Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (407)

Search Parameters:
Keywords = water-related ecosystem services (WES)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2727 KiB  
Article
Local Perspectives on the Role of Dams in Altering River Ecosystem Services in West Africa
by Jean Hounkpe, Yaovi Aymar Bossa, Félicien Djigbo Badou, Flaurine Nouasse, Koupamba Gisèle Sanni Sinasson, Issoufou Yangouliba, Afissétou L. D. Bio Salifou, Irette Kodjogbe, Yacouba Yira, Ozias Hounkpatin, Luc O. C. Sintondji and Daouda Mama
Earth 2025, 6(3), 93; https://doi.org/10.3390/earth6030093 - 7 Aug 2025
Abstract
Water-related ecosystem services provide a broad range of benefits, including the mitigation of extreme hydrometeorological events, the provision of water for various uses, the support of tourism, and the provision of cultural services. This study assesses the perceptions and accessibility of these services [...] Read more.
Water-related ecosystem services provide a broad range of benefits, including the mitigation of extreme hydrometeorological events, the provision of water for various uses, the support of tourism, and the provision of cultural services. This study assesses the perceptions and accessibility of these services among communities located near the Alafiarou and Okpara dams in Benin and the Bagré dam in Burkina Faso. The methodology involved designing and implementing a questionnaire in KoboCollect, with trained agents deployed to conduct data collection at each of the three sites. Data analysis indicates that respondents identified biodiversity conservation and the provision of drinking water as the most crucial ecosystem services. Over two-thirds of participants reported observing both positive and negative changes in the services provided by rivers and in socio-economic activities since the construction of the dams. While the majority noted improvements in agriculture, irrigation, water quality, fisheries, and flow rates, other changes included biodiversity loss, a decrease in vegetation cover (notably trees and shrubs), an increase in the population of mosquitoes and other insects, and a decline in fishery resources downstream. Despite these challenges, local communities were strongly willing to participate in initiatives aimed at protecting and restoring river ecosystems and their related services. Full article
Show Figures

Figure 1

25 pages, 2973 KiB  
Article
Application of a DPSIR-Based Causal Framework for Sustainable Urban Riparian Forests: Insights from Text Mining and a Case Study in Seoul
by Taeheon Choi, Sangin Park and Joonsoon Kim
Forests 2025, 16(8), 1276; https://doi.org/10.3390/f16081276 - 4 Aug 2025
Viewed by 171
Abstract
As urbanization accelerates and climate change intensifies, the ecological integrity of urban riparian forests faces growing threats, underscoring the need for a systematic framework to guide their sustainable management. To address this gap, we developed a causal framework by applying text mining and [...] Read more.
As urbanization accelerates and climate change intensifies, the ecological integrity of urban riparian forests faces growing threats, underscoring the need for a systematic framework to guide their sustainable management. To address this gap, we developed a causal framework by applying text mining and sentence classification to 1001 abstracts from previous studies, structured within the DPSIR (Driver–Pressure–State–Impact–Response) model. The analysis identified six dominant thematic clusters—water quality, ecosystem services, basin and land use management, climate-related stressors, anthropogenic impacts, and greenhouse gas emissions—which reflect the multifaceted concerns surrounding urban riparian forest research. These themes were synthesized into a structured causal model that illustrates how urbanization, land use, and pollution contribute to ecological degradation, while also suggesting potential restoration pathways. To validate its applicability, the framework was applied to four major urban streams in Seoul, where indicator-based analysis and correlation mapping revealed meaningful linkages among urban drivers, biodiversity, air quality, and civic engagement. Ultimately, by integrating large-scale text mining with causal inference modeling, this study offers a transferable approach to support adaptive planning and evidence-based decision-making under the uncertainties posed by climate change. Full article
(This article belongs to the Section Forest Economics, Policy, and Social Science)
Show Figures

