Polymeric Nanomicelles for Cancer Nanomedicine—Review †
Abstract
:1. Introduction
2. Organic Nanoparticles in Cancer Nanomedicine
3. Polymeric Nanomicelles in Cancer Nanomedicine
- Poly(ethylene glycol) (PEG), synthesized mainly by the ring-opening polymerization (ROP) of ethylene oxide, shows high chain flexibility and good biocompatibility [30];
- Hydrophilic poly(2-oxazoline)s (POx), embracing poly(2-methyl-2-oxazoline) (PMeOx) and poly(2-ethyl-2-oxazoline) (PEtOx), prepared by living cationic ring-opening polymerization, are biocompatible, prevent biological fouling (accumulation of microorganisms or biological small species in undesired places) and allow enhanced penetrating in the mucus systems [31];
- Poly(L-amino acid) (PAA),like poly(L-aspartic acid) (polyAsp), poly(L-lysine)(polyLis), poly(L-glutamic acid) (polyGlut) is synthesized by the living polymerization of N-carboxyanhydride of α-amino acids. These polymer systems exhibit sensitivity to pH [40];
- PEG-distearoylphosphatidylethanolamine (DSPE) belonging to the group of PEG-conjugated phospholipids which is characterized by the long circulation in the bloodstream [41].
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Available online: https://www.who.int/news-room/fact-sheets/detail/cancer (accessed on 1 February 2025).
- World Health Organization. International Agency for Research on Cancer. Available online: https://gco.iarc.fr/en (accessed on 1 February 2025).
- Rodríguez, F.; Caruana, P.; De la Fuente, N.; Español, P.; Gámez, M.; Balart, J.; Llurba, E.; Rovira, R.; Ruiz, R.; Martín-Lorente, C.; et al. Nano-based approved pharmaceuticals for cancer treatment: Present and future challenges. Biomolecules 2022, 12, 784. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Shi, P.; Zhao, G.; Xu, J.; Peng, W.; Zhang, J.; Zhang, G.; Wang, X.; Dong, Z.; Chen, F.; et al. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct. Target. Ther. 2020, 5, 8. [Google Scholar] [CrossRef] [PubMed]
- Duan, H.; Liu, Y.; Gao, Z.; Huang, W. Recent advances in drug delivery systems for targeting cancer stem cells. Acta Pharm. Sin. B. 2021, 11, 55–70. [Google Scholar] [CrossRef] [PubMed]
- Saman, H.; Raza, S.S.; Uddin, S.; Rasul, K. Inducing angiogenesis, a key step in cancer vascularization, and treatment approaches. Cancers 2020, 12, 1172. [Google Scholar] [CrossRef]
- Ganesh, K.; Massagué, J. Targeting metastatic cancer. Nat. Med. 2021, 27, 34–44. [Google Scholar] [CrossRef]
- Charmsaz, S.; Collins, D.M.; Perry, A.S.; Prencipe, M. Novel strategies for cancer treatment: Highlights from the 55th IACR Annual Conference. Cancers 2019, 11, 1125. [Google Scholar] [CrossRef]
- Debela, D.T.; Muzazu, S.G.; Heraro, K.D.; Ndalama, M.T.; Mesele, B.W.; Haile, D.C.; Kitui, S.K.; Manyazewal, T. New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Med. 2021, 10, 20503121211034366. [Google Scholar] [CrossRef]
- Giri, P.M.; Banerjee, A.; Layek, B. A Recent review on cancer nanomedicine. Cancers 2023, 15, 2256. [Google Scholar] [CrossRef]
- National Cancer Institute. Nanodelivery Systems and Devices. Available online: https://www.cancer.gov/nano/cancer-nanotechnology/benefits (accessed on 2 February 2025).
