Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (838)

Search Parameters:
Keywords = water self-assembly

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1188 KiB  
Article
Preparation and Performance Evaluation of Modified Amino-Silicone Supercritical CO2 Viscosity Enhancer for Shale Oil and Gas Reservoir Development
by Rongguo Yang, Lei Tang, Xuecheng Zheng, Yuanqian Zhu, Chuanjiang Zheng, Guoyu Liu and Nanjun Lai
Processes 2025, 13(8), 2337; https://doi.org/10.3390/pr13082337 - 23 Jul 2025
Viewed by 327
Abstract
Against the backdrop of global energy transition and strict environmental regulations, supercritical carbon dioxide (scCO2) fracturing and oil displacement technologies have emerged as pivotal green approaches in shale gas exploitation, offering the dual advantages of zero water consumption and carbon sequestration. [...] Read more.
Against the backdrop of global energy transition and strict environmental regulations, supercritical carbon dioxide (scCO2) fracturing and oil displacement technologies have emerged as pivotal green approaches in shale gas exploitation, offering the dual advantages of zero water consumption and carbon sequestration. However, the inherent low viscosity of scCO2 severely restricts its sand-carrying capacity, fracture propagation efficiency, and oil recovery rate, necessitating the urgent development of high-performance thickeners. The current research on scCO2 thickeners faces a critical trade-off: traditional fluorinated polymers exhibit excellent philicity CO2, but suffer from high costs and environmental hazards, while non-fluorinated systems often struggle to balance solubility and thickening performance. The development of new thickeners primarily involves two directions. On one hand, efforts focus on modifying non-fluorinated polymers, driven by environmental protection needs—traditional fluorinated thickeners may cause environmental pollution, and improving non-fluorinated polymers can maintain good thickening performance while reducing environmental impacts. On the other hand, there is a commitment to developing non-noble metal-catalyzed siloxane modification and synthesis processes, aiming to enhance the technical and economic feasibility of scCO2 thickeners. Compared with noble metal catalysts like platinum, non-noble metal catalysts can reduce production costs, making the synthesis process more economically viable for large-scale industrial applications. These studies are crucial for promoting the practical application of scCO2 technology in unconventional oil and gas development, including improving fracturing efficiency and oil displacement efficiency, and providing new technical support for the sustainable development of the energy industry. This study innovatively designed an amphiphilic modified amino silicone oil polymer (MA-co-MPEGA-AS) by combining maleic anhydride (MA), methoxy polyethylene glycol acrylate (MPEGA), and amino silicone oil (AS) through a molecular bridge strategy. The synthesis process involved three key steps: radical polymerization of MA and MPEGA, amidation with AS, and in situ network formation. Fourier transform infrared spectroscopy (FT-IR) confirmed the successful introduction of ether-based CO2-philic groups. Rheological tests conducted under scCO2 conditions demonstrated a 114-fold increase in viscosity for MA-co-MPEGA-AS. Mechanistic studies revealed that the ether oxygen atoms (Lewis base) in MPEGA formed dipole–quadrupole interactions with CO2 (Lewis acid), enhancing solubility by 47%. Simultaneously, the self-assembly of siloxane chains into a three-dimensional network suppressed interlayer sliding in scCO2 and maintained over 90% viscosity retention at 80 °C. This fluorine-free design eliminates the need for platinum-based catalysts and reduces production costs compared to fluorinated polymers. The hierarchical interactions (coordination bonds and hydrogen bonds) within the system provide a novel synthetic paradigm for scCO2 thickeners. This research lays the foundation for green CO2-based energy extraction technologies. Full article
Show Figures

