Bing Chen, Binbin Wang, Feifei Qiu, Chunlang Luo, Jiakai Chen and Guoqing Gou
J. Mar. Sci. Eng. 2025, 13(10), 1845; https://doi.org/10.3390/jmse13101845 - 24 Sep 2025
Viewed by 393
Abstract
Pipelines are extensively used in offshore equipment. Accurate and non-destructive measurement of hoop stress conditions within pipes is critical for ensuring the integrity of offshore structures. However, the existing technology to measure the hoop stress of the pipeline needs to planarize the surface [...] Read more.
Pipelines are extensively used in offshore equipment. Accurate and non-destructive measurement of hoop stress conditions within pipes is critical for ensuring the integrity of offshore structures. However, the existing technology to measure the hoop stress of the pipeline needs to planarize the surface of the pipeline, which greatly limits the detection efficiency. This study proposes a method for pipeline hoop stress measurement using a planar longitudinal critically refracted (LCR) probe, based on correcting LCR wave-propagation paths, which solves the problem of pipeline planarization in pipeline hoop stress measurement. First, a linear relationship between stress variations and ultrasonic time-of-flight changes in the material was established based on the acoustoelastic effect. Finite element analysis was then used to construct an acoustic simulation model for the hoop direction of the pipeline. Simulation results showed that LCR waves propagated within a wedge as quasi-plane waves and, upon oblique incidence into the pipeline, traveled along the chordal direction. Furthermore, using ray tracing methods, a mapping relationship between the pipeline geometry and the ultrasonic propagation path was established. Based on this, the LCR pipeline hoop stress measurement (LCR-HS) method was proposed. Finally, a C-shaped ring was employed to verify the measurement accuracy of the LCR-HS method. Experimental results indicated that the measurement error decreased with increasing pipe diameter and fell below 8% when the diameter exceeded 400 mm. This method enables precise measurement of hoop stress on curved surfaces by revealing the hoop propagation behavior of LCR waves in pipelines. The findings provide a technical reference for evaluating pipeline stress states, which is of significant importance for assessment of pipeline integrity. Full article
(This article belongs to the Special Issue Offshore Pipes and Energy Equipment)
Show Figures

Figure 1

22 pages, 20254 KB  
Article
Numerical Study of Excavation Face Active Instability in Upward Shield Tunneling
by Yijie Li, Xiao Wang, Gang Wei, Zhiying Lin, Xinjiang Wei, Zihai Yan, Jiajia Yan and Xiang Shen
Buildings 2025, 15(18), 3371; https://doi.org/10.3390/buildings15183371 - 17 Sep 2025
Cited by 1 | Viewed by 449
Abstract
To study excavation face instability in upward shield tunneling, a 3D numerical model was established using ABAQUS software v2023 under different depth ratios (C/D = 1, 1.5, 2, 3, 4), with reference to the upward shield tunneling project of the [...] Read more.
To study excavation face instability in upward shield tunneling, a 3D numerical model was established using ABAQUS software v2023 under different depth ratios (C/D = 1, 1.5, 2, 3, 4), with reference to the upward shield tunneling project of the Midosuji Utility Tunnel Construction Project in Japan. The model simulated soil as an elastoplastic material governed by the Mohr–Coulomb criterion, with dimensions of 60 m × 60 m × 60 m and boundary constraints applied to soil surfaces. This study explores variations in the limit support pressure and soil failure zone during the instability process. Simulation results were validated through scaled model tests (1:50). The study findings reveal that (1) for varying depth ratios, the support pressure on the excavation face decreases as the depth ratio increases, with diminishing reductions at higher ratios. (2) At shallower depths (C/D < 3), the soil failure zone above the excavation face is nearly conic. At deeper depths (C/D ≥ 3), the failure zone resembles a “bullet head” shape. (3) At shallower depth ratios (C/D < 3), surface displacement shows slow-to-rapid transitions. At deeper depth ratios (C/D ≥ 3), surface displacement remains nearly constant. (4) Post-instability, stress concentration at the horizontal tunnel’s top opening causes segments to deform into an inverted V-shape. (5) Soil stress changes are categorized into three zones—stress release, soil wedging, and stress transfer—with each zone expanding as depth increases. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