Figure 1

29 pages, 8280 KiB  
Article
Constructing an Ecological Spatial Network Optimization Framework from the Pattern–Process–Function Perspective: A Case Study in Wuhan
by An Tong, Yan Zhou, Tao Chen and Zihan Qu
Remote Sens. 2025, 17(15), 2548; https://doi.org/10.3390/rs17152548 - 22 Jul 2025
Viewed by 413
Abstract
Under the continuous disturbance of ecosystems driven by urbanization, landscape fragmentation and the disruption of ecological processes and functions are key challenges in optimizing ecological networks (EN). This study aims to examine the spatiotemporal evolution of topological patterns, ecological processes, and ecosystem services [...] Read more.
Under the continuous disturbance of ecosystems driven by urbanization, landscape fragmentation and the disruption of ecological processes and functions are key challenges in optimizing ecological networks (EN). This study aims to examine the spatiotemporal evolution of topological patterns, ecological processes, and ecosystem services (ES) in Wuhan from the “pattern–process–function” perspective. To overcome the lag in research concerning the coupling of ecological processes, functions, and spatial patterns, we explore the long-term dynamic evolution of ecosystem structure, process, and function by integrating multi-source data, including remote sensing, enabling comprehensive spatiotemporal analysis from 2000 to 2020. Addressing limitations in current EN optimization approaches, we integrate morphological spatial pattern analysis (MSPA), use circuit theory to identify EN components, and conduct spatial optimization accurately. We further assess the effectiveness of two scenario types: “pattern–function” and “pattern–process”. The results reveal a distinct “increase-then-decrease” trend in EN structural attributes: from 2000 to 2020, source areas declined from 39 (900 km2) to 37 (725 km2), while corridor numbers fluctuated before stabilizing at 89. Ecological processes and functions exhibited phased fluctuations. Among water-related indicators, water conservation (as a core function), and modified normalized difference water index (MNDWI, as a key process) predominantly drive positive correlations under the “pattern–function” and “pattern–process” scenarios, respectively. The “pattern–function” scenario strengthens core area connectivity (24% and 4% slower degradation under targeted/random attacks, respectively), enhancing resistance to general disturbances, whereas the “pattern–process” scenario increases redundancy in edge transition zones (21% slower degradation under targeted attacks), improving resilience to targeted disruptions. This complementary design results in a gradient EN structure characterized by core stability and peripheral resilience. This study pioneers an EN optimization framework that systematically integrates identification, assessment, optimization, and validation into a closed-loop workflow. Notably, it establishes a quantifiable, multi-objective decision basis for EN optimization, offering transferable guidance for green infrastructure planning and ecological restoration from a pattern–process–function perspective. Full article
(This article belongs to the Special Issue Application of Remote Sensing in Landscape Ecology)
Show Figures

Figure 1

24 pages, 3083 KiB  
Article
Hydrological Assessment Using the SWAT Model in the Jundiaí River Basin, Brazil: Calibration, Model Performance, and Land Use Change Impact Analysis
by Larissa Brêtas Moura, Tárcio Rocha Lopes, Sérgio Nascimento Duarte, Pietro Sica and Marcos Vinícius Folegatti
Resources 2025, 14(7), 112; https://doi.org/10.3390/resources14070112 - 15 Jul 2025
Viewed by 779
Abstract
Flow regulation and water quality maintenance are considered ecosystem services, as they provide environmental benefits with a measurable economic value to society. Distributed or semi-distributed hydrological models can help identify where land use decisions yield the greatest economic and environmental returns related to [...] Read more.
Flow regulation and water quality maintenance are considered ecosystem services, as they provide environmental benefits with a measurable economic value to society. Distributed or semi-distributed hydrological models can help identify where land use decisions yield the greatest economic and environmental returns related to water resources. For these reasons, this study integrated simulations performed with the SWAT (Soil and Water Assessment Tool) model under varying land use conditions, aiming to balance potential benefits with the loss of ecosystem services. Among the tested parameters, those associated with surface runoff showed the highest sensitivity in simulating streamflow for the Jundiaí River Basin. Based on the statistical indicators R2, Nash–Sutcliffe efficiency (NS), and Percent Bias (PBIAS), the SWAT model demonstrated a reliable performance in replicating observed streamflows on a monthly scale, even with limited spatially distributed input data. Scenario 2, which involved converting 15% of pasture/agricultural land into forest, yielded the most favorable hydrological outcomes by increasing soil water infiltration and aquifer recharge while reducing surface runoff and sediment yield. These findings highlight the value of reforestation and land use planning as effective strategies for improving watershed hydrological performance and ensuring long-term water sustainability. Full article
(This article belongs to the Special Issue Advanced Approaches in Sustainable Water Resources Cycle Management)
Show Figures