Figure 1

14 pages, 2797 KiB  
Article
Homo- Versus Hetero- [2+2+2] Rhodium-Catalyzed Cycloaddition: Effect of a Self-Assembled Capsule on the Catalytic Outcome
by Maxime Steinmetz and David Sémeril
Molecules 2025, 30(14), 3052; https://doi.org/10.3390/molecules30143052 - 21 Jul 2025
Viewed by 243
Abstract
The cationic chloro-P-{[4-(diphenylphosphanyl)phenyl]-N,N-dimethylmethanammonio(norbornadiene)rhodium(I) complex was encapsulated inside a self-assembled hexameric capsule. This capsule was obtained through a reaction involving 2,8,14,20-tetra-undecyl-resorcin[4]arene and water in chloroform. The formation of an inclusion complex was deduced from a combination of spectral [...] Read more.
The cationic chloro-P-{[4-(diphenylphosphanyl)phenyl]-N,N-dimethylmethanammonio(norbornadiene)rhodium(I) complex was encapsulated inside a self-assembled hexameric capsule. This capsule was obtained through a reaction involving 2,8,14,20-tetra-undecyl-resorcin[4]arene and water in chloroform. The formation of an inclusion complex was deduced from a combination of spectral measurements (UV-visible spectroscopy, 1H, 31P{1H} NMR and DOSY). The rhodium complex was evaluated in the [2+2+2] cycloaddition between N,N-dipropargyl-p-toluenesulfonamide and arylacetylene derivatives. In the presence of two equivalents of arylacetylenes in water-saturated chloroform at 60 °C for 24 h, the 4-methyl-N-(prop-2-yn-1-yl)-N-((2-tosylisoindolin-5-yl)methyl)benzenesulfonamide, the homocycloaddition product of 1,6-diyne is predominantly formed. In the presence of the supramolecular capsule, a selectivity inversion in favor of 5-aryl-2-tosylisoindoline is observed, with heterocycloaddition products formed in proportions between 53 and 69%. Full article
(This article belongs to the Section Organometallic Chemistry)
Show Figures

Figure 1

13 pages, 6483 KiB  
Article
Polyelectrolyte Microcapsule-Assembled Colloidosomes: A Novel Strategy for the Encapsulation of Hydrophobic Substances
by Egor V. Musin, Alexey V. Dubrovskii, Yuri S. Chebykin, Aleksandr L. Kim and Sergey A. Tikhonenko
Polymers 2025, 17(14), 1975; https://doi.org/10.3390/polym17141975 - 18 Jul 2025
Viewed by 278
Abstract
The encapsulation of hydrophobic substances remains a significant challenge due to limitations such as low loading efficiency, leakage, and poor distribution within microcapsules. This study introduces a novel strategy utilizing colloidosomes assembled from polyelectrolyte microcapsules (PMCs). PMCs were fabricated via layer-by-layer (LbL) assembly [...] Read more.
The encapsulation of hydrophobic substances remains a significant challenge due to limitations such as low loading efficiency, leakage, and poor distribution within microcapsules. This study introduces a novel strategy utilizing colloidosomes assembled from polyelectrolyte microcapsules (PMCs). PMCs were fabricated via layer-by-layer (LbL) assembly on manganese carbonate (MnCO3) or calcium carbonate (CaCO3) cores, followed by core dissolution. A solvent gradient replacement method was employed to substitute the internal aqueous phase of PMCs with kerosene, enabling the formation of colloidosomes through self-assembly upon resuspension in water. Comparative analysis revealed that MnCO3-based PMCs with smaller diameters (2.5–3 µm vs. 4.5–5.5 µm for CaCO3) exhibited 3.5-fold greater stability, attributed to enhanced inter-capsule interactions via electrostatic and hydrophobic forces. Confocal microscopy confirmed the structural integrity of colloidosomes, featuring a liquid kerosene core encapsulated within a PMC shell. Temporal stability studies indicated structural degradation within 30 min, though 5% of colloidosomes retained integrity post-water evaporation. PMC-based colloidosomes exhibit significant application potential due to their integration of colloidosome functionality with PMC-derived structural features—semi-permeability, tunable shell thickness/composition, and stimuli-responsive behavior—enabling their adaptability to diverse technological and biomedical contexts. This innovation holds promise for applications in drug delivery, agrochemicals, and environmental technologies, where controlled release and stability are critical. The findings highlight the role of core material selection and solvent engineering in optimizing colloidosome performance, paving the way for advanced encapsulation systems. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