- Elumalai, K.; Sivaneswari, S.; Shanmugam, A. Review of the efficacy of nanoparticle-based drug delivery systems for cancer treatment. Biomed. Technol. 2024, 5, 109–122. [Google Scholar] [CrossRef]
- Chehelgerdi, M.; Chehelgerdi, M.; Allela, O.Q.B.; Pecho, R.D.C.; Jayasankar, N.; Rao, D.P.; Thamaraikani, T.; Vasanthan, M.; Viktor, P.; Lakshmaiya, N.; et al. Progressing nanotechnology to improve targeted cancer treatment: Overcoming hurdles in its clinical implementation. Mol. Cancer 2023, 22, 169. [Google Scholar] [CrossRef]
- Zheleznyak, A.; Shokeen, M.; Achilefu, S. Nanotherapeutics for multiple myeloma. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2018, 10, e1526. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, N.H.A.; Falagan-Lotsch, P. Mechanistic insights into the biological effects of engineered nanomaterials: A focus on gold nanoparticles. Int. J. Mol. Sci. 2023, 24, 4109. [Google Scholar] [CrossRef] [PubMed]
- Haider, M.; Zaki, K.Z.; Rafat, M.; Hamshary, E.; Hussain, Z.; Orive, G.; Ibrahim, H.O. Polymeric nanocarriers: A promising tool for early diagnosis and efficient treatment of colorectal cancer. J. Adv. Res. 2022, 39, 237–255. [Google Scholar] [CrossRef]
- Xiao, X.; Teng, F.; Shi, C.; Chen, J.; Wu, S.; Wang, B.; Meng, X.; Essiet Imeh, A.; Li, W. Polymeric nanoparticles—Promising carriers for cancer therapy. Front. Bioeng. Biotechnol. 2022, 10, 1024143. [Google Scholar] [CrossRef]
- Hsu, C.-Y.; Rheima, A.M.; Kadhim, M.M.; Ahmed, N.N.; Mohammed, S.H.; Abbas, F.H.; Abed, Z.T.; Mahdi, Z.M.; Abbas, Z.S.; Hachim, S.K.; et al. An overview of nanoparticles in drug delivery: Properties and applications. S. Afr. J. Chem. Eng. 2023, 46, 233–270. [Google Scholar] [CrossRef]
- Yusuf, A.; Almotairy, A.R.Z.; Henidi, H.; Alshehri, O.Y.; Aldughaim, M.S. Nanoparticles as drug delivery systems: A review of the implication of nanoparticles’ physicochemical properties on responses in biological systems. Polymers 2023, 15, 1596. [Google Scholar] [CrossRef]
- Gavas, S.; Quazi, S.; Karpiński, T.M. Nanoparticles for cancer therapy: Current progress and challenges. Nanoscale Res. Lett. 2021, 16, 173. [Google Scholar] [CrossRef]
- Sibuyi, N.R.S.; Moabelo, K.L.; Fadaka, A.O.; Meyer, S.; Onani, M.O.; Madiehe, A.M.; Meyer, M. Multifunctional gold nanoparticles for improved diagnostic and therapeutic applications: A review. Nanoscale Res. Lett. 2021, 16, 174. [Google Scholar] [CrossRef]
- Sell, M.; Lopes, A.R.; Escudeiro, M.; Esteves, B.; Monteiro, A.R.; Trindade, T.; Cruz-Lopes, L. Application of nanoparticles in cancer treatment: A concise review. Nanomaterials 2023, 31, 2887. [Google Scholar] [CrossRef]
- Commons Wikimedi. Author: WolfpackBME. Available online: https://commons.wikimedia.org/wiki/File:Nanoparticles_MTK.jpg (accessed on 29 January 2025).
- Xu, M.; Han, X.; Xiong, H.; Gao, Y.; Xu, B.; Zhu, G.; Li, J. Cancer nanomedicine: Emerging strategies and therapeutic potentials. Molecules 2023, 28, 5145. [Google Scholar] [CrossRef]
- Ezike, T.C.; Okpala, U.S.; Onoja, U.L.; Nwike, C.P.; Ezeako, E.C.; Okpara, O.J.; Okoroafor, C.C.; Eze, S.C.; Kalu, O.L.; Odoh, E.C.; et al. Advances in drug delivery systems, challenges and future directions. Heliyon 2023, 9, e17488. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.; Sharma, A.K.; Kumar, P. Nanoscale self-assembly for therapeutic delivery. Front. Bioeng. Biotechnol. 2020, 8, 127. [Google Scholar] [CrossRef] [PubMed]
- Tawfik, S.M.; Azizov, S.; Elmasry, M.R.; Sharipov, M.; Lee, Y.-I. Recent advances in nanomicellesdelivery systems. Nanomaterials 2021, 11, 70. [Google Scholar] [CrossRef]
- Vinothini, K.; Rajan, M. Mechanism for the nano-based drug delivery system. In Micro and Nano Technologies, Characterization and Biology of Nanomaterials for Drug Delivery; Mohapatra, S.S., Ranjan, S., Dasgupta, N., Mishra, R.K., Thomas, S., Eds.; Elsevier: Alpharetta, GA, USA, 2019; pp. 219–263. [Google Scholar] [CrossRef]