17 pages, 8449 KB  
Article
Silicone Replication Technology Reveals HPWJ Hole Formation Mechanisms
by Shen Xu, Xinrui Zhang, Xu Zhou, Liwen Guo, Jiayong Zhang, Haikun Yang, Yu Xin, Yaoyuan Zhu and Zelin Hu
Appl. Sci. 2025, 15(18), 10132; https://doi.org/10.3390/app151810132 - 17 Sep 2025
Cited by 1 | Viewed by 375
Abstract
We reconstructed the morphology of holes using silicone replication technology, and inverted the hole parameters to reveal the law of high-pressure water jet (HPWJ) hole formation under multi-field coupling. The results show that under the multi-field coupling effects, the evolution of the hole [...] Read more.
We reconstructed the morphology of holes using silicone replication technology, and inverted the hole parameters to reveal the law of high-pressure water jet (HPWJ) hole formation under multi-field coupling. The results show that under the multi-field coupling effects, the evolution of the hole exhibits stage-wise characteristics; in the rapid expansion phase, the hole extends rapidly and deeply, forming a “wedge” pattern, and in the stabilization adjustment phase, the rate of hole expansion slows down, and the hole morphology shifts towards an “elliptical” or “teardrop-shaped” form. However, an increase in confining pressure inhibits the transformation of the hole morphology, and as a result, the “wedge-shaped” characteristics of the hole become more pronounced. With constant confining pressure, increased jet pressure significantly enhances both hole depth and volumetric average extension rate, exhibiting a positive correlation. Conversely, with constant jet pressure, increased confining pressure significantly decreases both hole depth and volumetric average extension rate, exhibiting a negative correlation. Based on silicone replication technology, we established a mapping relationship between ‘pore morphology-jet flow and environmental parameters’ which can be used to evaluate the pressure relief and permeability enhancement effects in deep low-permeability coal seams. By optimizing jet parameters, we can expand the scope of pressure relief and permeability improvement in coal seams, thereby enhancing gas drainage efficiency. Full article
(This article belongs to the Special Issue Coalbed Degassing Method and Technology)
Show Figures

Figure 1

27 pages, 11392 KB  
Article
The Influence of Structural Constraints and Configurations on Corrosion-Induced Cracking in Reinforced Concrete Based on the Phase-Field Method
by Pengfei Zhang, Lingye Leng, Wenqiang Xu, Sheng Qiang, Hui Wang and Ziang Zhao
Materials 2025, 18(17), 4199; https://doi.org/10.3390/ma18174199 - 7 Sep 2025
Viewed by 1604
Abstract
Corrosion-induced cracking of reinforced-concrete (RC) covers is well known, yet key knowledge gaps persist. Most studies isolate uniform corrosion or a single non-uniform corrosion pattern and ignore the effects of boundary restraint and structural configurations, leading to inaccurate predictions of cracking thresholds and [...] Read more.
Corrosion-induced cracking of reinforced-concrete (RC) covers is well known, yet key knowledge gaps persist. Most studies isolate uniform corrosion or a single non-uniform corrosion pattern and ignore the effects of boundary restraint and structural configurations, leading to inaccurate predictions of cracking thresholds and crack propagation patterns. This study systematically investigates the influence mechanisms of constraint conditions and structural configurations on corrosion-induced cracking behavior using the phase-field model. The results indicate that the non-uniformity of steel corrosion is a critical factor governing cover cracking. As the corrosion non-uniformity coefficient increases, the critical corrosion level exhibits a monotonic decreasing trend—from 0.95% to 0.15% under strong constraints and from 0.52% to 0.15% under weak constraints. Concurrently, the crack morphology evolves from a single radial crack to a wedge-shaped crack oriented toward the peak corrosion side. The influence of constraint conditions is dualistic, while strong constraints enhance the failure threshold, their mitigating effect diminishes markedly under highly non-uniform corrosion. The critical corrosion threshold for eccentrically arranged corner reinforcement is significantly lower than that for centrally arranged reinforcement; the corrosion angle only induces slight crack deflection and minor threshold fluctuations; and the curved top section, due to its weaker equivalent constraint, exhibits inferior crack resistance compared to the linear top section. Three-dimensional analysis reveals a pronounced longitudinal discreteness effect, which not only substantially elevates the critical corrosion threshold but also leads to diverse spatial failure modes. This work links rust-expansion eigen-displacement to crack propagation within a unified phase-field framework, providing materials-level criteria for evaluating corrosion tolerance and guiding the design of cover materials and reinforcement layouts to enhance durability. Full article
Show Figures