16 pages, 1420 KiB  
Article
Light-Driven Quantum Dot Dialogues: Oscillatory Photoluminescence in Langmuir–Blodgett Films
by Tefera Entele Tesema
Nanomaterials 2025, 15(14), 1113; https://doi.org/10.3390/nano15141113 - 18 Jul 2025
Viewed by 305
Abstract
This study explores the optical properties of a close-packed monolayer composed of core/shell-alloyed CdSeS/ZnS quantum dots (QDs) of two different sizes and compositions. The monolayers were self-assembled in a stacked configuration at the water/air interface using Langmuir–Blodgett (LB) techniques. Under continuous 532 nm [...] Read more.
This study explores the optical properties of a close-packed monolayer composed of core/shell-alloyed CdSeS/ZnS quantum dots (QDs) of two different sizes and compositions. The monolayers were self-assembled in a stacked configuration at the water/air interface using Langmuir–Blodgett (LB) techniques. Under continuous 532 nm laser illumination on the red absorption edge of the blue-emitting smaller QDs (QD450), the red-emitting larger QDs (QD645) exhibited oscillatory temporal dynamics in their photoluminescence (PL), characterized by a pronounced blueshift in the emission peak wavelength and an abrupt decrease in peak intensity. Conversely, excitation by a 405 nm laser on the blue absorption edge induced a drastic redshift in the emission wavelength over time. These significant shifts in emission spectra are attributed to photon- and anisotropic-strain-assisted interlayer atom transfer. The findings provide new insights into strain-driven atomic rearrangements and their impact on the photophysical behavior of QD systems. Full article
Show Figures

Graphical abstract

18 pages, 1422 KiB  
Article
Potable Water Recovery for Space Habitation Systems Using Hybrid Life Support Systems: Biological Pretreatment Coupled with Reverse Osmosis for Humidity Condensate Recovery
by Sunday Adu, William Shane Walker and William Andrew Jackson
Membranes 2025, 15(7), 212; https://doi.org/10.3390/membranes15070212 - 16 Jul 2025
Viewed by 584
Abstract
The development of efficient and sustainable water recycling systems is essential for long-term human missions and the establishment of space habitats on the Moon, Mars, and beyond. Humidity condensate (HC) is a low-strength wastewater that is currently recycled on the International Space Station [...] Read more.
The development of efficient and sustainable water recycling systems is essential for long-term human missions and the establishment of space habitats on the Moon, Mars, and beyond. Humidity condensate (HC) is a low-strength wastewater that is currently recycled on the International Space Station (ISS). The main contaminants in HC are primarily low-molecular-weight organics and ammonia. This has caused operational issues due to microbial growth in the Water Process Assembly (WPA) storage tank as well as failure of downstream systems. In addition, treatment of this wastewater primarily uses adsorptive and exchange media, which must be continually resupplied and represent a significant life-cycle cost. This study demonstrates the integration of a membrane-aerated biological reactor (MABR) for pretreatment and storage of HC, followed by brackish water reverse osmosis (BWRO). Two system configurations were tested: (1) periodic MABR fluid was sent to batch RO operating at 90% water recovery with the RO concentrate sent to a separate waste tank; and (2) periodic MABR fluid was sent to batch RO operating at 90% recovery with the RO concentrate returned to the MABR (accumulating salinity in the MABR). With an external recycle tank (configuration 2), the system produced 2160 L (i.e., 1080 crew-days) of near potable water (dissolved organic carbon (DOC) < 10 mg/L, total nitrogen (TN) < 12 mg/L, total dissolved solids (TDS) < 30 mg/L) with a single membrane (weight of 260 g). When the MABR was used as the RO recycle tank (configuration 1), 1100 L of permeate could be produced on a single membrane; RO permeate quality was slightly better but generally similar to the first configuration even though no brine was wasted during the run. The results suggest that this hybrid system has the potential to significantly enhance the self-sufficiency of space habitats, supporting sustainable extraterrestrial human habitation, as well as reducing current operational problems on the ISS. These systems may also apply to extreme locations such as remote/isolated terrestrial locations, especially in arid and semi-arid regions. Full article
(This article belongs to the Special Issue Advanced Membranes and Membrane Technologies for Wastewater Treatment)
Show Figures

