Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (625)

Search Parameters:
Keywords = wearable devices for healthcare

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2440 KiB  
Article
An Ultra-Robust, Highly Compressible Silk/Silver Nanowire Sponge-Based Wearable Pressure Sensor for Health Monitoring
by Zijie Li, Ning Yu, Martin C. Hartel, Reihaneh Haghniaz, Sam Emaminejad and Yangzhi Zhu
Biosensors 2025, 15(8), 498; https://doi.org/10.3390/bios15080498 - 1 Aug 2025
Viewed by 134
Abstract
Wearable pressure sensors have emerged as vital tools in personalized monitoring, promising transformative advances in patient care and diagnostics. Nevertheless, conventional devices frequently suffer from limited sensitivity, inadequate flexibility, and concerns regarding biocompatibility. Herein, we introduce silk fibroin, a naturally occurring protein extracted [...] Read more.
Wearable pressure sensors have emerged as vital tools in personalized monitoring, promising transformative advances in patient care and diagnostics. Nevertheless, conventional devices frequently suffer from limited sensitivity, inadequate flexibility, and concerns regarding biocompatibility. Herein, we introduce silk fibroin, a naturally occurring protein extracted from silkworm cocoons, as a promising material platform for next-generation wearable sensors. Owing to its remarkable biocompatibility, mechanical robustness, and structural tunability, silk fibroin serves as an ideal substrate for constructing capacitive pressure sensors tailored to medical applications. We engineered silk-derived capacitive architecture and evaluated its performance in real-time human motion and physiological signal detection. The resulting sensor exhibits a high sensitivity of 18.68 kPa−1 over a broad operational range of 0 to 2.4 kPa, enabling accurate tracking of subtle pressures associated with pulse, respiration, and joint articulation. Under extreme loading conditions, our silk fibroin sensor demonstrated superior stability and accuracy compared to a commercial resistive counterpart (FlexiForce™ A401). These findings establish silk fibroin as a versatile, practical candidate for wearable pressure sensing and pave the way for advanced biocompatible devices in healthcare monitoring. Full article
(This article belongs to the Special Issue Wearable Biosensors and Health Monitoring)
Show Figures

Figure 1

15 pages, 514 KiB  
Article
Remote Patient Monitoring Applications in Healthcare: Lessons from COVID-19 and Beyond
by Azrin Khan and Dominique Duncan
Electronics 2025, 14(15), 3084; https://doi.org/10.3390/electronics14153084 - 1 Aug 2025
Viewed by 291
Abstract
The COVID-19 pandemic catalyzed the rapid adoption of remote patient monitoring (RPM) technologies such as telemedicine and wearable devices (WDs), significantly transforming healthcare delivery. Telemedicine made virtual consultations possible, reducing in-person visits and infection risks, particularly for the management of chronic diseases. Wearable [...] Read more.
The COVID-19 pandemic catalyzed the rapid adoption of remote patient monitoring (RPM) technologies such as telemedicine and wearable devices (WDs), significantly transforming healthcare delivery. Telemedicine made virtual consultations possible, reducing in-person visits and infection risks, particularly for the management of chronic diseases. Wearable devices enabled the real-time continuous monitoring of health that assisted in condition prediction and management, such as for COVID-19. This narrative review addresses these transformations by uniquely synthesizing findings from 13 diverse studies (sourced from PubMed and Google Scholar, 2020–2024) to analyze the parallel evolution of telemedicine and WDs as interconnected RPM components. It highlights the pandemic’s dual impact, as follows: accelerating RPM innovation and adoption while simultaneously unmasking systemic challenges such as inequities in access and a need for robust integration approaches; while telemedicine usage soared during the pandemic, consumption post-pandemic, as indicated by the reviewed studies, suggests continued barriers to adoption among older adults. Likewise, wearable devices demonstrated significant potential in early disease detection and long-term health management, with promising applications extending beyond COVID-19, including long COVID conditions. Addressing the identified challenges is crucial for healthcare providers and systems to fully embrace these technologies and this would improve efficiency and patient outcomes. Full article
Show Figures