Figure 1

26 pages, 1365 KiB  
Review
Evidence Synthesis and Knowledge Integration for Sustainable Peatland Management
by Kate Flood, David Wilson and Florence Renou-Wilson
Land 2025, 14(7), 1397; https://doi.org/10.3390/land14071397 - 3 Jul 2025
Cited by 1 | Viewed by 621
Abstract
Peatland research has expanded rapidly in the last two decades encompassing a diverse, multi-disciplinary evidence base, as countries seek to manage this resource sustainably along with meeting climate and biodiversity targets. There is growing global interest in the role of peatlands in carbon [...] Read more.
Peatland research has expanded rapidly in the last two decades encompassing a diverse, multi-disciplinary evidence base, as countries seek to manage this resource sustainably along with meeting climate and biodiversity targets. There is growing global interest in the role of peatlands in carbon and water cycles, leading to more interdisciplinary research that applies ecosystem services and other integrative frameworks to generate knowledge and provide guidance for action. These trends have been replicated in Ireland with increasing research in peatland science, applied work on these degraded ecosystems, and a growing interest from civil society, landowners, and communities in the stewardship of this resource. This paper presents evidence-based insights from over two decades of Irish peatland research, with practical lessons for peatland policy and management in other national contexts. Analyses of the evidence from the literature, specialist expertise, and stakeholder knowledge were carried out under ten themes: biodiversity, soil, climate change, water, archaeology and palaeoenvironment, technology and mapping, society and culture, management, growing media and policy and law. The research identified four foundational pillars (accountability, longevity, equity and holistic knowledge) as critical to achieving sustainable peatland management in Ireland, with broader application to other regions. Peatland restoration is widely recognised across research disciplines as a key tool to meet regulatory targets related to climate, biodiversity, and water quality, while also delivering societal benefits. The findings of this research provide accessible, reliable and up-to-date evidence for sustainable peatland management. This study addresses a critical global knowledge gap by developing a novel, interdisciplinary evidence synthesis framework—applied here to Ireland but replicable worldwide—that systematically integrates 20 years of multi-disciplinary peatland research, expert insights, and stakeholder perspectives across ten thematic pillars. Full article
Show Figures

Figure 1

18 pages, 2880 KiB  
Article
Evaluation of Environmentally Important Elements from Glacial Ice-Water and Associated Glacial Sediments
by Kashmala Jadoon, Syeda Fazoon Kazmi, Sidra Arshad, Noor ul Huda Sajid, Adnan Ahmad Tahir, Özgür Doğan, Alidehou Jerrold Agbankpe and Rashid Nazir
Earth 2025, 6(3), 71; https://doi.org/10.3390/earth6030071 - 2 Jul 2025
Viewed by 837
Abstract
Glaciers are significant sources of fresh water on planet Earth. The Hindukush–Karakoram–Himalayan (HKH) glaciers provide the water supply to more than half of the human population of the globe, for agricultural activities, biodiversity survival, and ecosystem services. In recent years, the loss of [...] Read more.
Glaciers are significant sources of fresh water on planet Earth. The Hindukush–Karakoram–Himalayan (HKH) glaciers provide the water supply to more than half of the human population of the globe, for agricultural activities, biodiversity survival, and ecosystem services. In recent years, the loss of glacial ice has been forecasted to cause problems such as sea level rise, changes in water availability, and release of contaminants that reside in the surfaces of glaciers or within them. In this regard, mineralogical sediments play a significant role in the geochemistry of glaciers and element cycling. This study analyzed elemental pollutants found in the glaciers of Pakistan and investigated the diverse bacterial communities residing therein. Samples of ice and sediments were collected from the Gilgit, Hunza, and Swat glaciers in northern Pakistan. Nine elements, including co-factors, heavy metals, and nutrients, were assessed using atomic absorption spectrophotometry. The research findings indicate higher concentrations of the elements K, Fe, Cu, and Cr in Hunza glacier ice (Hgi) and Ni, Zn, As, and Cd in Gilgit glacier ice (Ggi). In terms of glacier sediments, Swat (Sgs), Gilgit (Ggs), and Hunza (Hgs) samples showed the highest concentrations of K, Cu, Ni, Zn, As, Pb, Cd, and, respectively, of Fe, and Cr. The amount of Cu and Cr is the same in Swat glacier ice and Swat glacier foot. However, the concentration of some elements (As, K, Pb, Zn) is higher in Swat glacier ice, while the amount of some elements (Cd, Ni) is greater in Swat glacier foot. Furthermore, microbial cultivation techniques revealed diverse bacterial communities inhabiting the sampled glaciers. Phylogenetic analysis of the bacterial isolates, based on 16S rRNA gene sequences, showed high homology (99–100%) with previously reported species. The resultant phylogenetic tree grouped the bacterial isolates, such as Serratia marcescens, Cupriavidus sp., and Bacillus cereus, with closely related species known for their roles in nutrient cycling, environmental resilience, and metal tolerance. These findings highlight the ecological significance and adaptive potential of microbial communities in glacier environments, emphasizing their role in elemental cycling and environmental resilience. Full article
Show Figures