Figure 1

15 pages, 3901 KiB  
Article
Construction and Anti-Cancer Activity of a Self-Assembly Composite Nano-Delivery System Loaded with Curcumin
by Liang Chen, Qiao Wu, Chen Yang, Xiulan Xin, Zhaochu Xu, Shuai Luo and Hao Liang
Molecules 2025, 30(14), 2940; https://doi.org/10.3390/molecules30142940 - 11 Jul 2025
Viewed by 276
Abstract
Natural products possess potent pharmacological activities and health benefits. However, drawbacks such as water insolubility, poor stability, and low bioavailability limit their practical applications. This research is dedicated to the development of suitable natural self-assembled nano-delivery systems to encapsulate natural molecule drugs, improving [...] Read more.
Natural products possess potent pharmacological activities and health benefits. However, drawbacks such as water insolubility, poor stability, and low bioavailability limit their practical applications. This research is dedicated to the development of suitable natural self-assembled nano-delivery systems to encapsulate natural molecule drugs, improving their dispersion and stability in aqueous solution. As a model drug, curcumin (Cur) was encapsulated in zinc–adenine nanoparticles (Zn–Adenine), based on the self-assembly of a coordination matrix material. Hyaluronic acid (HA) was further functionalized on the surface of Cur@(Zn–Adenine) to realize a tumor-targeted delivery system. The morphology was characterized through TEM and zeta potential analyses, while the encapsulation mechanism of the nanoparticles was researched via XRD and FTIR. The formed Cur@(Zn–Adenine)@HA nanoparticles exhibited good drug loading efficiency and drug loading rate. Moreover, compared to free Cur, Cur-loaded (Zn–Adenine)@HA showed enhanced pH stability and thermal stability. In particular, Cur@(Zn–Adenine)@HA demonstrated excellent biocompatibility and strong specificity for targeting CD44 protein on cancer cells. The above results indicate that (Zn–Adenine)@HA NPs can serve as an effective nano-delivery system for hydrophobic substances. Full article
Show Figures

Figure 1

10 pages, 3200 KiB  
Article
Enhancing Fuel Cell Performance by Constructing a Gas Diffusion Layer with Gradient Microstructure
by Rui-Xin Wang, Bai-He Chen, Ye-Fan-Hao Wang, Cheng Guo, Bo-Wen Deng, Zhou-Long Song, Yi You and Hai-Bo Jiang
Materials 2025, 18(14), 3271; https://doi.org/10.3390/ma18143271 - 11 Jul 2025
Viewed by 346
Abstract
This study focuses on addressing the issues of water flooding and mass transfer limitations in proton exchange membrane fuel cells (PEMFCs) under high current density conditions. A multi-scale gradient pore gas diffusion layer (GDL) is designed to enhance fuel cell performance. The pore [...] Read more.
This study focuses on addressing the issues of water flooding and mass transfer limitations in proton exchange membrane fuel cells (PEMFCs) under high current density conditions. A multi-scale gradient pore gas diffusion layer (GDL) is designed to enhance fuel cell performance. The pore structure is precisely controlled using a self-assembled mold, resulting in the fabrication of a GDL with a gradient distribution of pore diameters ranging from 80 to 170 μm. Experimental results indicate that, with the optimized gradient pore GDL, the peak power density of the fuel cell reaches 1.18 W·cm−2, representing a 20% improvement compared to the traditional structure. A mechanism analysis reveals that this structure establishes a concentrated water transport pathway through channels while enabling gas diffusion and transport driven by concentration gradients, thereby achieving the collaborative optimization of gas–liquid transport. This approach offers a novel solution for managing water in PEMFCs operating under high current density conditions, and holds significant implications for advancing the commercialization of PEMFC technology. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Graphical abstract

