Hydrological Assessment Using the SWAT Model in the Jundiaí River Basin, Brazil: Calibration, Model Performance, and Land Use Change Impact Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Data Availability
Order | Code | Name | Latitude | Longitude | Drainage Area (km2) | Variable |
---|---|---|---|---|---|---|
1 | 4D-021 | Itaicá | −23.107 | −47.179 | 795 | flow |
2.2. Parametrization and Performance Evaluation of the SWAT Model
2.3. Scenario Development
3. Results
3.1. Sensitivity Analysis
3.2. Model Performance Evaluation
3.3. Evaluation of the Impacts of Land Use and Land Cover Changes
4. Conclusions and Recommendations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviation | Definition |
SWAT | Soil and Water Assessment Tool |
HRU | Hydrological Response Unit |
DEM | Digital Elevation Model |
ET | Evapotranspiration |
SURQ | Surface Runoff |
QSup | Surface Runoff (Hydrological Output) |
QLat | Lateral Flow |
QSub | Subsurface Flow (Baseflow) |
QAq | Total Aquifer Recharge |
QTotal | Total Water Yield |
Ws | Water Storage in the Unsaturated Zone |
SWt–SWo | Change in Soil Water Content |
AWC | Available Water Content |
GWQ | Groundwater Flow (Baseflow in SWAT) |
SED | Sediment Yield |
R2 | Coefficient of Determination |
NS | Nash–Sutcliffe Efficiency |
PBIAS | Percent Bias |
APP | Permanent Preservation Area (Área de Preservação Permanente) |
AMC II | Antecedent Moisture Condition II |
CN2 | Curve Number for AMC II Condition |
OV_N | Manning’s n Coefficient for Overland Flow |
GWQMN | Threshold Depth of Water in Shallow Aquifer for Return Flow |
ALPHA_BF | Baseflow Recession Constant |
SOL_BD | Bulk Density of the Soil |
SOL_AWC | Available Water Capacity |
SURLAG | Surface Runoff Lag Time |
LAT_TTIME | Lateral Flow Travel Time |
REVAPMN | Threshold Depth for Revap from Shallow Aquifer |
GW_REVAP | Groundwater Revap Coefficient |
References
- Marengo, J.A.; Alves, L.M. Crise Hídrica Em São Paulo Em 2014: Seca e Desmatamento; GEOUSP Espaço e Tempo (Online): São Paulo, Brazil, 2015; Volume 19, pp. 485–494. [Google Scholar]
- Custódio, V. A Crise Hídrica Na Região Metropolitana de São Paulo (2014–2015). Espaço Tempo 2015, 19, 445–463. [Google Scholar]
- Richter, R.M.; Jacobi, P.R. Conflitos Na Macrometrópole Paulista Pela Perspectiva Da Crise Hídrica|Conflicts in the São Paulo Macrometropolis from the Perspective of the Water Crisis. Rev. Bras. Estud. Urbanos Reg. 2018, 20, 556. [Google Scholar] [CrossRef]
- Tucci, C.E.M. Águas Urbanas. Estud. Avançados 2008, 22, 97–112. [Google Scholar] [CrossRef]
- Neto, J.C.C. A Crise Hídrica No Estado de São Paulo; GEOUSP Espaço E Tempo (Online): São Paulo, Brazil, 2015; Volume 19, pp. 479–484. [Google Scholar]
- Soriano, É.; Londe, L.d.R.; Di Gregorio, L.T.; Coutinho, M.P.; Santos, L.B.L. Water Crisis in São Paulo Evaluated under the Disaster’s Point of View. Ambiente Soc. 2016, 19, 21–42. [Google Scholar] [CrossRef]
- Neves, M.A.; Pereira, S.Y.; Fowler, H.G. Impactos Do Sistema Estadual de Gerenciamento de Recursos Hídricos Na Bacia Do Rio Jundiaí (SP). Ambiente Soc. 2007, 10, 149–160. [Google Scholar] [CrossRef]
- Riediger, P.I.; Marques, G.F.; Dalcin, A.P.; Jardin, P.F.; Magalhães Filho, F.J.C.; Persson, K.M. Improving Sanitation Strategies through Coordinated Investment on Wastewater Treatment Reuse and Water Supply at the Watershed Scale: A Brazilian View of Water Security. Water Policy 2025, 27, 182–203. [Google Scholar] [CrossRef]