Figure 1

15 pages, 3262 KB  
Article
Comparison of a Multi-Scenario Robustness Evaluation Method with Measurements for Proton Teletherapy
by Qiangxing Yang, Michael F. Moyers and Zhuangming Shen
Cancers 2025, 17(17), 2927; https://doi.org/10.3390/cancers17172927 - 6 Sep 2025
Viewed by 1688
Abstract
Background/Objectives: Multi-scenario calculational methods have been used to evaluate proton teletherapy plan robustness but few studies have been performed to determine the accuracy of these calculational methods. This study evaluates a multi-scenario method by comparing calculations to measurements made in phantoms that [...] Read more.
Background/Objectives: Multi-scenario calculational methods have been used to evaluate proton teletherapy plan robustness but few studies have been performed to determine the accuracy of these calculational methods. This study evaluates a multi-scenario method by comparing calculations to measurements made in phantoms that simulate the effects of possible uncertainties. Methods: Plans were made using four phantoms in which the delivered dose was highly sensitive to positional and penetration uncertainties. The effects of alignment and penetration uncertainties on the dose distributions of each of those phantoms were simulated by performing calculations using nine different uncertainty scenarios and comparing the calculations to measurements with induced physical alignment displacements. Measured dose distributions were obtained by exposing films placed inside the phantoms and extracting multiple linear profiles. The maximum and minimum doses obtained for each of the calculational scenarios were compared with the measured dose profiles. In addition, comparisons of DVHs for nominal and uncertainty scenarios were performed. Results: The results showed that, under the influence of uncertainties, the minimum dose for the four phantoms decreased by more than 20 Gy, the V95% coverage fluctuated by more than 10%, but the maximum dose parameter changed by less than 5 Gy. This was expected, as no margins for uncertainties were applied around the targets. The envelope bounded by the maximum and minimum possible calculated doses contained most of the measurements, although the shapes of the dose profiles displayed some mismatches for wedge and head phantoms. There were a few points where the measured maximum dose for bone and lung slab phantom cases was slightly higher than the maximum dose calculated from the nine scenarios. Conclusions: This study demonstrates that a nine-scenario method can adequately evaluate the robustness of simple mono-directional plans containing heterogeneities. Full article
(This article belongs to the Special Issue The Advance of Pencil Beam Scanning Proton Beam Therapy in Cancers)
Show Figures