20 pages, 2317 KiB  
Article
Multifunctional Amphiphilic Biocidal Copolymers Based on N-(3-(Dimethylamino)propyl)methacrylamide Exhibiting pH-, Thermo-, and CO2-Sensitivity
by Maria Filomeni Koutsougera, Spyridoula Adamopoulou, Denisa Druvari, Alexios Vlamis-Gardikas, Zacharoula Iatridi and Georgios Bokias
Polymers 2025, 17(14), 1896; https://doi.org/10.3390/polym17141896 - 9 Jul 2025
Viewed by 444
Abstract
Because of their potential “smart” applications, multifunctional stimuli-responsive polymers are gaining increasing scientific interest. The present work explores the possibility of developing such materials based on the hydrolytically stable N-3-dimethylamino propyl methacrylamide), DMAPMA. To this end, the properties in aqueous solution of the [...] Read more.
Because of their potential “smart” applications, multifunctional stimuli-responsive polymers are gaining increasing scientific interest. The present work explores the possibility of developing such materials based on the hydrolytically stable N-3-dimethylamino propyl methacrylamide), DMAPMA. To this end, the properties in aqueous solution of the homopolymer PDMAPMA and copolymers P(DMAPMA-co-MMAx) of DMAPMA with the hydrophobic monomer methyl methacrylate, MMA, were explored. Two copolymers were prepared with a molar content x = 20% and 35%, as determined by Proton Nuclear Magnetic Resonance (1H NMR). Turbidimetry studies revealed that, in contrast to the homopolymer exhibiting a lower critical solution temperature (LCST) behavior only at pH 14 in the absence of salt, the LCST of the copolymers covers a wider pH range (pH > 8.5) and can be tuned within the whole temperature range studied (from room temperature up to ~70 °C) through the use of salt. The copolymers self-assemble in water above a critical aggregation Concentration (CAC), as determined by Nile Red probing, and form nanostructures with a size of ~15 nm (for P(DMAPMA-co-MMA35)), as revealed by transmission electron microscopy (TEM) and dynamic light scattering (DLS). The combination of turbidimetry with 1H NMR and automatic total organic carbon/total nitrogen (TOC/TN) results revealed the potential of the copolymers as visual CO2 sensors. Finally, the alkylation of the copolymers with dodecyl groups lead to cationic amphiphilic materials with an order of magnitude lower CAC (as compared to the unmodified precursor), effectively stabilized in water as larger aggregates (~200 nm) over a wide temperature range, due to their increased ζ potential (+15 mV). Such alkylated products show promising biocidal properties against microorganisms such as Escherichia coli and Staphylococcus aureus. Full article
(This article belongs to the Special Issue Development and Innovation of Stimuli-Responsive Polymers)
Show Figures

Figure 1

21 pages, 26512 KiB  
Article
Insights into Membrane Damage by α-Helical and β-Sheet Peptides
by Warin Rangubpit, Hannah E. Distaffen, Bradley L. Nilsson and Cristiano L. Dias
Biomolecules 2025, 15(7), 973; https://doi.org/10.3390/biom15070973 - 7 Jul 2025
Viewed by 502
Abstract
Peptide-induced disruption of lipid membranes is central to both amyloid diseases and the activity of antimicrobial peptides. Here, we combine all-atom molecular dynamics simulations with biophysical experiments to investigate how four amphipathic peptides interact with lipid bilayers. All peptides adsorb on the membrane [...] Read more.
Peptide-induced disruption of lipid membranes is central to both amyloid diseases and the activity of antimicrobial peptides. Here, we combine all-atom molecular dynamics simulations with biophysical experiments to investigate how four amphipathic peptides interact with lipid bilayers. All peptides adsorb on the membrane surface. Peptide M01 [Ac-(FKFE)2-NH2] self-assembles into β-sheet nanofibrils that span both leaflets of the membrane, creating water-permeable channels. The other three peptides adopt α-helical structures at the water–lipid interface. Peptide M02 [Ac-FFKKFFEE-NH2], a sequence isomer of M01, does not form β-sheet aggregates and is too short to span the bilayer, resulting in no observable water permeation across the membrane. Peptides M03 and M04 are α-helical isomers long enough to span the bilayer, with a polar face that allows the penetration of water deep inside the membrane. For the M03 peptide [Ac-(FFKKFFEE)2-NH2], insertion into the bilayer starts with the nonpolar N-terminal amino acids penetrating the hydrophobic core of the bilayer, while electrostatic interactions hold negative residues at the C-terminus on the membrane surface. The M04 peptide, [Ac-FFKKFFEEFKKFFEEF-NH2], is made by relocating a single nonpolar residue from the central region of M03 to the C-terminus. This nonpolar residue becomes unfavorably exposed to the solvent upon insertion of the N-terminal region of the peptide into the membrane. Consequently, higher concentrations of M04 peptides are required to induce water permeation compared to M03. Overall, our comparative analysis reveals how subtle rearrangements of polar and nonpolar residues modulate peptide-induced water permeation. This provides mechanistic insights relevant to amyloid pathology and antimicrobial peptide design. Full article
(This article belongs to the Special Issue New Insights into Protein Aggregation in Condensed and Amyloid States)
Show Figures