- Guan, M.; Sillanpää, N.; Koivusalo, H. Modelling and Assessment of Hydrological Changes in a Developing Urban Catchment. Hydrol. Process 2015, 29, 2880–2894. [Google Scholar] [CrossRef]
- Moura, L.B.; Lopes, T.R.; Folegatti, M.V.; Duarte, S.N.; Oliveira, R.K. Hydrological Simulation in the Corumbataí River Basin Using the SWAT Model: Simulation of Hydrological Variables and Land Use and Land Cover Scenarios. J. Hydrol. Eng. 2025, 30, 05024024. [Google Scholar] [CrossRef]
- Hung, C.-L.J.; James, L.A.; Carbone, G.J.; Williams, J.M. Impacts of Combined Land-Use and Climate Change on Streamflow in Two Nested Catchments in the Southeastern United States. Ecol. Eng. 2020, 143, 105665. [Google Scholar] [CrossRef]
- Lopes, T.R.; Folegatti, M.V.; Duarte, S.N.; Moster, C.; Zolin, C.A.; Oliveira, R.K.; Moura, L.B. Economic Value of Environmental Services Regulating Flow and Maintaining Water Quality in the Piracicaba River Basin, Brazil. J. Water Resour. Plan Manag. 2023, 149, 05023008. [Google Scholar] [CrossRef]
- Zhang, L.; Nan, Z.; Yu, W.; Ge, Y. Hydrological Responses to Land-Use Change Scenarios under Constant and Changed Climatic Conditions. Environ. Manag. 2016, 57, 412–431. [Google Scholar] [CrossRef]
- Honda, E.A.; Durigan, G. A Restauração de Ecossistemas e a Produção de Água. Hoehnea 2017, 44, 315–327. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation Version 2009, 1st ed.; Texas A&M: College Station, TX, USA, 2011; Volume 1. [Google Scholar]
- Abbaspour, K.C.; Rouholahnejad, E.; Vaghefi, S.; Srinivasan, R.; Yang, H.; Kløve, B. A Continental-Scale Hydrology and Water Quality Model for Europe: Calibration and Uncertainty of a High-Resolution Large-Scale SWAT Model. J. Hydrol. 2015, 524, 733–752. [Google Scholar] [CrossRef]
- Wang, W.; Du, Y.; Chau, K.; Cheng, C.-T.; Xu, D.; Zhuang, W.-T. Evaluating the Performance of Several Data Preprocessing Methods Based on GRU in Forecasting Monthly Runoff Time Series. Water Resour. Manag. 2024, 38, 3135–3152. [Google Scholar] [CrossRef]
- Wenchuan, W.; Yanwei, Z.; Dongmei, X.; Yanghao, H. Error Correction Method Based on Deep Learning for Improving the Accuracy of Conceptual Rainfall-Runoff Model. J. Hydrol. 2024, 643, 131992. [Google Scholar] [CrossRef]
- Comitê da Bacia dos Rios Piracicaba, J.e.C. Plano Das Bacias Hidrográficas Dos Rios Piracicaba, Capivari e Jundiaí 2010–2020. Available online: https://www.comitespcj.org.br/ (accessed on 23 May 2025).
- MapaBiomas Maps and Data. Available online: http://mapbiomas.org/ (accessed on 23 May 2025).
- Puga, B.P.; Garcia, J.R.; Maia, A.G. Governança Dos Recursos Hídricos Na Bacia Do Rio Jundiaí (São Paulo). Revibec Rev. Iberoam. Econ. Ecológica 2020, 32, 93–101. [Google Scholar]
- ANA Water Production Program. Available online: http://www3.ana.gov.br/portal/ANA/programas-e-projetos/copy_of_produtor-de-agua (accessed on 23 May 2025).
- Brazilian National Institute of Meteorology Average Climate Data of Brazil from 1961. Available online: http://www.inmet.gov.br/portal/index.php?r=clima/normaisclimatologicas (accessed on 23 May 2025).
- Sharpley, A.N.; Williams, J.R. Erosion/Productivity Impact Calculator. Model Documentation, 1st ed.; USDA: Washington, DC, USA, 1990; Volume 1. [Google Scholar]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large Area Hydrologic Modeling and Assessment Part I: Model Development 1. JAWRA J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- ANA Brazilian National Water Agency Annual Report. Available online: https://www.gov.br/ana/pt-br (accessed on 29 June 2025).