Figure 1

36 pages, 2671 KiB  
Article
DIKWP-Driven Artificial Consciousness for IoT-Enabled Smart Healthcare Systems
by Yucong Duan and Zhendong Guo
Appl. Sci. 2025, 15(15), 8508; https://doi.org/10.3390/app15158508 (registering DOI) - 31 Jul 2025
Viewed by 219
Abstract
This study presents a DIKWP-driven artificial consciousness framework for IoT-enabled smart healthcare, integrating a Data–Information–Knowledge–Wisdom–Purpose (DIKWP) cognitive architecture with a software-defined IoT infrastructure. The proposed system deploys DIKWP agents at edge and cloud nodes to transform raw sensor data into high-level knowledge and [...] Read more.
This study presents a DIKWP-driven artificial consciousness framework for IoT-enabled smart healthcare, integrating a Data–Information–Knowledge–Wisdom–Purpose (DIKWP) cognitive architecture with a software-defined IoT infrastructure. The proposed system deploys DIKWP agents at edge and cloud nodes to transform raw sensor data into high-level knowledge and purpose-driven actions. This is achieved through a structured DIKWP pipeline—from data acquisition and information processing to knowledge extraction, wisdom inference, and purpose-driven decision-making—that enables semantic reasoning, adaptive goal-driven responses, and privacy-preserving decision-making in healthcare environments. The architecture integrates wearable sensors, edge computing nodes, and cloud services to enable dynamic task orchestration and secure data fusion. For evaluation, a smart healthcare scenario for early anomaly detection (e.g., arrhythmia and fever) was implemented using wearable devices with coordinated edge–cloud analytics. Simulated experiments on synthetic vital sign datasets achieved approximately 98% anomaly detection accuracy and up to 90% reduction in communication overhead compared to cloud-centric solutions. Results also demonstrate enhanced explainability via traceable decisions across DIKWP layers and robust performance under intermittent connectivity. These findings indicate that the DIKWP-driven approach can significantly advance IoT-based healthcare by providing secure, explainable, and adaptive services aligned with clinical objectives and patient-centric care. Full article
(This article belongs to the Special Issue IoT in Smart Cities and Homes, 2nd Edition)
Show Figures

Figure 1

21 pages, 3471 KiB  
Review
Nanomedicine: The Effective Role of Nanomaterials in Healthcare from Diagnosis to Therapy
by Raisa Nazir Ahmed Kazi, Ibrahim W. Hasani, Doaa S. R. Khafaga, Samer Kabba, Mohd Farhan, Mohammad Aatif, Ghazala Muteeb and Yosri A. Fahim
Pharmaceutics 2025, 17(8), 987; https://doi.org/10.3390/pharmaceutics17080987 - 30 Jul 2025
Viewed by 267
Abstract
Nanotechnology is revolutionizing medicine by enabling highly precise diagnostics, targeted therapies, and personalized healthcare solutions. This review explores the multifaceted applications of nanotechnology across medical fields such as oncology and infectious disease control. Engineered nanoparticles (NPs), such as liposomes, polymeric carriers, and carbon-based [...] Read more.
Nanotechnology is revolutionizing medicine by enabling highly precise diagnostics, targeted therapies, and personalized healthcare solutions. This review explores the multifaceted applications of nanotechnology across medical fields such as oncology and infectious disease control. Engineered nanoparticles (NPs), such as liposomes, polymeric carriers, and carbon-based nanomaterials, enhance drug solubility, protect therapeutic agents from degradation, and enable site-specific delivery, thereby reducing toxicity to healthy tissues. In diagnostics, nanosensors and contrast agents provide ultra-sensitive detection of biomarkers, supporting early diagnosis and real-time monitoring. Nanotechnology also contributes to regenerative medicine, antimicrobial therapies, wearable devices, and theranostics, which integrate treatment and diagnosis into unified systems. Advanced innovations such as nanobots and smart nanosystems further extend these capabilities, enabling responsive drug delivery and minimally invasive interventions. Despite its immense potential, nanomedicine faces challenges, including biocompatibility, environmental safety, manufacturing scalability, and regulatory oversight. Addressing these issues is essential for clinical translation and public acceptance. In summary, nanotechnology offers transformative tools that are reshaping medical diagnostics, therapeutics, and disease prevention. Through continued research and interdisciplinary collaboration, it holds the potential to significantly enhance treatment outcomes, reduce healthcare costs, and usher in a new era of precise and personalized medicine. Full article
Show Figures