Figure 1

12 pages, 2851 KB  
Article
Long-Term Clinical Outcomes of Wedge-Shaped Implants Inserted in Narrow Ridges: A 7-Year Follow-Up Multicenter Prospective Single-Arm Cohort Study
by Antonio Rapani, Tomaso Vercellotti, Claudio Stacchi, Gianluca Gregorig, Francesco Oreglia, Emanuele Morella and Teresa Lombardi
J. Clin. Med. 2025, 14(17), 6299; https://doi.org/10.3390/jcm14176299 - 6 Sep 2025
Viewed by 1113
Abstract
Background: Wedge-shaped implants have been proposed as a minimally invasive solution for narrow alveolar ridges, aiming to avoid bone augmentation. While the short-term results are promising, long-term clinical evidence remains limited. Methods: This multicenter prospective single-arm cohort study reports the 7-year outcomes of [...] Read more.
Background: Wedge-shaped implants have been proposed as a minimally invasive solution for narrow alveolar ridges, aiming to avoid bone augmentation. While the short-term results are promising, long-term clinical evidence remains limited. Methods: This multicenter prospective single-arm cohort study reports the 7-year outcomes of tissue-level wedge-shaped implants (1.8 mm thickness) placed without grafting in horizontally atrophic ridges (mean thickness 3.73 ± 0.36 mm). Clinical and radiographic evaluations were performed on 45 implants (34 patients). Results: At the 7-year post-loading follow-up, the implant survival rate was 95.5%, with two failures recorded—one early loss and one due to peri-implantitis. Peri-implant mucositis was observed in 5 implants (11.4%), while peri-implantitis was diagnosed in 3 implants (6.8%). No mechanical complications were reported. The mean marginal bone loss (MBL) was 1.45 ± 1.41 mm, measured relative to the implant shoulder. Multivariate linear regression identified older age (β = +0.040; p = 0.012) and mandibular implant placement (β = +1.39; p = 0.007) as significant predictors of greater bone loss. Conclusions: Wedge-shaped implants demonstrated high long-term survival and stable marginal bone levels in narrow ridges without the need for bone augmentation. Age and mandibular location negatively influenced long-term bone stability, while smoking, gender, and history of periodontitis were not significant predictors. Full article
(This article belongs to the Special Issue Novel Developments in Dental and Oral Surgery)
Show Figures

Figure 1

22 pages, 7805 KB  
Article
Chloride Diffusion and Corrosion Assessment in Cracked Marine Concrete Bridges Using Extracted Crack Morphologies
by Xixi Wang, Pingming Huang, Yangguang Yuan, Di Wang, Yulong Yang and Xing Liu
Buildings 2025, 15(17), 3214; https://doi.org/10.3390/buildings15173214 - 5 Sep 2025
Cited by 1 | Viewed by 451
Abstract
Chloride-induced reinforcement corrosion primarily contributes to the deterioration of concrete structures. Cracks provide natural pathways for chloride ions, which accelerate the corrosion process and shorten the service life of structures. In this study, the morphologies of flexural cracks in the pure bending section [...] Read more.
Chloride-induced reinforcement corrosion primarily contributes to the deterioration of concrete structures. Cracks provide natural pathways for chloride ions, which accelerate the corrosion process and shorten the service life of structures. In this study, the morphologies of flexural cracks in the pure bending section are extracted through destructive testing, and a crack database containing 51 samples is established. These samples are defined as four crack morphologies as follows: equal-width, wedge-shaped, two-step, and three-step cracks. Subsequently, cracked concrete models were constructed, followed by a full factorial design containing 144 operating conditions to investigate the effects of crack morphology, width, depth, and their interactions on chloride diffusion. The results show that crack morphology significantly affects chloride diffusion behavior. The equal-width crack model exhibits the highest chloride diffusion rate, whereas the wedge-shaped crack model exhibits the lowest. At a crack width of 0.15 mm and a depth of 35 mm, the maximum relative error in chloride concentration between the two models is 94.5%. As the crack depth increases, the effect of crack morphology on chloride diffusion becomes increasingly significant, whereas increasing crack width tends to diminish this effect. Additionally, a rebar corrosion initiation assessment method based on the guarantee rate is proposed, and the effect of crack morphology on the corrosion initiation time is analyzed via a case study. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