- Rossi, M. Mapa Pedológico Do Estado de São Paulo: Revisado e Ampliado, 1st ed.; Instituto Florestal: São Paulo, SP, Brazil, 2017; Volume 1. [Google Scholar]
- Santos, H.; Junior, W.C.; Dart, R.O.; Áglio, M.L.D.; Souza, J.; Pares, J.G.; Oliveira, A.P. O Novo Mapa de Solos do Brasil: Legenda Atualizada, 1st ed.; EMBRAPA Solos: Rio de Janeiro, RJ, Brazil, 2011; Volume 1. [Google Scholar]
- Mingoti, R.; Spadotto, C.A.; Moraes, D.A.d.C. Suscetibilidade à Contaminação Da Água Subterrânea Em Função de Propriedades Dos Solos No Cerrado Brasileiro. Pesqui Agropecu Bras 2016, 51, 1252–1260. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45. [Google Scholar] [CrossRef]
- van Griensven, A.; Meixner, T.; Grunwald, S.; Bishop, T.; Diluzio, M.; Srinivasan, R. A Global Sensitivity Analysis Tool for the Parameters of Multi-Variable Catchment Models. J. Hydrol. 2006, 324, 10–23. [Google Scholar] [CrossRef]
- Lopes, T.R.; Folegatti, M.V.; Duarte, S.N.; Zolin, C.A.; Fraga Junior, L.S.; Moura, L.B.; Oliveira, R.K.; Santos, O.N.A. Hydrological Modeling for the Piracicaba River Basin to Support Water Management and Ecosystem Services. J. S. Am. Earth Sci. 2020, 103, 102752. [Google Scholar] [CrossRef]
- Aragão, R.d.; Cruz, M.A.S.; Amorim, J.R.A.d.; Mendonça, L.C.; Figueiredo, E.E.d.; Srinivasan, V.S. Análise de Sensibilidade Dos Parâmetros Do Modelo SWAT e Simulação Dos Processos Hidrossedimentológicos Em Uma Bacia No Agreste Nordestino. Rev. Bras. Ciência Solo 2013, 37, 1091–1102. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Devia, G.K.; Ganasri, B.P.; Dwarakish, G.S. A Review on Hydrological Models. Aquat. Procedia 2015, 4, 1001–1007. [Google Scholar] [CrossRef]
- Paz, Y.M.; Freire-Silva, J.; Holanda, R.M.d.; Galvincio, J.D. Planejamento e Gestão Ambiental de Bacias Hidrográficas a Partir Da Modelagem Hidrossedimentológica e Estudo de Cenários Alternativos de Uso e Cobertura Do Solo. Geosciences 2023, 41, 675–687. [Google Scholar] [CrossRef]
- Singh, A.; Jha, S.K. Identification of Sensitive Parameters in Daily and Monthly Hydrological Simulations in Small to Large Catchments in Central India. J. Hydrol. 2021, 601, 126632. [Google Scholar] [CrossRef]
- Mendonça dos Santos, F.; Proença de Oliveira, R.; Augusto Di Lollo, J. Effects of Land Use Changes on Streamflow and Sediment Yield in Atibaia River Basin—SP, Brazil. Water 2020, 12, 1711. [Google Scholar] [CrossRef]
- Bressiani, D.A. Coping with Hydrological Risks Through Flooding Riskindex, Complex Watershed Modeling, Different Calibration Techniques, and Ensemble Streamflow Forecasting; University of São Paulo: Piracicaba, SP, Brazil, 2016. [Google Scholar]
- Pereira, D.d.R.; Martinez, M.A.; Pruski, F.F.; da Silva, D.D. Hydrological Simulation in a Basin of Typical Tropical Climate and Soil Using the SWAT Model Part I: Calibration and Validation Tests. J. Hydrol. Reg. Stud. 2016, 7, 14–37. [Google Scholar] [CrossRef]
- Hussain, S.; Niyazi, B.; Elfeki, A.M.; Masoud, M.; Wang, X.; Awais, M. SWAT-Driven Exploration of Runoff Dynamics in Hyper-Arid Region, Saudi Arabia: Implications for Hydrological Understanding. Water 2024, 16, 2043. [Google Scholar] [CrossRef]