Figure 1

26 pages, 15528 KiB  
Article
Response of Ecosystem Services to Human Activities in Gonghe Basin of the Qinghai–Tibetan Plateau
by Ailing Sun, Haifeng Zhang, Xingsheng Xia, Xiaofan Ma, Yanqin Wang, Qiong Chen, Duqiu Fei and Yaozhong Pan
Land 2025, 14(7), 1350; https://doi.org/10.3390/land14071350 - 25 Jun 2025
Viewed by 405
Abstract
Gonghe Basin is an important frontier of resource and energy development and environmental protection on the Qinghai–Tibetan Plateau and upper sections of the Yellow River. As a characteristic ecotone, this area exhibits complex and diverse ecosystem types while demonstrating marked ecological vulnerability. The [...] Read more.
Gonghe Basin is an important frontier of resource and energy development and environmental protection on the Qinghai–Tibetan Plateau and upper sections of the Yellow River. As a characteristic ecotone, this area exhibits complex and diverse ecosystem types while demonstrating marked ecological vulnerability. The response of ecosystem services (ESs) to human activities (HAs) is directly related to the sustainable construction of an ecological civilization highland and the decision-making and implementation of high-quality development. However, this response relationship is unclear in the Gonghe Basin. Based on remote sensing data, land use, meteorological, soil, and digital elevation model data, the current research determined the human activity intensity (HAI) in the Gonghe Basin by reclassifying HAs and modifying the intensity coefficient. Employing the InVEST model and bivariate spatial autocorrelation methods, the spatiotemporal evolution characteristics of HAI and ESs and responses of ESs to HAs in Gonghe Basin from 2000 to 2020 were quantitatively analyzed. The results demonstrate that: From 2000 to 2020, the HAI in the Gonghe Basin mainly reflected low-intensity HA, although the spatial range of HAI continued to expand. Single plantation and town construction activities exhibited high-intensity areas that spread along the northwest-southeast axis; composite activities such as tourism services and energy development showed medium-intensity areas of local growth, while the environmental supervision activity maintained a low-intensity wide-area distribution pattern. Over the past two decades, the four key ESs of water yield, soil conservation, carbon sequestration, and habitat quality exhibited distinct yet interconnected characteristics. From 2000 to 2020, HAs were significantly negatively correlated with ESs in Gonghe Basin. The spatial aggregation of HAs and ESs was mainly low-high and high-low, while the aggregation of HAs and individual services differed. These findings offer valuable insights for balancing and coordinating socio-economic development with resource exploitation in Gonghe Basin. Full article
Show Figures