Figure 1

11 pages, 1648 KiB  
Article
Solar-Driven Interfacial Evaporation Using Bumpy Gold Nanoshell Films with Controlled Shell Thickness
by Yoon-Hee Kim, Hye-Seong Cho, Kwanghee Yoo, Cho-Hee Yang, Sung-Kyu Lee, Homan Kang and Bong-Hyun Jun
Int. J. Mol. Sci. 2025, 26(13), 6160; https://doi.org/10.3390/ijms26136160 - 26 Jun 2025
Viewed by 273
Abstract
Metal nanostructure-assisted solar-driven interfacial evaporation systems have emerged as a promising solution to achieve sustainable water production. Herein, we fabricated photothermal films of a bumpy gold nanoshell with controlled shell thicknesses (11.7 nm and 16.6 nm) and gap structures to enhance their photothermal [...] Read more.
Metal nanostructure-assisted solar-driven interfacial evaporation systems have emerged as a promising solution to achieve sustainable water production. Herein, we fabricated photothermal films of a bumpy gold nanoshell with controlled shell thicknesses (11.7 nm and 16.6 nm) and gap structures to enhance their photothermal conversion efficiency. FDTD simulation of bumpy nanoshell modeling revealed that thinner nanoshells exhibited higher absorption efficiency across the visible–NIR spectrum. Photothermal films prepared by a three-phase self-assembly method exhibited superior photothermal conversion, with films using thinner nanoshells (11.7 nm) achieving higher surface temperatures and faster water evaporation under both laser and sunlight irradiation. Furthermore, evaporation performance was evaluated using different support layers. Films on PVDF membranes with optimized hydrophilicity and minimized heat convection achieved the highest evaporation rate of 1.067 kg m−2 h−1 under sunlight exposure (937.1 W/m2), outperforming cellulose and PTFE supports. This work highlights the critical role of nanostructure design and support layer engineering in enhancing photothermal conversion efficiency, offering a strategy for the development of efficient solar-driven desalination systems. Full article
Show Figures