Figure 1

13 pages, 532 KiB  
Article
Medical and Biomedical Students’ Perspective on Digital Health and Its Integration in Medical Curricula: Recent and Future Views
by Srijit Das, Nazik Ahmed, Issa Al Rahbi, Yamamh Al-Jubori, Rawan Al Busaidi, Aya Al Harbi, Mohammed Al Tobi and Halima Albalushi
Int. J. Environ. Res. Public Health 2025, 22(8), 1193; https://doi.org/10.3390/ijerph22081193 - 30 Jul 2025
Viewed by 317
Abstract
The incorporation of digital health into the medical curricula is becoming more important to better prepare doctors in the future. Digital health comprises a wide range of tools such as electronic health records, health information technology, telemedicine, telehealth, mobile health applications, wearable devices, [...] Read more.
The incorporation of digital health into the medical curricula is becoming more important to better prepare doctors in the future. Digital health comprises a wide range of tools such as electronic health records, health information technology, telemedicine, telehealth, mobile health applications, wearable devices, artificial intelligence, and virtual reality. The present study aimed to explore the medical and biomedical students’ perspectives on the integration of digital health in medical curricula. A cross-sectional study was conducted on the medical and biomedical undergraduate students at the College of Medicine and Health Sciences at Sultan Qaboos University. Data was collected using a self-administered questionnaire. The response rate was 37%. The majority of respondents were in the MD (Doctor of Medicine) program (84.4%), while 29 students (15.6%) were from the BMS (Biomedical Sciences) program. A total of 55.38% agreed that they were familiar with the term ‘e-Health’. Additionally, 143 individuals (76.88%) reported being aware of the definition of e-Health. Specifically, 69 individuals (37.10%) utilize e-Health technologies every other week, 20 individuals (10.75%) reported using them daily, while 44 individuals (23.66%) indicated that they never used such technologies. Despite having several benefits, challenges exist in integrating digital health into the medical curriculum. There is a need to overcome the lack of infrastructure, existing educational materials, and digital health topics. In conclusion, embedding digital health into medical curricula is certainly beneficial for creating a digitally competent healthcare workforce that could help in better data storage, help in diagnosis, aid in patient consultation from a distance, and advise on medications, thereby leading to improved patient care which is a key public health priority. Full article
Show Figures