- Ghezzi, M.; Pescina, S.; Padula, C.; Santi, P.; Del Favero, E.; Cantù, L.; Nicoli, S. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions. J. Control. Release 2021, 332, 312–336. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, T.; Liu, Q.; He, J. PEG-derivatized dual-functional nanomicelles for improved cancer therapy. Front. Pharmacol. 2019, 10, 808. [Google Scholar] [CrossRef]
- Rossegger, E.; Pirolt, F.; Hoeppener, S.; Schubert, U.S.; Glatter, O.; Wiesbrock, F. Crosslinkable/functionalizable poly(2-oxazoline) based micelles. Eur. Polym. J. 2019, 121, 109305. [Google Scholar] [CrossRef]
- Zhang, G.; Yi, H.; Bao, C. Stimuli-responsive poly(aspartamide) derivatives and their applications as drug carriers. Int. J. Mol. Sci. 2021, 22, 8817. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, W.; Lu, Y.; Xu, Y.; Wang, C.; Yu, D.G.; Kim, I. Recent advances in poly(α-L-glutamic acid)-based nanomaterials for drug delivery. Biomolecules 2022, 12, 636. [Google Scholar] [CrossRef]
- Yu, Q.; England, R.M.; Gunnarsson, A.; Luxenhofer, R.; Treacher, K.; Ashford, M.B. Designing highly stable poly(sarcosine)-based telodendrimermicelles with high drug content exemplified with Fulvestrant. Macromolecules 2022, 55, 401–412. [Google Scholar] [CrossRef]
- Bose, A.; Burman, D.R.; Sikdar, B.; Patra, P. Nanomicelles: Types, properties and applications in drug delivery. IET Nanobiotechnol. 2021, 15, 19–27. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, C.; Fan, X.; Loh, X.J.; Wu, Y.-L.; Li, Z. Preparation of mixed micelles carrying folates and stable radicals through PLA stereocomplexation for drug delivery. Mater. Sci. Eng. C 2020, 108, 110464. [Google Scholar] [CrossRef] [PubMed]
- Shariff, S.H.A.; Khodir, W.K.W.A.; Hamid, S.A.; Haris, M.S.; Ismail, M.W. Poly(caprolactone)-b-poly(ethylene glycol)-based polymeric micelles as drug carriers for efficient breast cancer therapy: A systematic review. Polymers 2022, 14, 4847. [Google Scholar] [CrossRef]
- Hazekawa, M.; Nishinakagawa, T.; Ishibashi, D. The application of a drug–poly(lactic-co-glycolic acid) hybrid micellar system for drug delivery. In Woodhead Publishing Series in Biomaterials, Polymeric Micelles for Drug Delivery; Kesharwani, P., Greish, K., Eds.; Woodhead Publishing: Sawston, UK, 2022; pp. 497–513. [Google Scholar] [CrossRef]
- Elter, J.K.; Eichhorn, J.; Schacher, F.H. Polyether-based deblock terpolymer micelles with pendant anthracene units-light-induced crosslinking and limitations regarding reversibility. Macromol. Rapid Commun. 2021, 42, e2100485. [Google Scholar] [CrossRef] [PubMed]
- Boddu, S.H.S.; Bhagav, P.; Karla, P.K.; Jacob, S.; Adatiya, M.D.; Dhameliya, T.M.; Ranch, K.M.; Tiwari, A.K. Polyamide/poly(Amino Acid) polymers for drug delivery. J. Funct. Biomater. 2021, 12, 58. [Google Scholar] [CrossRef]
- Xu, B.; Ding, Z.; Hu, Y.; Zhang, T.; Shi, S.; Yu, G.; Qi, X. Preparation and evaluation of the cytoprotective activity of micelles with DSPE-PEGC60 as a carrier against doxorubicin induced cytotoxicity. Front. Pharmacol. 2022, 13, 952800. [Google Scholar] [CrossRef]
- Perumal, S.; Atchudan, R.; Lee, W. A review of polymeric micelles and their applications. Polymers 2022, 14, 2510. [Google Scholar] [CrossRef]
- Soltantabar, P.; Calubaquib, E.L.; Mostafavi, E.; Biewer, M.C.; Stefan, M.C. Enhancement of loading efficiency by coloading of doxorubicin and quercetin in thermoresponsive polymeric micelles. Biomacromolecules 2020, 21, 1427–1436. [Google Scholar] [CrossRef]