- Andrade, C.W.L.d.; Montenegro, S.M.G.L.; Lima, J.R.d.S.; Montenegro, A.A.d.A.; Srinivasan, R. Sensitivity Analysis of SWAT Model Parameters Applied in a Sub-Basin of Northeast Region, Brazil. Rev. Bras. Geogr. Física 2017, 10, 440–453. [Google Scholar] [CrossRef]
- Li, M.; Di, Z.; Duan, Q. Effect of Sensitivity Analysis on Parameter Optimization: Case Study Based on Streamflow Simulations Using the SWAT Model in China. J. Hydrol. 2021, 603, 126896. [Google Scholar] [CrossRef]
- Jovino, E.S. Impactos do Uso da Terra na Produção de Sedimentos Em Bacia Hidrográfica Tropical; Federal University of Rio Grande Do Norte: Natal, RN, Brazil, 2021. [Google Scholar]
- Hosseini, S.H.; Memarian, H.; Memarian, H.; Khaleghi, M.R. Application of SWAT Model and SWAT-CUP Software in Simulation and Analysis of Sediment Uncertainty in Arid and Semi-Arid Watersheds (Case Study: The Zoshk–Abardeh Watershed). Model Earth Syst. Environ. 2020, 6, 2003–2013. [Google Scholar] [CrossRef]
- Brighenti, T.; Bonumá, N.; Chaffe, P. Calibração Hierárquica Do Modelo Swat Em Uma Bacia Hidrográfica Catarinense. Rev. Bras. Recur. Hídricos 2016, 21, 53–64. [Google Scholar] [CrossRef]
- Fukunaga, D.C.; Cecílio, R.A.; Zanetti, S.S.; Oliveira, L.T.; Caiado, M.A.C. Application of the SWAT Hydrologic Model to a Tropical Watershed at Brazil. Catena 2015, 125, 206–213. [Google Scholar] [CrossRef]
- Kuwajima, J.I. Análise do Modelo SWAT Como Ferramenta de Prevenção e de Estimativa de Assoreamento no Reservatório do Lobo (Itirapina/Brotas/SP); Federal University of São Carlos: São Carlos, Brazil, 2012. [Google Scholar]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; van Griensven, A.; Van Liew, M.W.; et al. SWAT: Model Use, Calibration, and Validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Blainski, É.; Acosta, E.; Prado Nogueira, P.C. Calibração e Validação Do Modelo SWAT Para Simulação Hidrológica Em Uma Bacia Hidrográfica Do Litoral Norte Catarinense. Ambiente Agua-Interdiscip. J. Appl. Sci. 2017, 12, 226. [Google Scholar] [CrossRef]
- Almeida, A.L.S.P.; Macedo, D.R.; Santos, H.d.A.e.; Ribeiro, S.M.C.; Hughes, R.M. Managing Water Resources in Complex Tropical Basins: Tailored SWAT Ecohydrological Modeling to the Rio Das Velhas, Brazil. RBRH 2023, 28, e33. [Google Scholar] [CrossRef]
- Galbetti, M.V. Avaliação dos Efeitos Hidrológicos da Aplicação de Cenários Propostos Pelo Poder Público; State University of Campinas: Campinas, Brazil, 2021. [Google Scholar]
- Haas, M.B.; Guse, B.; Fohrer, N. Assessing the Impacts of Best Management Practices on Nitrate Pollution in an Agricultural Dominated Lowland Catchment Considering Environmental Protection versus Economic Development. J. Environ. Manag. 2017, 196, 347–364. [Google Scholar] [CrossRef]
- Franco, A.C.L. Calibração do Modelo SWAT Com Evapotranspiração Proveniente de Sensoriamento Remoto e Vazão Observada; Federal University of Santa Catarina: Florianópolis, Brazil, 2017. [Google Scholar]
- Me, W.; Abell, J.M.; Hamilton, D.P. Effects of Hydrologic Conditions on SWAT Model Performance and Parameter Sensitivity for a Small, Mixed Land Use Catchment in New Zealand. Hydrol. Earth Syst. Sci. 2015, 19, 4127–4147. [Google Scholar] [CrossRef]