Figure 1

14 pages, 298 KiB  
Review
Asthma Symptom Self-Monitoring Methods for Children and Adolescents: Present and Future
by Hyekyun Rhee and Nattasit Katchamat
Children 2025, 12(8), 997; https://doi.org/10.3390/children12080997 - 29 Jul 2025
Viewed by 316
Abstract
Asthma is the leading chronic condition in children and adolescents, requiring continuous monitoring to effectively prevent and manage symptoms. Symptom monitoring can guide timely and effective self-management actions by children and their parents and inform treatment decisions by healthcare providers. This paper examines [...] Read more.
Asthma is the leading chronic condition in children and adolescents, requiring continuous monitoring to effectively prevent and manage symptoms. Symptom monitoring can guide timely and effective self-management actions by children and their parents and inform treatment decisions by healthcare providers. This paper examines two conventional monitoring methods, including symptom-based and peak expiratory flow (PEF) monitoring, reviews early efforts to quantify respiratory symptoms, and introduces an emerging sensor-based mHealth approach. Although symptom-based monitoring is commonly used in clinical practice, its adequacy is a concern due to its subjective nature, as it primarily relies on individual perception. PEF monitoring, while objective, has shown weak correlations with actual asthma activity or lung function and suffers from suboptimal adherence among youth. To enhance objectivity in symptom monitoring, earlier efforts focused on quantifying respiratory symptoms by harnessing mechanical equipment. However, the practicality of these methods for daily use is limited due to the equipment’s bulkiness and the time- and labor-intensive nature of data processing and interpretation. As an innovative alternative, sensor-based mHealth devices have emerged to provide automatic, objective, and continuous monitoring of respiratory symptoms. These wearable technologies offer promising potential to overcome the issues of perceptual inaccuracy and poor adherence associated with conventional methods. However, many of these devices are still in developmental or testing phases, with limited data on their clinical efficacy, usability, and long-term impact on self-management behaviors. Future research and robust clinical trials are warranted to establish their role in asthma monitoring and management and improving asthma outcomes in children and adolescents. Full article
46 pages, 2471 KiB  
Systematic Review
Technical Functions of Digital Wearable Products (DWPs) in the Consumer Acceptance Model: A Systematic Review and Bibliometric Analysis with a Biomimetic Perspective
by Liu Yuxin, Sarah Abdulkareem Salih and Nazlina Shaari
Biomimetics 2025, 10(8), 483; https://doi.org/10.3390/biomimetics10080483 - 22 Jul 2025
Viewed by 681
Abstract
Design and use of wearable technology have grown exponentially, particularly in consumer products and service sectors, e.g., healthcare. However, there is a lack of a comprehensive understanding of wearable technology in consumer acceptance. This systematic review utilized a PRISMA on peer-reviewed articles published [...] Read more.
Design and use of wearable technology have grown exponentially, particularly in consumer products and service sectors, e.g., healthcare. However, there is a lack of a comprehensive understanding of wearable technology in consumer acceptance. This systematic review utilized a PRISMA on peer-reviewed articles published between 2014 and 2024 and collected on WoS, Scopus, and ScienceDirect. A total of 38 full-text articles were systematically reviewed and analyzed using bibliometric, thematic, and descriptive analysis to understand the technical functions of digital wearable products (DWPs) in consumer acceptance. The findings revealed four key functions: (i) wearable technology, (ii) appearance and design, (iii) biomimetic innovation, and (iv) security and privacy, found in eight types of DWPs, among them smartwatches, medical robotics, fitness devices, and wearable fashions, significantly predicted the customers’ acceptance moderated by the behavioral factors. The review also identified five key outcomes: health and fitness, enjoyment, social value, biomimicry, and market growth. The review proposed a comprehensive acceptance model that combines biomimetic principles and AI-driven features into the technical functions of the technical function model (TAM) while addressing security and privacy concerns. This approach contributes to the extended definition of TAM in wearable technology, offering new pathways for biomimetic research in smart devices and robotics. Full article
(This article belongs to the Special Issue Bionic Wearable Robotics and Intelligent Assistive Technologies)
Show Figures

Figure 1

20 pages, 22580 KiB  
Article
Life-Threatening Ventricular Arrhythmia Identification Based on Multiple Complex Networks
by Zhipeng Cai, Menglin Yu, Jiawen Yu, Xintao Han, Jianqing Li and Yangyang Qu
Electronics 2025, 14(15), 2921; https://doi.org/10.3390/electronics14152921 - 22 Jul 2025
Viewed by 198
Abstract
Ventricular arrhythmias (VAs) are critical cardiovascular diseases that require rapid and accurate detection. Conventional approaches relying on multi-lead ECG or deep learning models have limitations in computational cost, interpretability, and real-time applicability on wearable devices. To address these issues, a lightweight and interpretable [...] Read more.
Ventricular arrhythmias (VAs) are critical cardiovascular diseases that require rapid and accurate detection. Conventional approaches relying on multi-lead ECG or deep learning models have limitations in computational cost, interpretability, and real-time applicability on wearable devices. To address these issues, a lightweight and interpretable framework based on multiple complex networks was proposed for the detection of life-threatening VAs using short-term single-lead ECG signals. The input signals were decomposed using the fixed-frequency-range empirical wavelet transform, and sub-bands were subsequently analyzed through multiscale visibility graphs, recurrence networks, cross-recurrence networks, and joint recurrence networks. Eight topological features were extracted and input into an XGBoost classifier for VA identification. Ten-fold cross-validation results on the MIT-BIH VFDB and CUDB databases demonstrated that the proposed method achieved a sensitivity of 99.02 ± 0.53%, a specificity of 98.44 ± 0.43%, and an accuracy of 98.73 ± 0.02% for 10 s ECG segments. The model also maintained robust performance on shorter segments, with 97.23 ± 0.76% sensitivity, 98.85 ± 0.95% specificity, and 96.62 ± 0.02% accuracy on 2 s segments. The results outperformed existing feature-based and deep learning approaches while preserving model interpretability. Furthermore, the proposed method supports mobile deployment, facilitating real-time use in wearable healthcare applications. Full article
(This article belongs to the Special Issue Smart Bioelectronics, Wearable Systems and E-Health)
Show Figures