27 pages, 16090 KB  
Article
Broadband Sound Insulation Enhancement Using Multi-Layer Thin-Foil Acoustic Membranes: Design and Experimental Validation
by Chun Gong, Faisal Rafique and Fengpeng Yang
Appl. Sci. 2025, 15(17), 9279; https://doi.org/10.3390/app15179279 - 23 Aug 2025
Viewed by 1133
Abstract
This study presents an acoustic membrane design utilizing a thin foil sound resonance mechanism to enhance sound absorption and insulation performance. The membranes incorporate single-layer and double-layer structures featuring parallel foil square wedge-shaped coffers and a flat bottom panel, separated by air cavities. [...] Read more.
This study presents an acoustic membrane design utilizing a thin foil sound resonance mechanism to enhance sound absorption and insulation performance. The membranes incorporate single-layer and double-layer structures featuring parallel foil square wedge-shaped coffers and a flat bottom panel, separated by air cavities. The enclosed air cavity significantly improves the sound insulation capability of the acoustic membrane. Parametric studies were conducted to investigate key factors affecting the sound transmission loss (STL) of the proposed acoustic membrane. The analysis examined the influence of foil thickness, substrate thickness, and back cavity depth on acoustic performance. Results demonstrate that the membrane structure enriches vibration modes in the 500–6000 Hz frequency range, exhibiting multiple acoustic attenuation peaks and broader noise reduction bandwidth (average STL of 40–55 dB across the researched frequency range) compared to conventional resonant cavities and membrane-type acoustic metamaterials. The STL characteristics can be tuned across different frequency bands by adjusting the back cavity depth, foil thickness, and substrate thickness. Experimental validation was performed through noise reduction tests on an air compressor pump. Comparative acoustic measurements confirmed the superior noise attenuation performance and practical applicability of the proposed membrane over conventional acoustic treatments. Compared to uniform foil resonators, the combination of plastic and steel materials with single-layer and double-layer membranes reduced the overall sound level (OA) by an additional 2–3 dB, thereby offering exceptional STL performance in the low- to medium-frequency range. These lightweight, easy-to-manufacture membranes exhibit considerable potential for noise control applications in household appliances and industrial settings. Full article
(This article belongs to the Section Acoustics and Vibrations)
Show Figures

Figure 1

22 pages, 7832 KB  
Article
Investigation into the Dynamic Evolution Characteristics of Gear Injection Lubrication Based on the CFD-VOF Model
by Yihong Gu, Xinxing Zhang, Lin Li and Qing Yan
Processes 2025, 13(8), 2540; https://doi.org/10.3390/pr13082540 - 12 Aug 2025
Viewed by 636
Abstract
In response to the growing demand for lightweight and high-efficiency industrial equipment, this study addresses the critical issue of lubrication failure in high-speed, heavy-duty gear reducers, which often leads to reduced transmission efficiency and premature mechanical damage. A three-dimensional transient multiphysics-coupled model of [...] Read more.
In response to the growing demand for lightweight and high-efficiency industrial equipment, this study addresses the critical issue of lubrication failure in high-speed, heavy-duty gear reducers, which often leads to reduced transmission efficiency and premature mechanical damage. A three-dimensional transient multiphysics-coupled model of oil-jet lubrication is developed based on computational fluid dynamics (CFD). The model integrates the Volume of Fluid (VOF) multiphase flow method with the shear stress transport (SST) k−ω turbulence model. This framework enables the accurate capture of oil-jet interface fragmentation, reattachment, and turbulence-coupled behavior within the gear meshing region. A parametric study is conducted on oil injection velocities ranging from 20 to 50 m/s to elucidate the coupling mechanisms between geometric configuration and flow dynamics, as well as their impacts on oil film evolution, energy dissipation, and thermal management. The results reveal that the proposed method can reveal the dynamic evolution characteristics of the gear injection lubrication. Adopting an appropriately moderate injection velocity (30 m/s) improves oil film coverage and continuity, with the lubricant transitioning from discrete droplets to a dense wedge-shaped film within the meshing zone. Optimal lubrication performance is achieved at this velocity, where oil shear-carrying capacity and kinetic energy utilization efficiency are maximized, while excessive turbulent kinetic energy dissipation is effectively suppressed. Dynamic monitoring data at point P further corroborate that a well-tuned injection velocity stabilizes lubricant-velocity fluctuations and improves lubricant oil distribution, thereby promoting consistent oil film formation and more efficient heat transfer. The proposed closed-loop collaborative framework—comprising model initialization, numerical solution, and post-processing—together with the introduced quantitative evaluation metrics, provides a solid theoretical foundation and engineering reference for structural optimization, energy control, and thermal reliability design of gearbox lubrication systems. This work offers important insights into precision lubrication of high-speed transmissions and contributes to the sustainable, green development of industrial machinery. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