- Neto, J.; Silva, A.; Mello, C.; Júnior, A. Simulação Hidrológica Escalar Com o Modelo SWAT. Rev. Bras. Recur. Hídricos 2014, 19, 177–188. [Google Scholar] [CrossRef]
- Lubitz, E.; Pinheiro, A.; Kaufmann, V. Simulação Do Transporte de Sedimentos, Nitrogênio e Fósforo Na Bacia Do Ribeirão Concórdia, SC. Rev. Bras. Recur. Hídricos 2013, 18, 39–54. [Google Scholar] [CrossRef]
- Pontes, L.M.; Viola, M.R.; Silva, M.L.N.; Bispo, D.F.A.; Curi, N. Hydrological Modeling of Tributaries of Cantareira System, Southeast Brazil, with the Swat Model. Eng. Agrícola 2016, 36, 1037–1049. [Google Scholar] [CrossRef]
- Althoff, D.; Rodrigues, L.N. Goodness-of-Fit Criteria for Hydrological Models: Model Calibration and Performance Assessment. J. Hydrol. 2021, 600, 126674. [Google Scholar] [CrossRef]
- Garcia, J.R.; Miyamoto, B.C.B.; Maia, A.G. Eventos Extremos de Precipitação: Identificação e Análise Da Bacia Hidrográfica Do Rio Jundiaí, São Paulo. Confins 2018, 37, 1–15. [Google Scholar] [CrossRef]
- Tucci, C.E.M. Hidrologia Ciência e Aplicação, 2nd ed.; Editora da UFRGS: Porto Alegre, Brazil, 2001; Volume 1. [Google Scholar]
- Wang, H.; Sun, F.; Xia, J.; Liu, W. Impact of LUCC on Streamflow Based on the SWAT Model over the Wei River Basin on the Loess Plateau in China. Hydrol. Earth Syst. Sci. 2017, 21, 1929–1945. [Google Scholar] [CrossRef]
- Cecílio, R.A.; Pimentel, S.M.; Zanetti, S.S. Modeling the Influence of Forest Cover on Streamflows by Different Approaches. Catena 2019, 178, 49–58. [Google Scholar] [CrossRef]
- Dotto, A.V.E. Aplicação do Modelo Swat Para Estudo de Cenários Hidrológicos na Bacia Hidrográfica do Rio Jaguari-RS; Federal University of Santa Maria: Santa Maria, RS, Brazil, 2024. [Google Scholar]
- Rodrigues, E.L.; Elmiro, M.A.T.; Jacobi, C.M.; Lamounier, W.L. Aplicação Do Modelo SWAT Na Avaliação Do Consumo de Água Em Áreas de Florestas Plantadas Na Bacia Do Rio Pará, Alto São Francisco, Em Minas Gerais. Soc. Nat. 2015, 27, 485–500. [Google Scholar] [CrossRef]
- Gomes, L.C.; Bianchi, F.J.J.A.; Cardoso, I.M.; Schulte, R.P.O.; Fernandes, R.B.A.; Fernandes-Filho, E.I. Disentangling the Historic and Future Impacts of Land Use Changes and Climate Variability on the Hydrology of a Mountain Region in Brazil. J. Hydrol. 2021, 594, 125650. [Google Scholar] [CrossRef]
- Santos, K.F.d.; Barbosa, F.T.; Bertol, I.; Werner, R.D.S.; Wolschick, N.H.; Mota, J.M. Study of Soil Physical Properties and Water Infiltration Rates in Different Types of Land Use. Semin. Ciências Agrárias 2018, 39, 87. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, C.; Liang, G.; Cui, Y.; Zhang, Q. Influence of Land Use Change on Hydrological Cycle: Application of SWAT to Su-Mi-Huai Area in Beijing, China. Water 2020, 12, 3164. [Google Scholar] [CrossRef]
- Boisramé, G.F.S.; Thompson, S.E.; Tague, C.; Stephens, S.L. Restoring a Natural Fire Regime Alters the Water Balance of a Sierra Nevada Catchment. Water Resour. Res. 2019, 55, 5751–5769. [Google Scholar] [CrossRef]