Figure 1

12 pages, 2038 KiB  
Article
Smart App and Wearable Device-Based Approaches for Contactless Public Healthcare for Adolescents in Korea
by Ji-Hoon Cho and Seung-Taek Lim
Appl. Sci. 2025, 15(14), 8084; https://doi.org/10.3390/app15148084 - 21 Jul 2025
Viewed by 269
Abstract
In Korea, the Public Health Center Mobile Healthcare Project was implemented in 2016. This project utilizes Information and Communication Technology (ICT) and big data to establish a health-related service foundation and a healthcare service operation system. Equipment and methods: This study recruited 1261 [...] Read more.
In Korea, the Public Health Center Mobile Healthcare Project was implemented in 2016. This project utilizes Information and Communication Technology (ICT) and big data to establish a health-related service foundation and a healthcare service operation system. Equipment and methods: This study recruited 1261 adolescents (660 males (13.40 ± 1.14 years, 156.12 ± 10.59 cm) and 601 females (13.51 ± 1.23 years, 154.45 ± 7.48 cm)) from 22 public health centers nationwide. Smart bands were provided, and the ‘Future Health’ application (APP) was installed on personal smartphones to assess body composition, physical fitness, and physical activity. Results: A paired sample t-test revealed height, 20 m shuttle run, grip strength, and long jump scores significantly differed after 24 weeks in males. Females exhibited significant height, 20 m shuttle run, grip strength, sit-ups, and long jump differences. Moderate physical activity (MPA, p < 0.001), vigorous physical activity (VPA, p < 0.001), and moderate-to-vigorous physical activity (MVPA, p < 0.001) were significantly different after 24 weeks in adolescents. These results establish that an ICT-based health promotion service can provide adolescent students with individual information from a centralized organization to monitor health behaviors and receive feedback regardless of location in South Korea. Full article
(This article belongs to the Special Issue Sports, Exercise and Healthcare)
Show Figures

Figure 1

25 pages, 1283 KiB  
Systematic Review
Reinforcement Learning and Its Clinical Applications Within Healthcare: A Systematic Review of Precision Medicine and Dynamic Treatment Regimes
by Timothy C. Frommeyer, Michael M. Gilbert, Reid M. Fursmidt, Youngjun Park, John Paul Khouzam, Garrett V. Brittain, Daniel P. Frommeyer, Ean S. Bett and Trevor J. Bihl
Healthcare 2025, 13(14), 1752; https://doi.org/10.3390/healthcare13141752 - 19 Jul 2025
Viewed by 503
Abstract
Background/Objectives: Reinforcement learning (RL), a subset of machine learning, has emerged as a promising tool for supporting precision medicine and dynamic treatment regimes by enabling adaptive, data-driven clinical decision making. Despite its potential, challenges such as interpretability, reward definition, data limitations, and [...] Read more.
Background/Objectives: Reinforcement learning (RL), a subset of machine learning, has emerged as a promising tool for supporting precision medicine and dynamic treatment regimes by enabling adaptive, data-driven clinical decision making. Despite its potential, challenges such as interpretability, reward definition, data limitations, and clinician adoption remain. This review aims to evaluate the recent advancements in RL in precision medicine and dynamic treatment regimes, highlight clinical fields of application, and propose practical frameworks for future integration into medical practice. Methods: A systematic review was conducted following PRISMA guidelines across PubMed, MEDLINE, and Web of Science databases, focusing on studies from January 2014 to December 2024. Articles were included based on their relevance to RL applications in precision medicine and dynamic treatment regime within healthcare. Data extraction captured study characteristics, algorithms used, specialty area, and outcomes. Results: Forty-six studies met the inclusion criteria. RL applications were concentrated in endocrinology, critical care, oncology, and behavioral health, with a focus on dynamic and personalized treatment planning. Hybrid and value-based RL methods were the most utilized. Since 2020, there has been a sharp increase in RL research in healthcare, driven by advances in computational power, digital health technologies, and increased use of wearable devices. Conclusions: RL offers a powerful opportunity to augment clinical decision making by enabling dynamic and individualized patient care. Addressing key barriers related to transparency, data availability, and alignment with clinical workflows will be critical to translating RL into everyday medical practice. Full article
(This article belongs to the Special Issue Artificial Intelligence in Healthcare: Opportunities and Challenges)
Show Figures