22 pages, 6992 KB  
Article
Study on Gel–Resin Composite for Losting Circulation Control to Improve Plugging Effect in Fracture Formation
by Jinzhi Zhu, Tao Wang, Shaojun Zhang, Yingrui Bai, Guochuan Qin and Jingbin Yang
Gels 2025, 11(8), 617; https://doi.org/10.3390/gels11080617 - 7 Aug 2025
Cited by 1 | Viewed by 554
Abstract
Lost circulation, a prevalent challenge in drilling engineering, poses significant risks including drilling fluid loss, wellbore instability, and environmental contamination. Conventional plugging materials often exhibit an inadequate performance under high-temperature, high-pressure (HTHP), and complex formation conditions. To address that, this study developed a [...] Read more.
Lost circulation, a prevalent challenge in drilling engineering, poses significant risks including drilling fluid loss, wellbore instability, and environmental contamination. Conventional plugging materials often exhibit an inadequate performance under high-temperature, high-pressure (HTHP), and complex formation conditions. To address that, this study developed a high-performance gel–resin composite plugging material resistant to HTHP environments. By optimizing the formulation of bisphenol-A epoxy resin (20%), hexamethylenetetramine (3%), and hydroxyethyl cellulose (1%), and incorporating fillers such as nano-silica and walnut shell particles, a controllable high-strength plugging system was constructed. Fourier-transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) confirmed the structural stability of the resin, with an initial decomposition temperature of 220 °C and a compressive strength retention of 14.4 MPa after 45 days of aging at 140 °C. Rheological tests revealed shear-thinning behavior (initial viscosity: 300–350 mPa·s), with viscosity increasing marginally to 51 mPa·s after 10 h of stirring at ambient temperature, demonstrating superior pumpability. Experimental results indicated excellent adaptability of the system to drilling fluid contamination (compressive strength: 5.04 MPa at 20% dosage), high salinity (formation water salinity: 166.5 g/L), and elevated temperatures (140 °C). In pressure-bearing plugging tests, the resin achieved a breakthrough pressure of 15.19 MPa in wedge-shaped fractures (inlet: 7 mm/outlet: 5 mm) and a sand-packed tube sealing pressure of 11.25 MPa. Acid solubility tests further demonstrated outstanding degradability, with a 97.69% degradation rate after 24 h in 15% hydrochloric acid at 140 °C. This study provides an efficient, stable, and environmentally friendly solution for mitigating drilling fluid loss in complex formations, exhibiting significant potential for engineering applications. Full article
(This article belongs to the Special Issue Gels for Oil and Gas Industry Applications (3rd Edition))
Show Figures