- Hidayat, Y.; Rachman, L.M.; Wahjunie, E.D.; Baskoro, D.P.T.; Purwakusuma, W.; Yusuf, S.M.; Araswati, F.D. Water Balance Prediction by Simulating Land Use Planning and Water Retention Infrastructure in Upper Cisadane Sub-Watershed, West Java, Indonesia. J. Nat. Resour. Environ. Manag. 2024, 14, 415. [Google Scholar] [CrossRef]
- Mizuno, T.; Kojima, N.; Asano, S. The Risk Reduction Effect of Sediment Production Rate by Understory Coverage Rate in Granite Area Mountain Forest. Sci. Rep. 2021, 11, 14415. [Google Scholar] [CrossRef] [PubMed]
- Pizarro, R.; García-Chevesich, P.; Ingram, B.; Sangüesa, C.; Pino, J.; Ibáñez, A.; Mendoza, R.; Vallejos, C.; Pérez, F.; Flores, J.P.; et al. Establishment of Monterrey Pine (Pinus Radiata) Plantations and Their Effects on Seasonal Sediment Yield in Central Chile. Sustainability 2023, 15, 6052. [Google Scholar] [CrossRef]
- Martins, W.A.; Martins, L.L.; Maria, I.C.D.; Moraes, J.F.L.d.; Pedro Júnior, M.J. Reduction of Sediment Yield by Riparian Vegetation Recovery at Distinct Levels of Soil Erosion in a Tropical Watershed. Ciência Agrotecnologia 2021, 45, e028220. [Google Scholar] [CrossRef]
- Balist, J.; Malekmohammadi, B.; Jafari, H.R.; Nohegar, A.; Geneletti, D. Detecting Land Use and Climate Impacts on Water Yield Ecosystem Service in Arid and Semi-Arid Areas. A Study in Sirvan River Basin-Iran. Appl. Water Sci. 2022, 12, 4. [Google Scholar] [CrossRef]
- Scariot, A.R. Simulação de Vazão Com o Modelo SWAT na Bacia Hidrográfica do Rio Ibicuí/RS; Federal University of Santa Maria: Santa Maria, Brazil, 2023. [Google Scholar]
- Mebarki, H.; Maref, N.; Dris, M.E.-A. Modelling the Monthly Hydrological Balance Using Soil and Water Assessment Tool (SWAT) Model: A Case Study of the Wadi Mina Upstream Watershed. J. Groundw. Sci. Eng. 2024, 12, 161–177. [Google Scholar] [CrossRef]
Order | Code | Station | Latitude | Longitude | Type |
---|---|---|---|---|---|
1 | E3074 | Atibaia | −23.156 | −46.545 | Conventional |
2 | E015 | Indaiatuba | −23.083 | −47.216 | Conventional |
3 | E0124 | Indaiatuba 2 | −23.166 | −47.133 | Conventional |
4 | E0154 | Jarinu | −23.003 | −46.704 | Conventional |
5 | E053 | Jundiaí | −23.201 | −46.971 | Conventional |
6 | E0127 | Salto | −23.196 | −47.289 | Conventional |
7 | A713 | Sorocaba | −22.483 | −47.517 | Automatic |
8 | A726 | Piracicaba | −22.700 | −47.617 | Automatic |
9 | A728 | Taubaté | −23.040 | −45.520 | Automatic |
10 | A739 | Itapira | −22.400 | −46.800 | Automatic |
Parameter | Definition | Initial Range | |
---|---|---|---|
Min. | Max. | ||
Flow | |||
r_OV_N.hru | Manning’s n coefficient for surface runoff | 0.01 | 30 |
r_CN2.mgt | Initial Curve Number for AMC II condition | −0.9 | 0.9 |
v_ALPHA_BF.gw | Baseflow recession constant | 0 | 1 |
v_GW_REVAP.gw | Groundwater re-evaporation coefficient | 0.02 | 0.2 |
v_ESCO.hru | Soil evaporation compensation factor | 0 | 0.50 |
r_SOL_BD.sol | Bulk density of the soil (g·cm−3) | −0.5 | 0.5 |
v_REVAPMN.gw | Threshold depth of water in the shallow aquifer for percolation (mm) | 0 | 500 |
v_SURLAG.bsn | Surface runoff lag time (days) | 1 | 10 |
v__LAT_TTIME.hru | Time required for lateral flow return (days) | 0 | 180 |
r_SOL_AWC.sol | Available water capacity (mm soil−1) | 0 | 1 |
v_SLSUBBSN.hru | Average slope length (m) | 0 | 150 |