Figure 1

19 pages, 8666 KiB  
Article
The Impact of PEO and PVP Additives on the Structure and Properties of Silk Fibroin Adsorption Layers
by Olga Yu. Milyaeva, Kseniya Yu. Rotanova, Anastasiya R. Rafikova, Reinhard Miller, Giuseppe Loglio and Boris A. Noskov
Polymers 2025, 17(13), 1733; https://doi.org/10.3390/polym17131733 - 21 Jun 2025
Viewed by 472
Abstract
Materials formed with a base of silk fibroin (SF) are successfully used in tissue engineering since their properties are similar to those of natural extracellular matrixes. Mixing SF with different polymers, for example, polyethylene oxide (PEO) and polyvinylpyrrolidone (PVP), allows the production of [...] Read more.
Materials formed with a base of silk fibroin (SF) are successfully used in tissue engineering since their properties are similar to those of natural extracellular matrixes. Mixing SF with different polymers, for example, polyethylene oxide (PEO) and polyvinylpyrrolidone (PVP), allows the production of fibers, hydrogels, and films and their morphology to be controlled. The impact of PEO and PVP on formation and structure of SF adsorption layers was studied at different was studied at different polymer concentrations (from 0.002 to 0.5 mg/mL) and surface lifetimes. The protein concentration was fixed at 0.02 and 0.2 mg/mL. These concentrations are characterized by different types of spontaneously formed structures at the air–water interface. Since both synthetic polymers possess surface activity, they can penetrate the fibroin adsorption layer, leading to a decrease in the dynamic surface elasticity at almost constant surface tension and a decrease in ellipsometric angle Δ and adsorption layer thickness. As shown by AFM, the presence of polymers increases the porosity of the adsorption layer, due to the possible arrangement of protein and polymer molecules into separate domains, and can result in various morphology types such as fibers or tree-like ribbons. Therefore, polymers like PEO and PVP can be used to regulate the SF self-assembly at the interface, which in turn can affect the properties of the materials with high surface areas like electrospun matts and scaffolds. Full article
(This article belongs to the Special Issue Development and Application of Polymer Scaffolds, 2nd Volume)
Show Figures

Graphical abstract

10 pages, 682 KiB  
Proceeding Paper
Polymeric Nanomicelles for Cancer Nanomedicine—Review
by Aleksandra Porjazoska Kujundziski and Dragica Chamovska
Eng. Proc. 2025, 99(1), 12; https://doi.org/10.3390/engproc2025099012 - 16 Jun 2025
Viewed by 460
Abstract
Cancer is a serious risk to human life. Some predictions show a considerable increase in new cases and deaths by 2050. Chemotherapy and other conventional treatments encounter issues with a lack of specificity, leading to severe side effects on healthy tissues and drug [...] Read more.
Cancer is a serious risk to human life. Some predictions show a considerable increase in new cases and deaths by 2050. Chemotherapy and other conventional treatments encounter issues with a lack of specificity, leading to severe side effects on healthy tissues and drug resistance. Nanotechnology with targeted drug delivery shows improved diagnostics and personalized treatments. Biocompatible and biodegradable self-assembling amphiphilic polymeric micelles are attractive vehicles for targeted drug delivery in cancer treatment, increasing the bioavailability and solubility of anticancer drugs in water. However, the transition to market applications faces some difficulties, mainly focused on patients’ predisposition to develop drug allergies. Intensive studies are a paradigm for resolving all challenges and facilitating the translation of innovative nanotechnologies into everyday clinical practice. This review paper highlights the importance of applying organic polymeric nanocarriers in cancer nanomedicine. Full article
Show Figures

Figure 1

12 pages, 3292 KiB  
Article
The Charged Superhydrophilic Polyelectrolyte/TiO2 Nanofiltration Membrane for Self-Cleaning and Separation Performance
by Weiliang Gu, Lei Han, Ye Li, Jiayi Wang, Haihong Yan, Zhenping Qin and Hongxia Guo
Membranes 2025, 15(6), 179; https://doi.org/10.3390/membranes15060179 - 12 Jun 2025
Viewed by 670
Abstract
Nanofiltration (NF) technology has extensive application in the treatment of wastewater generated in the dyeing industry. However, NF membranes often encounter fouling issues during the operation process. In this work, the superhydrophilic and self-cleaning multilayer nanofiltration membrane was prepared by self-assembling polyelectrolyte incorporating [...] Read more.
Nanofiltration (NF) technology has extensive application in the treatment of wastewater generated in the dyeing industry. However, NF membranes often encounter fouling issues during the operation process. In this work, the superhydrophilic and self-cleaning multilayer nanofiltration membrane was prepared by self-assembling polyelectrolyte incorporating the anatase PSS-TiO2 nanoparticles. The negatively charged PSS-TiO2 nanoparticles were beneficial to the formation of the nanohybrid selective layers via electrostatic interforce. The prepared (PEI/PSS-TiO2)4.0 hybrid membrane showed favorable photoinduced superhydrophilicity. The water contact angle of the membrane decreased with the UV irradiation from 35.7° to 1.6°. The negatively charged (PEI/PSS-TiO2)4.0 membrane exhibited a 100% rejection rate to XO and EbT, with a permeance flux of 5.2 and 6.4 L/(m2·h·bar), respectively. After UV irradiation for 60 min, the permeance flux could be further increased to 13.4 and 14.0 L/(m2·h·bar), and the rejection remained at 97.8% and 96.7%. Owing to the low content of TiO2 NPs photocatalytic effect under UV irradiation, the fabricated hybrid membrane exhibited a compromised permeance recovery of about 80.6%. Full article
Show Figures