Graphical abstract

14 pages, 463 KiB  
Review
Cup Plant (Silphium perfoliatum): Agronomy, Uses, and Potential Role for Land Restoration
by Ioannis Gazoulis, Konstantina Pyliou, Metaxia Kokkini, Marios Danaskos, Panagiotis Kanatas and Ilias Travlos
Land 2025, 14(6), 1307; https://doi.org/10.3390/land14061307 - 19 Jun 2025
Viewed by 461
Abstract
In recent years, land degradation has become a major challenge for human society, with negative impacts on the natural habitat, the economy, and human well-being. A variety of anthropogenic and natural factors are exacerbating the processes of land degradation in the era of [...] Read more.
In recent years, land degradation has become a major challenge for human society, with negative impacts on the natural habitat, the economy, and human well-being. A variety of anthropogenic and natural factors are exacerbating the processes of land degradation in the era of climate change. Land restoration is an important and proactive strategy to combat this negative situation. Among the many approaches, the use of vegetation plays a central role in restoring soil health, preventing erosion, promoting biodiversity, and improving water retention. Therefore, the identification of new plant species that have the properties to contribute to land restoration is a necessity today. The plant proposed in this conceptual review for land restoration is the cup plant (Silphium perfoliatum L.). After a brief presentation of the agronomy, adaptability, and multiple uses of this plant species, its potential to provide important ecosystem services useful for land restoration to combat land degradation is herein emphasized. Recent studies have shown that this plant has great potential for phytoremediation of soils contaminated with heavy metals (Zn, Pb, Cr, Cd, Ni, Hg, and Co), especially in post-mining areas where pollution exceeds ecological limits. Most studies have shown that the accumulation of heavy metals is higher at the lamina stage. There is also some evidence that the cup plant thrives in flood-prone areas and contributes to their restoration. Cup plant cultivation can also reduce greenhouse gasses and increase the organic carbon content of the soil. Another method of land restoration related to the establishment of the cup plant in a given area is the suppression of weeds, particularly the prevention of the invasion of exotic weed species. Further research under different soil–climatic conditions is needed to investigate cup plant cultivation as a promising strategy for land restoration in a time when the climate is constantly changing. Full article
Show Figures

Figure 1

19 pages, 4115 KiB  
Article
Status Identification and Restoration Zoning of Ecological Space in Maowusu Sandy Land Based on Temporal and Spatial Characteristics of Land Use
by Tiejun Zhang, Peng Xiao, Zhenqi Yang and Jianying Guo
Agronomy 2025, 15(6), 1445; https://doi.org/10.3390/agronomy15061445 - 13 Jun 2025
Viewed by 380
Abstract
Maowusu sandy land is characterized by a fragile ecological environment and extreme sensitivity to external disturbances such as climate change and human activities. Identifying and zoning ecological spaces in this region are crucial for maintaining eco-environmental safety and promoting sustainable regional development. With [...] Read more.
Maowusu sandy land is characterized by a fragile ecological environment and extreme sensitivity to external disturbances such as climate change and human activities. Identifying and zoning ecological spaces in this region are crucial for maintaining eco-environmental safety and promoting sustainable regional development. With Maowusu sandy land as the study object, the temporal and spatial characteristics of land use and the driving forces were explored via spatial analysis technology—the geographic information system. Then, a 2D relation judgment matrix was constructed by evaluating the importance of ecosystem service functions and ecological sensitivity. Next, restoration zoning of natural ecological space was performed, and relevant restoration suggestions were put forward accordingly. Results show that the land use in Maowusu sandy land has significantly changed in the past 30 years, with construction land and forest continuously expanding, cropland and grassland being squeezed, and some areas of unutilized land being transformed into other land use types. Ecosystem service functions tend to weaken from southwest to northeast, whereas the ecologically sensitive zones are mainly distributed in the middle of Maowusu sandy land. The high-importance and high-sensitivity zones of natural ecological space account for 3.60% of the total area of natural ecological space, mainly distributed near Ejin Horo Banner. A comprehensive restoration project of soil and water conservation should be conducted in this zone to alleviate soil erosion and maintain the management and restoration of ecological protection red lines. Moderately important sensitive zones account for the largest proportion (80.42%) of the total area of natural ecological space, being widely distributed. In such zones, water resources should be taken as constraints, with emphasis on ecological protection and improvement measures. Low-importance and low-sensitivity zones account for the smallest proportion, in which ecosystem protection, near-natural restoration, and moderate development and utilization should be carried out. This study aims to provide a scientific basis for reasonably protecting natural ecological resources and promoting the healthy and ordered development of natural ecosystems. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