v__GWQMN.gw | Threshold depth of water in shallow aquifer required for return flow to occur (mm H2O) | 0 | 5000 |
Station | Variable | Stages | ||
---|---|---|---|---|
Warm-Up | Calibration | Validation | ||
Itaicá | Flow (daily) | 2014–2015 | 2014–2017 | 2018–2019 |
Statistical Indicator | Classification | |||
---|---|---|---|---|
Unsatisfactory | Satisfactory | Good | Very Good | |
<0.50 | 0.5–0.60 | 0.60–0.70 | 0.70–1 | |
<0.50 | 0.5–0.65 | 0.65–0.75 | 0.75–1 | |
>25 | 15–25 | 10–15 | <10 |
Parameter | Itaicá Station | |||
---|---|---|---|---|
New Minimum | New Maximum | Adjusted Value | Sensitivity Rank | |
r__CN2.mgt | −1.541756 | 0.191756 | −0.675000 | 1 |
v__OV_N.hru | −3.108834 | 19.623333 | 8.257250 | 2 |
v__GWQMN.gw | −142.728409 | 3392.728516 | 1625.000000 | 3 |
r__SOL_BD.sol | −0.679663 | 0.129663 | −0.275000 | 4 |
v__ALPHA_BF.gw | 0.196573 | 0.753427 | 0.475000 | 5 |
r__SOL_AWC.sol | 0.369644 | 1.180356 | 0.775000 | 6 |
v__LAT_TTIME.hru | 44.436794 | 144.563202 | 94.500000 | 7 |
r__SLSUBBSN.hru | −15.722490 | 98.222488 | 41.250000 | 8 |
v__SURLAG.bsn | 3.185402 | 10.314598 | 6.750000 | 9 |
v__ESCO.hru | 0.297905 | 0.952095 | 0.625000 | 10 |
v__REVAPMN.gw | 58.918091 | 366.081909 | 212.500000 | 11 |
v__GW_REVAP.gw | −0.052990 | 0.119990 | 0.033500 | 12 |
Land Use and Cover | Scenarios | ||
---|---|---|---|
Current Area (%) | Scenario 1 Area (%) | Scenario 2 Area (%) | |
FRSE | 27.163 | 29.364 | 40.282 |
EUCA | 1.582 | 1.557 | 1.582 |
WETF | 0.001 | 0.001 | 0.001 |
PAST | 14.708 | 14.43 | 14.708 |
SUGR | 1.335 | 1.325 | 1.335 |
AGRL | 26.499 | 25.577 | 13.38 |
URBN | 23.754 | 22.981 | 23.754 |
URLD | 0.307 | 0.276 | 0.307 |
TIMO | 0.001 | 0.001 | 0.001 |
WATR | 0.504 | 0.504 | 0.504 |
SOYB | 0.227 | 0.224 | 0.227 |
AGRC | 3.862 | 3.772 | 3.862 |
COFF | 0.03 | 0.03 | 0.03 |
ORAN | 0.023 | 0.022 | 0.023 |
AGRR | 0.004 | 0.004 | 0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moura, L.B.; Lopes, T.R.; Duarte, S.N.; Sica, P.; Folegatti, M.V. Hydrological Assessment Using the SWAT Model in the Jundiaí River Basin, Brazil: Calibration, Model Performance, and Land Use Change Impact Analysis. Resources 2025, 14, 112. https://doi.org/10.3390/resources14070112
Moura LB, Lopes TR, Duarte SN, Sica P, Folegatti MV. Hydrological Assessment Using the SWAT Model in the Jundiaí River Basin, Brazil: Calibration, Model Performance, and Land Use Change Impact Analysis. Resources. 2025; 14(7):112. https://doi.org/10.3390/resources14070112
Chicago/Turabian StyleMoura, Larissa Brêtas, Tárcio Rocha Lopes, Sérgio Nascimento Duarte, Pietro Sica, and Marcos Vinícius Folegatti. 2025. "Hydrological Assessment Using the SWAT Model in the Jundiaí River Basin, Brazil: Calibration, Model Performance, and Land Use Change Impact Analysis" Resources 14, no. 7: 112. https://doi.org/10.3390/resources14070112
APA StyleMoura, L. B., Lopes, T. R., Duarte, S. N., Sica, P., & Folegatti, M. V. (2025). Hydrological Assessment Using the SWAT Model in the Jundiaí River Basin, Brazil: Calibration, Model Performance, and Land Use Change Impact Analysis. Resources, 14(7), 112. https://doi.org/10.3390/resources14070112