Figure 1

35 pages, 6415 KiB  
Review
Recent Advances in Conductive Hydrogels for Electronic Skin and Healthcare Monitoring
by Yan Zhu, Baojin Chen, Yiming Liu, Tiantian Tan, Bowen Gao, Lijun Lu, Pengcheng Zhu and Yanchao Mao
Biosensors 2025, 15(7), 463; https://doi.org/10.3390/bios15070463 - 18 Jul 2025
Viewed by 380
Abstract
In recent decades, flexible electronics have witnessed remarkable advancements in multiple fields, encompassing wearable electronics, human–machine interfaces (HMI), clinical diagnosis, and treatment, etc. Nevertheless, conventional rigid electronic devices are fundamentally constrained by their inherent non-stretchability and poor conformability, limitations that substantially impede their [...] Read more.
In recent decades, flexible electronics have witnessed remarkable advancements in multiple fields, encompassing wearable electronics, human–machine interfaces (HMI), clinical diagnosis, and treatment, etc. Nevertheless, conventional rigid electronic devices are fundamentally constrained by their inherent non-stretchability and poor conformability, limitations that substantially impede their practical applications. In contrast, conductive hydrogels (CHs) for electronic skin (E-skin) and healthcare monitoring have attracted substantial interest owing to outstanding features, including adjustable mechanical properties, intrinsic flexibility, stretchability, transparency, and diverse functional and structural designs. Considerable efforts focus on developing CHs incorporating various conductive materials to enable multifunctional wearable sensors and flexible electrodes, such as metals, carbon, ionic liquids (ILs), MXene, etc. This review presents a comprehensive summary of the recent advancements in CHs, focusing on their classifications and practical applications. Firstly, CHs are categorized into five groups based on the nature of the conductive materials employed. These categories include polymer-based, carbon-based, metal-based, MXene-based, and ionic CHs. Secondly, the promising applications of CHs for electrophysiological signals and healthcare monitoring are discussed in detail, including electroencephalogram (EEG), electrocardiogram (ECG), electromyogram (EMG), respiratory monitoring, and motion monitoring. Finally, this review concludes with a comprehensive summary of current research progress and prospects regarding CHs in the fields of electronic skin and health monitoring applications. Full article
Show Figures

Figure 1

17 pages, 992 KiB  
Article
Improving Vulnerability Management for Security-by-Design of Medical Devices
by Emanuele Raso, Francesca Nanni, Francesco Lestini, Lorenzo Bracciale, Giorgia Panico, Giuseppe Bianchi, Giancarlo Orengo, Gaetano Marrocco and Pierpaolo Loreti
Sensors 2025, 25(14), 4418; https://doi.org/10.3390/s25144418 - 16 Jul 2025
Viewed by 516
Abstract
The healthcare industry is witnessing a rapid rise in the adoption of wearable and implantable medical devices, including advanced electrochemical sensors and other smart diagnostic technologies. These devices are increasingly used to enable real-time monitoring of physiological parameters, allowing for faster diagnosis and [...] Read more.
The healthcare industry is witnessing a rapid rise in the adoption of wearable and implantable medical devices, including advanced electrochemical sensors and other smart diagnostic technologies. These devices are increasingly used to enable real-time monitoring of physiological parameters, allowing for faster diagnosis and more personalized care plans. Their growing presence reflects a broader shift toward smart connected healthcare systems aimed at delivering immediate and actionable insights to both patients and medical professionals. At the same time, the healthcare industry is increasingly targeted by cyberattacks, primarily due to the high value of medical information; in addition, the growing integration of ICT technologies into medical devices has introduced new vulnerabilities that were previously absent in this sector. To mitigate these risks, new international guidelines advocate the adoption of best practices for secure software development, emphasizing a security-by-design approach in the design and implementation of such devices. However, the vast and fragmented nature of the information required to effectively support these development processes poses a challenge for the numerous stakeholders involved. In this paper, we demonstrate how key features of the Malware Information Sharing Platform (MISP) can be leveraged to systematically collect and structure vulnerability-related information for medical devices. We propose tailored structures, objects, and taxonomies specific to medical devices, facilitating a standardized data representation that enhances the security-by-design development of these devices. Full article
(This article belongs to the Special Issue Wearable and Implantable Electrochemical Sensors)
Show Figures