27 pages, 14654 KiB  
Article
Agroforestry in the Soil and Water Conservation of Karst Can Improve Rural Eco-Revitalization: Evidence from the Core Area of the South China Karst
by Yuwen Fu, Min Zhang, Zuju Li, Kangning Xiong, Qi Fang, Wanmei Hu, Liheng You and Zhifu Luo
Forests 2025, 16(6), 955; https://doi.org/10.3390/f16060955 - 5 Jun 2025
Viewed by 595
Abstract
Agroforestry (AF) effectively enhances ecological restoration and soil–water conservation (SWC), yet the relationship among soil and water conservation agroforestry (SWCAF) in karst soil, water loss (SWL) and rural eco-revitalization (RER) remains unclear, which may hinder the ecological restoration process around the world. This [...] Read more.
Agroforestry (AF) effectively enhances ecological restoration and soil–water conservation (SWC), yet the relationship among soil and water conservation agroforestry (SWCAF) in karst soil, water loss (SWL) and rural eco-revitalization (RER) remains unclear, which may hinder the ecological restoration process around the world. This study aims to reveal whether SWCAF in karst areas improves RER through SWC benefits, ecosystem service (ES) enhancement and rural ecological environment quality (REEQ) improvement. We take Guizhou Province, the core area of the South China Karst (SCK), as the study area and 2010–2020 as the study period. By using the equivalent factor method, the remote sensing ecological index (RSEI) model, bivariate spatial autocorrelation and the panel vector autoregressive (PVAR) model, the study reveals SWCAF’s ecological benefits and its interaction mechanism with RER. Key findings reveal the following: (1) SWCAF reduced the area of SWL by 14.93% by converting cropland into forests. (2) The AF ecosystem service value (AFESV) increased by CNY 9.181 billion, and the forest-related AFESV increases represented 184% of the total AFESV, while REEQ showed an overall positive trend in the western SWC area. (3) The AFESV has an obvious synergistic effect with REEQ (r = 0.60) and obvious positive synergy with SWL (r = 0.69), and its spatial correlation increases over time. (4) The PVAR model verified that there is a bidirectional Granger causal relationship between the AFESV and RER, showing dynamic positive and negative alternating influences. This research study reveals that SWCAF drives RER through the dual path of SWL control and value-added ecological services, among which the forest ecosystem plays a core role. In the future, it is necessary to optimize the diversity of AF structures to avoid ecological service trade-offs. This research study provides a scientific basis for decision making and the ecological management of SWC in karst soils globally. Full article
Show Figures

Figure 1

23 pages, 2307 KiB  
Systematic Review
Assessing Cultural Ecosystem Services in Sponge City Infrastructure: A Systematic Review and Framework Proposal
by Nuan Han, Roziya Binti Ibrahim and Mohd Sallehuddin Bin Mat Noor
Sustainability 2025, 17(11), 5130; https://doi.org/10.3390/su17115130 - 3 Jun 2025
Viewed by 571
Abstract
Urbanization has significantly transformed ecological landscapes and created challenges in sustaining both environmental functionality and cultural values. In response, China’s Sponge City Infrastructure (SPI) aims to enhance urban water resilience by integrating green and blue infrastructure. While the ecological benefits of SPI have [...] Read more.
Urbanization has significantly transformed ecological landscapes and created challenges in sustaining both environmental functionality and cultural values. In response, China’s Sponge City Infrastructure (SPI) aims to enhance urban water resilience by integrating green and blue infrastructure. While the ecological benefits of SPI have been widely studied, the cultural ecosystem services (CES) it provides remain underexplored. This study systematically reviews 61 empirical articles to evaluate how CES has been addressed in SPI-related research. Bibliometric analysis was conducted to identify CES research trends and to systematically categorize CES types, assessment methods, and evaluation indicators in SPI-related studies. The findings reveal a dominant use of non-monetary assessment methods, led by questionnaire surveys (47.5%), while monetary approaches were rarely applied. However, several limitations were identified, including the geographic concentration of studies in a few major cities, the scarcity of research on abstract CES categories (e.g., inspiration and sense of place), and the lack of measurable indicators in nearly half of the reviewed studies. To address these issues, this study proposes a context-specific CES assessment framework aligned with China’s socio-cultural conditions and planning priorities in sponge city development. The framework, based on the reviewed literature, provides a preliminary tool for evaluating CES in sponge city contexts. This work contributes to the integration of cultural ecosystem services into urban ecological planning and offers insights for sustainable development in rapidly urbanizing regions. Full article
Show Figures