Figure 1

19 pages, 4972 KB  
Article
Dispersion of TiB2 Particles in Al–Ni–Sc–Zr System Under Rapid Solidification
by Xin Fang, Lei Hu, Peng Rong and Yang Li
Metals 2025, 15(8), 872; https://doi.org/10.3390/met15080872 - 4 Aug 2025
Viewed by 580
Abstract
The dispersion behavior of ceramic particles in aluminum alloys during rapid solidification critically affects the resulting microstructure and mechanical performance. In this study, we investigated the nucleation and growth of Al3(Sc,Zr) on TiB2 surfaces in a 2TiB2/Al–8Ni–0.6Sc–0.1Zr alloy, [...] Read more.
The dispersion behavior of ceramic particles in aluminum alloys during rapid solidification critically affects the resulting microstructure and mechanical performance. In this study, we investigated the nucleation and growth of Al3(Sc,Zr) on TiB2 surfaces in a 2TiB2/Al–8Ni–0.6Sc–0.1Zr alloy, fabricated via wedge-shaped copper mold casting and laser surface remelting. Thermodynamic calculations were employed to optimize alloy composition, ensuring sufficient nucleation driving force under rapid solidification conditions. The results show that the formation of Al3(Sc,Zr)/TiB2 composite interfaces is highly dependent on cooling rate and plays a pivotal role in promoting uniform TiB2 dispersion. At an optimal cooling rate (~1200 °C/s), Al3(Sc,Zr) nucleates heterogeneously on TiB2, forming core–shell structures and enhancing particle engulfment into the α-Al matrix. Orientation relationship analysis reveals a preferred (111)α-Al//(0001)TiB2 alignment in Sc/Zr-containing samples. A classical nucleation model quantitatively explains the observed trends and reveals the critical cooling-rate window for composite interface formation. This work provides a mechanistic foundation for designing high-performance aluminum-based composites with uniformly dispersed reinforcements for additive manufacturing applications. Full article
Show Figures

Figure 1

31 pages, 14609 KB  
Article
Reservoir Properties and Gas Potential of the Carboniferous Deep Coal Seam in the Yulin Area of Ordos Basin, North China
by Xianglong Fang, Feng Qiu, Longyong Shu, Zhonggang Huo, Zhentao Li and Yidong Cai
Energies 2025, 18(15), 3987; https://doi.org/10.3390/en18153987 - 25 Jul 2025
Cited by 1 | Viewed by 641
Abstract
In comparison to shallow coal seams, deep coal seams exhibit characteristics of high temperature, pressure, and in-situ stress, leading to significant differences in reservoir properties that constrain the effective development of deep coalbed methane (CBM). This study takes the Carboniferous deep 8# coal [...] Read more.
In comparison to shallow coal seams, deep coal seams exhibit characteristics of high temperature, pressure, and in-situ stress, leading to significant differences in reservoir properties that constrain the effective development of deep coalbed methane (CBM). This study takes the Carboniferous deep 8# coal seam in the Yulin area of Ordos basin as the research subject. Based on the test results from core drilling wells, a comprehensive analysis of the characteristics and variation patterns of coal reservoir properties and a comparative analysis of the exploration and development potential of deep CBM are conducted, aiming to provide guidance for the development of deep CBM in the Ordos basin. The research results indicate that the coal seams are primarily composed of primary structure coal, with semi-bright to bright being the dominant macroscopic coal types. The maximum vitrinite reflectance (Ro,max) ranges between 1.99% and 2.24%, the organic is type III, and the high Vitrinite content provides a substantial material basis for the generation of CBM. Longitudinally, influenced by sedimentary environment and plant types, the lower part of the coal seam exhibits higher Vitrinite content and fixed carbon (FCad). The pore morphology is mainly characterized by wedge-shaped/parallel plate-shaped pores and open ventilation pores, with good connectivity, which is favorable for the storage and output of CBM. Micropores (<2 nm) have the highest volume proportion, showing an increasing trend with burial depth, and due to interlayer sliding and capillary condensation, the pore size (<2 nm) distribution follows an N shape. The full-scale pore heterogeneity (fractal dimension) gradually increases with increasing buried depth. Macroscopic fractures are mostly found in bright coal bands, while microscopic fractures are more developed in Vitrinite, showing a positive correlation between fracture density and Vitrinite content. The porosity and permeability conditions of reservoirs are comparable to the Daning–Jixian block, mostly constituting oversaturated gas reservoirs with a critical depth of 2400–2600 m and a high proportion of free gas, exhibiting promising development prospects, and the middle and upper coal seams are favorable intervals. In terms of resource conditions, preservation conditions, and reservoir alterability, the development potential of CBM from the Carboniferous deep 8# coal seam is comparable to the Linxing block but inferior to the Daning–Jixian block and Baijiahai uplift. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

Back to TopTop