Figure 1

21 pages, 430 KiB  
Systematic Review
Evaluating the Efficacy and Impact of Home-Based Cardiac Telerehabilitation on Health-Related Quality of Life (HRQOL) in Patients Undergoing Percutaneous Coronary Intervention (PCI): A Systematic Review
by Francesco Limonti, Andrea Gigliotti, Luciano Cecere, Angelo Varvaro, Vincenzo Bosco, Rocco Mazzotta, Francesco Gravante and Nicola Ramacciati
J. Clin. Med. 2025, 14(14), 4971; https://doi.org/10.3390/jcm14144971 - 14 Jul 2025
Viewed by 1117
Abstract
Introduction: Home-based cardiac telerehabilitation (HBCTR) is a multidisciplinary intervention aimed at optimizing functional, psychological, and social recovery in patients undergoing percutaneous coronary intervention (PCI). This rehabilitation model serves as an effective alternative to traditional center-based rehabilitation, providing a cost-effective and clinically advantageous approach. [...] Read more.
Introduction: Home-based cardiac telerehabilitation (HBCTR) is a multidisciplinary intervention aimed at optimizing functional, psychological, and social recovery in patients undergoing percutaneous coronary intervention (PCI). This rehabilitation model serves as an effective alternative to traditional center-based rehabilitation, providing a cost-effective and clinically advantageous approach. Methods: Following PRISMA guidelines, we conducted a systematic literature search across multiple databases (PubMed, CINAHL, Cochrane, Scopus, Web of Science). We included randomized controlled trials (RCTs), cohort, and observational studies assessing telerehabilitation in post-PCI patients. Primary outcomes focused on health-related quality of life (HRQoL) and adherence, while secondary outcomes included functional capacity (6 min walk test, VO2max), cardiovascular risk factor control, and psychological well-being. Risk of bias was assessed using the Cochrane RoB 2.0 and ROBINS-I tools. Results: A total of 3575 articles were identified after removing duplicates, of which 877 were selected based on title and abstract, and 17 met the inclusion criteria, with strong RCT representation ensuring robust evidence synthesis. HBCTR was associated with significant improvements in exercise capacity, with increases in VO2max ranging from +1.6 to +3.5 mL/kg/min and in 6 min walk distance from +34.7 to +116.6 m. HRQoL scores improved significantly, with physical and mental component scores increasing by +6.75 to +14.18 and +4.27 to +11.39 points, respectively. Adherence to telerehabilitation programs was consistently high, often exceeding 80%, and some studies reported reductions in hospital readmissions of up to 40%. Wearable devices and smartphone applications facilitated self-monitoring, enhancing adherence and reducing readmissions. Several studies also highlighted improvements in anxiety and depression scores ranging from 10% to 35%. Conclusions: HBCTR is a promising strategy for rehabilitation and quality-of-life improvement after PCI. It offers a patient-centered solution that leverages technology to enhance long-term outcomes. By integrating structured telerehabilitation programs, healthcare systems can expand accessibility, promote adherence, and improve equity in cardiovascular care. Full article
(This article belongs to the Section Cardiology)
Show Figures