Figure 1

23 pages, 4562 KiB  
Review
Biomimetic Superhydrophobic Surfaces: From Nature to Application
by Yingke Wang, Jiashun Li, Haoran Song, Fenxiang Wang, Xuan Su, Donghe Zhang and Jie Xu
Materials 2025, 18(12), 2772; https://doi.org/10.3390/ma18122772 - 12 Jun 2025
Cited by 1 | Viewed by 745
Abstract
Research on bionic superhydrophobic surfaces draws inspiration from the microstructures and wetting mechanisms of natural organisms such as lotus leaves, water striders, and butterfly wings, offering innovative approaches for developing artificial functional surfaces. By synergistically combining micro/nano hierarchical structures with low surface energy [...] Read more.
Research on bionic superhydrophobic surfaces draws inspiration from the microstructures and wetting mechanisms of natural organisms such as lotus leaves, water striders, and butterfly wings, offering innovative approaches for developing artificial functional surfaces. By synergistically combining micro/nano hierarchical structures with low surface energy chemical modifications, researchers have devised various fabrication strategies—including laser etching, sol-gel processes, electrochemical deposition, and molecular self-assembly—to achieve superhydrophobic surfaces characterized by contact angles exceeding 150° and sliding angles below 5°. These technologies have found widespread applications in self-cleaning architectural coatings, efficient oil–water separation membranes, anti-icing materials for aviation, and anti-biofouling medical devices. This article begins by examining natural organisms exhibiting superhydrophobic properties, elucidating the principles underlying their surface structures and the wetting states of droplets on solid surfaces. Subsequently, it categorizes and highlights key fabrication methods and application domains of superhydrophobic surfaces, providing an in-depth and comprehensive discussion. Full article
Show Figures

Figure 1

16 pages, 4090 KiB  
Article
Confined Catalysis Involving a Palladium Complex and a Self-Assembled Capsule for the Dimerization of Vinyl Arenes and the Formation of Indane and Tribenzo–Pentaphene Derivatives
by Maxime Steinmetz and David Sémeril
Catalysts 2025, 15(6), 585; https://doi.org/10.3390/catal15060585 - 12 Jun 2025
Cited by 1 | Viewed by 843
Abstract
The [PdCl2(cod)] complex was encapsulated inside a self-assembled hexameric capsule obtained via a reaction of 2,8,14,20-tetra-undecyl-resorcin[4]arene and water. The formation of an inclusion complex was deduced from a combination of spectral measurements (UV-visible, 1H NMR and DOSY spectroscopies). The latter [...] Read more.
The [PdCl2(cod)] complex was encapsulated inside a self-assembled hexameric capsule obtained via a reaction of 2,8,14,20-tetra-undecyl-resorcin[4]arene and water. The formation of an inclusion complex was deduced from a combination of spectral measurements (UV-visible, 1H NMR and DOSY spectroscopies). The latter proved effective in the dimerization of styrene derivatives under mild conditions, with a catalyst loading of 0.5 mol% at 60 °C. Electronically enriched vinyl arenes underwent cyclization of the catalytic products, leading to the quasi-quantitative formation of indanes from 4-tert-butylstyrene and 9-vinylanthracene. In the instance of 9-vinylanthracene, the rearrangement product is tribenzo–pentaphene, which is formed in 50% of conversions. Full article
(This article belongs to the Special Issue Sustainable Catalysis for Green Chemistry and Energy Transition)
Show Figures

Graphical abstract

Back to TopTop