Figure 1

26 pages, 9187 KiB  
Article
A New Perspective on Blue–Green Infrastructure for Climate Adaptation in Urbanized Areas: A Soil-Pipe System as a Multifunctional Solution
by Henrike Walther, Christoph Bennerscheidt, Dirk Jan Boudeling, Markus Streckenbach, Felix Simon, Christoph Mudersbach, Saphira Schnaut, Mark Oelmann and Markus Quirmbach
Land 2025, 14(5), 1065; https://doi.org/10.3390/land14051065 - 14 May 2025
Viewed by 939
Abstract
The implementation of a decentralized blue–green infrastructure (BGI) is a key strategy in climate adaptation and stormwater management. However, the integration of urban trees into the multifunctional infrastructure remains insufficiently addressed, particularly regarding rooting space in dense urban environments. Addressing this gap, the [...] Read more.
The implementation of a decentralized blue–green infrastructure (BGI) is a key strategy in climate adaptation and stormwater management. However, the integration of urban trees into the multifunctional infrastructure remains insufficiently addressed, particularly regarding rooting space in dense urban environments. Addressing this gap, the BoRSiS project developed the soil-pipe system (SPS), which repurposes the existing underground pipe trenches and roadway space to provide trees with significantly larger root zones without competing for additional urban space. This enhances tree-related ecosystem services, such as cooling, air purification, and runoff reduction. The SPS serves as a stormwater retention system by capturing excess rainwater during heavy precipitation events of up to 180 min, reducing the pressure on drainage systems. System evaluations show that, on average, each SPS module (20 m trench length) can store 1028–1285 L of water, enabling a moisture supply to trees for 3.4 to 25.7 days depending on the species and site conditions. This capacity allows the system to buffer short-term drought periods, which, according to climate data, recur with frequencies of 9 (7-day) and 2 (14-day) events per year. Geotechnical and economic assessments confirm the system stability and cost-efficiency. These findings position the SPS as a scalable, multifunctional solution for urban climate adaptation, tree vitality, and a resilient infrastructure. Full article
(This article belongs to the Special Issue Climate Adaptation Planning in Urban Areas)
Show Figures

Figure 1

23 pages, 46352 KiB  
Article
Unveiling the Spatial Variation in Ecosystem Services Interactions and Their Drivers Within the National Key Ecological Function Zones, China
by Tingjing Zhang, Quanqin Shao and Haibo Huang
Remote Sens. 2025, 17(9), 1559; https://doi.org/10.3390/rs17091559 - 27 Apr 2025
Viewed by 546
Abstract
Understanding the spatial differentiation of ecosystem service (ES) interactions and their underlying driving mechanisms is crucial for effective ecosystem management and enhancing regional landscape sustainability. However, comprehensive analyses of the effects of key influencing factors on ES interactions remains limited, especially regarding the [...] Read more.
Understanding the spatial differentiation of ecosystem service (ES) interactions and their underlying driving mechanisms is crucial for effective ecosystem management and enhancing regional landscape sustainability. However, comprehensive analyses of the effects of key influencing factors on ES interactions remains limited, especially regarding the nonlinear driving mechanisms of factors and their regional heterogeneity. We assessed and validated five key ES in the National Key Ecological Function Zones (NKEFZs) of China—net primary productivity (NPP), soil conservation (SC), sandstorm prevention (SP), water retention (WR), and biodiversity maintenance (BM). By integrating the optimal parameter geographical detector with constraint line methods, we further explored the complex responses of ES interactions to driving factors across different functional zones. The results showed that most ES exhibited significant spatial synergistic clustering. In contrast, widespread spatial trade-off clustering was detected in ES pairs related to WR, mainly distributed in the Tibetan Plateau, northeast China, and the Southern Hills region. Due to the improvement in ES, the overall synergies of ES enhanced from 2000 to 2020. The dominant factors in different functional zones influenced ES interactions in a non-stationary manner, with the same factors potentially showing diverse effect types in different sub-regions. Additionally, we detected the dominant role of landscape configuration factors in sub-regions for specific interaction types (e.g., WR-NPP interaction in the SP zones), suggesting the potential for achieving multi-ES synergies through landscape planning without altering landscape composition. This research provides valuable insights into understanding ES interactions and offers a scientific foundation for the implementation of ecological protection and restoration plans. Full article
Show Figures