Figure 1

21 pages, 4197 KiB  
Article
cBP-Tnet: Continuous Blood Pressure Estimation Using Multi-Task Transformer Network with Automatic Photoplethysmogram Feature Extraction
by Angelino A. Pimentel, Ji-Jer Huang and Aaron Raymond A. See
Appl. Sci. 2025, 15(14), 7824; https://doi.org/10.3390/app15147824 - 12 Jul 2025
Viewed by 478
Abstract
Traditional cuff-based blood pressure (BP) monitoring methods provide only intermittent readings, while invasive alternatives pose clinical risks. Recent studies have demonstrated feasibility of estimating continuous non-invasive cuff-less BP using photoplethysmogram (PPG) signals alone. However, existing approaches rely on complex manual feature engineering and/or [...] Read more.
Traditional cuff-based blood pressure (BP) monitoring methods provide only intermittent readings, while invasive alternatives pose clinical risks. Recent studies have demonstrated feasibility of estimating continuous non-invasive cuff-less BP using photoplethysmogram (PPG) signals alone. However, existing approaches rely on complex manual feature engineering and/or multiple model architectures, resulting in inefficient epoch training numbers and limited performance. This research proposes cBP-Tnet, an efficient single-channel and model multi-task Transformer network designed for PPG signal automatic feature extraction. cBP-Tnet employed specialized hyperparameters—integrating adaptive Kalman filtering, outlier elimination, signal synchronization, and data augmentation—leveraging multi-head self-attention and multi-task learning strategies to identify subtle and shared waveform patterns associated with systolic blood pressure (SBP) and diastolic blood pressure (DBP). We used the MIMIC-II public dataset (500 patients with 202,956 samples) for experimentation. Results showed mean absolute errors of 4.32 mmHg for SBP and 2.18 mmHg for DBP. For the first time, both SBP and DBP meet the Association for the Advancement of Medical Instrumentation’s international standard (<5 mmHg, >85 subjects). Furthermore, the network efficiently reduces the epoch training number by 13.67% when compared to other deep learning methods. Thus, this establishes cBP-Tnet’s potential for integration into wearable and home-based healthcare devices with continuous non-invasive cuff-less blood pressure monitoring. Full article
Show Figures

Figure 1

22 pages, 1381 KiB  
Review
Artificial Intelligence and ECG: A New Frontier in Cardiac Diagnostics and Prevention
by Dorota Bartusik-Aebisher, Kacper Rogóż and David Aebisher
Biomedicines 2025, 13(7), 1685; https://doi.org/10.3390/biomedicines13071685 - 9 Jul 2025
Viewed by 1336
Abstract
Objectives: With the growing importance of mobile technology and artificial intelligence (AI) in healthcare, the development of automated cardiac diagnostic systems has gained strategic significance. This review aims to summarize the current state of knowledge on the use of AI in the [...] Read more.
Objectives: With the growing importance of mobile technology and artificial intelligence (AI) in healthcare, the development of automated cardiac diagnostic systems has gained strategic significance. This review aims to summarize the current state of knowledge on the use of AI in the analysis of electrocardiographic (ECG) signals obtained from wearable devices, particularly smartwatches, and to outline perspectives for future clinical applications. Methods: A narrative literature review was conducted using PubMed, Web of Science, and Scopus databases. The search focused on combinations of keywords related to AI, ECG, and wearable technologies. After screening and applying inclusion criteria, 152 publications were selected for final analysis. Conclusions: Modern AI algorithms—especially deep neural networks—show promise in detecting arrhythmias, heart failure, prolonged QT syndrome, and other cardiovascular conditions. Smartwatches without ECG sensors, using photoplethysmography (PPG) and machine learning, show potential as supportive tools for preliminary atrial fibrillation (AF) screening at the population level, although further validation in diverse real-world settings is needed. This article explores innovation trends such as genetic data integration, digital twins, federated learning, and local signal processing. Regulatory, technical, and ethical challenges are also discussed, along with the issue of limited clinical evidence. Artificial intelligence enables a significant enhancement of personalized, mobile, and preventive cardiology. Its integration into smartwatch ECG analysis opens a path toward early detection of cardiac disorders and the implementation of population-scale screening approaches. Full article
(This article belongs to the Special Issue Feature Reviews in Cardiovascular Diseases)
Show Figures

Figure 1

Back to TopTop