- Chan, L.Y.; Khung, Y.L.; Lin, C.Y. Preparation of messenger RNA nanomicellesvia non-cytotoxic PEG-polyamine nanocomplex for intracerebroventiculardelivery: A proof-of-concept study in mouse models. Nanomaterials 2019, 9, 67. [Google Scholar] [CrossRef]
- Zhao, D.; Wang, E.; Lodge, T.P. Hybridization of a bimodal distribution of copolymer micelles. Macromolecules 2020, 53, 7705–7716. [Google Scholar] [CrossRef]
- Jhaveri, A.M.; Torchilin, V.P. Multifunctional polymeric micelles for delivery of drugs and siRNA. Front. Pharmacol. 2014, 5, 77. [Google Scholar] [CrossRef]
- Maso, K.; Grigoletto, A.; Raccagni, L.; Bellini, M.; Marigo, I.; Ingangi, V.; Suzuki, A.; Hirai, M.; Kamiya, M.; Yoshioka, H.; et al. Poly(L-glutamic acid)-co-poly(ethylene glycol) block copolymers for protein conjugation. J. Control. Release 2020, 324, 228–237. [Google Scholar] [CrossRef] [PubMed]
- Mundekkad, D.; Cho, W.C. Nanoparticles in clinical translation for cancer therapy. Int. J. Mol. Sci. 2022, 23, 1685. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Yang, S.; Mei, L.A.; Parmar, C.K.; Gillespie, J.W.; Praveen, K.P.; Petrenko, V.A.; Torchilin, V.P. Paclitaxel-loaded PEG-PE-based micellar nanopreparations targeted with tumor-specific landscape phage fusion protein enhance apoptosis and efficiently reduce tumors. Mol. Cancer Ther. 2014, 13, 2864–2875. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, P.; Ghosh, S.; Sarkar, K. Folic acid based carbon dot functionalized stearic acid-g-polyethyleneimine amphiphilic nanomicelle: Targeted drug delivery and imaging for triple negative breast cancer. Colloids Surf. B Biointerfaces 2021, 197, 111382. [Google Scholar] [CrossRef]
- Zhang, X.; Qi, S.; Liu, D.; Du, J.; Jin, J. PSMA-targeted supramolecular nanoparticles prepared from Cucurbit[8]uril-based ternary host–guest recognition for prostate cancer therapy. Front. Chem. 2022, 10, 847523. [Google Scholar] [CrossRef]
- National Library of Medicine, National Center for Biotechnology Information. Available online: https://clinicaltrials.gov/ (accessed on 23 February 2025).
- Chen, C.Y.; Kim, T.H.; Wu, W.C.; Huang, C.M.; Wei, H.; Mount, C.W.; Tian, Y.; Jang, S.H.; Pun, S.H.; Jen, A.K. pH-dependent, thermosensitive polymeric nanocarriers for drug delivery to solid tumors. Biomaterials 2013, 34, 4501–4509. [Google Scholar] [CrossRef]
- Pérez-Tomás, R.; Pérez-Guillén, I. Lactate in the tumor microenvironment: An essential molecule in cancer progression and treatment. Cancers 2020, 12, 3244. [Google Scholar] [CrossRef]
- Singh, J.; Nayak, P. pH-responsive polymers for drug delivery: Trends and opportunities. J. Polym. Sci. 2023, 61, 2828. [Google Scholar] [CrossRef]
- Mazumdar, S.; Chitkara, D.; Mittal, A. Exploration and insights into the cellular internalization and intracellular fate of amphiphilic polymeric nanocarriers. Acta Pharm. Sin. B 2021, 11, 903–924. [Google Scholar] [CrossRef]
- He, B.; Sui, X.; Yu, B.; Wang, S.; Shen, Y.; Cong, H. Recent advances in drug delivery systems for enhancing drug penetration into tumors. Drug Deliv. 2020, 27, 1474–1490. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Porjazoska Kujundziski, A.; Chamovska, D. Polymeric Nanomicelles for Cancer Nanomedicine—Review. Eng. Proc. 2025, 99, 12. https://doi.org/10.3390/engproc2025099012
Porjazoska Kujundziski A, Chamovska D. Polymeric Nanomicelles for Cancer Nanomedicine—Review. Engineering Proceedings. 2025; 99(1):12. https://doi.org/10.3390/engproc2025099012
Chicago/Turabian StylePorjazoska Kujundziski, Aleksandra, and Dragica Chamovska. 2025. "Polymeric Nanomicelles for Cancer Nanomedicine—Review" Engineering Proceedings 99, no. 1: 12. https://doi.org/10.3390/engproc2025099012
APA StylePorjazoska Kujundziski, A., & Chamovska, D. (2025). Polymeric Nanomicelles for Cancer Nanomedicine—Review. Engineering Proceedings, 99(1), 12. https://doi.org/10.3390/engproc2025099012