Graphical abstract

32 pages, 54468 KiB  
Article
Importance of Spectral Information, Seasonality, and Topography on Land Cover Classification of Tropical Land Cover Mapping
by Chansopheaktra Sovann, Stefan Olin, Ali Mansourian, Sakada Sakhoeun, Sovann Prey, Sothea Kok and Torbern Tagesson
Remote Sens. 2025, 17(9), 1551; https://doi.org/10.3390/rs17091551 - 27 Apr 2025
Viewed by 2304
Abstract
Tropical forests provide essential ecosystem services, playing a critical role in climate regulation, biodiversity conservation, and regional hydrological cycles while also supporting livelihoods. However, they are increasingly threatened by deforestation and land-use change. Accurate land cover (LC) mapping is vital to monitor these [...] Read more.
Tropical forests provide essential ecosystem services, playing a critical role in climate regulation, biodiversity conservation, and regional hydrological cycles while also supporting livelihoods. However, they are increasingly threatened by deforestation and land-use change. Accurate land cover (LC) mapping is vital to monitor these changes, but mapping tropical forests is challenging due to complex spatial patterns, spectral similarities, and frequent cloud cover. This study aims to improve LC classification accuracy in such a heterogeneous tropical forest region in Southeast Asia, namely Kulen, Cambodia, which is characterized by natural forests, regrowth forests, and agricultural lands including cashew plantations and croplands, using Sentinel-2 imagery, recursive feature elimination (RFE), and Random Forest. We generated 65 variables of spectral bands, indices, bi-seasonal differences, and topographic data from Sentinel-2 Level-2A and Shuttle Radar Topography Mission datasets. These variables were extracted from 1000 random points per 12 LC classes from reference polygons based on observed GPS points, Uncrewed Aerial Vehicle imagery, and high-resolution satellite data. The random forest models were optimized through correlation-based filtering and recursive feature elimination with hyperparameter tuning to improve classification accuracy, validated via confusion matrices and comparisons with global and national-scale products. Our results highlight the significant role of topographic variables such as elevation and slope, along with red-edge spectral bands and spectral indices related to tillage, leaf water content, greenness, chlorophyll, and tasseled cap transformation for tropical land cover mapping. The integration of bi-seasonal datasets improved classification accuracy, particularly for challenging classes like semi-evergreen and deciduous forests. Furthermore, correlation-based filtering and recursive feature elimination reduced the variable set from 65 to 19, improving model efficiency without sacrificing accuracy. Combining these variable selection methods with hyperparameter tuning optimized the classification, providing a more reliable LC product that outperforms existing LC products and proves valuable for deforestation monitoring, forest management, biodiversity conservation, and land use studies. Full article
Show Figures

Figure 1

22 pages, 6374 KiB  
Article
Evaluating Wildfire-Induced Changes in a Water-Yield Ecosystem Service at the Local Scale Using the InVEST Model
by Ye Inn Kim, Bernie Engel, Won Seok Jang and Young Jo Yun
Water 2025, 17(9), 1260; https://doi.org/10.3390/w17091260 - 23 Apr 2025
Viewed by 605
Abstract
This study evaluates the applicability of the InVEST (Integrated Valuation of Ecosystem Services and Tradeoffs) model for assessing wildfire-induced changes in water-related ecosystem services at a localized scale. Wildfires significantly alter hydrological processes by reducing vegetation cover, which in turn affects water-yield dynamics. [...] Read more.
This study evaluates the applicability of the InVEST (Integrated Valuation of Ecosystem Services and Tradeoffs) model for assessing wildfire-induced changes in water-related ecosystem services at a localized scale. Wildfires significantly alter hydrological processes by reducing vegetation cover, which in turn affects water-yield dynamics. To quantify these changes, we applied the InVEST annual water-yield model to a 4.95 km2 wildfire-affected area and validated its outputs against the physically based SWAT model. The study utilized Sentinel-2 imagery to create pre- and post-wildfire land cover maps, which served as key inputs for the InVEST model. The results showed a 7.05% increase in water yield after the wildfire. Validation using SWAT confirmed that InVEST could capture localized hydrological changes with accuracy. While InVEST simplifies hydrological processes by relying primarily on land cover data, it remains a valuable tool for rapid and low-resource assessments in wildfire-prone regions. This study highlights the potential of InVEST for rapid post-fire evaluations, offering a practical decision-support model for post-fire land and water resource management in the context of climate change. Full article
Show Figures

Figure 1

Back to TopTop