Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = water immersion transducers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 9001 KiB  
Article
Novel Water Probe for High-Frequency Focused Transducer Applied to Scanning Acoustic Microscopy System: Simulation and Experimental Investigation
by Van Hiep Pham, Le Hai Tran, Jaeyeop Choi, Hoanh-Son Truong, Tan Hung Vo, Dinh Dat Vu, Sumin Park and Junghwan Oh
Sensors 2024, 24(16), 5179; https://doi.org/10.3390/s24165179 - 10 Aug 2024
Cited by 1 | Viewed by 1910
Abstract
A scanning acoustic microscopy (SAM) system is a common non-destructive instrument which is used to evaluate the material quality in scientific and industrial applications. Technically, the tested sample is immersed in water during the scanning process. Therefore, a robot arm is incorporated into [...] Read more.
A scanning acoustic microscopy (SAM) system is a common non-destructive instrument which is used to evaluate the material quality in scientific and industrial applications. Technically, the tested sample is immersed in water during the scanning process. Therefore, a robot arm is incorporated into the SAM system to transfer the sample for in-line inspection, which makes the system complex and increases time consumption. The main aim of this study is to develop a novel water probe for the SAM system, that is, a waterstream. During the scanning process, water was supplied using a waterstream instead of immersing the sample in the water, which leads to a simple design of an automotive SAM system and a reduction in time consumption. In addition, using a waterstream in the SAM system can avoid contamination of the sample due to immersion in water for long-time scanning. Waterstream was designed based on the measured focal length calculation of the transducer and simulated to investigate the internal flow characteristics. To validate the simulation results, the waterstream was prototyped and applied to the TSAM-400 and W-FSAM traditional and fast SAM systems to successfully image some samples such as carbon fiber-reinforced polymers, a printed circuit board, and a 6-inch wafer. These results demonstrate the design method of the water probe applied to the SAM system. Full article
Show Figures

Figure 1

5 pages, 927 KiB  
Proceeding Paper
Study on Heat Generation at Defects in Sonic-IR Method Using Ultrasonic Wave Input via Water
by Yui Izumi, Hirotaka Tanabe, Sota Kato and Noboru Kohiyama
Eng. Proc. 2023, 51(1), 49; https://doi.org/10.3390/engproc2023051049 - 1 Jul 2024
Viewed by 691
Abstract
Sonic-IR, which detects defects based on the temperature rise due to frictional heating at the defect faces under ultrasonic excitation, has an advantage in the detection of closed defects. However, in the conventional sonic-IR method, an acoustic energy is directly input from an [...] Read more.
Sonic-IR, which detects defects based on the temperature rise due to frictional heating at the defect faces under ultrasonic excitation, has an advantage in the detection of closed defects. However, in the conventional sonic-IR method, an acoustic energy is directly input from an ultrasonic transducer to the test object via an ultrasonic horn, which may give some scratches and deformation to the test object. To avoid such a problem, we have developed a new sonic-IR method using an ultrasonic wave input via water, and the practicability of the proposed method for the detection of fatigue crack has been experimentally demonstrated. This study presents the results of an investigation of the effect of immersion conditions on heat generation at defects in the proposed method. Full article
Show Figures

Figure 1

17 pages, 3896 KiB  
Article
Comparative Study of Leak Detection in PVC Water Pipes Using Ceramic, Polymer, and Surface Acoustic Wave Sensors
by Najah Hamamed, Charfeddine Mechri, Taoufik Mhammedi, Nourdin Yaakoubi, Rachid El Guerjouma, Slim Bouaziz and Mohamed Haddar
Sensors 2023, 23(18), 7717; https://doi.org/10.3390/s23187717 - 7 Sep 2023
Cited by 5 | Viewed by 3185
Abstract
The detection and location of pipeline leakage can be deduced from the time arrival leak signals measured by acoustic sensors placed at the pipe. Ongoing research in this field is primarily focused on refining techniques for accurately estimating the time delays. This enhancement [...] Read more.
The detection and location of pipeline leakage can be deduced from the time arrival leak signals measured by acoustic sensors placed at the pipe. Ongoing research in this field is primarily focused on refining techniques for accurately estimating the time delays. This enhancement predominantly revolves around the application of advanced signal processing methods. Additionally, researchers are actively immersed in the utilization of machine learning approaches on vibro-acoustic data files, to determine the presence or absence of leaks. Less attention has been given to evaluating the sensitivity, performance, and overall effectiveness of these sensors in leak detection; although acoustic methods have been successfully used for leak detection in metallic pipes, they are less effective in plastic pipes due to the high attenuation of leak noise signals. The primary thrust of this research centers on identifying sensors that not only possess sensitivity but also exhibit high efficiency. To accomplish this goal, we conducted an exhaustive evaluation of the performance of three distinct categories of acoustic sensors employed for detecting water leaks in plastic pipes: specifically, lead zirconate titanate (PZT) sensors, polyvinylidene fluoride (PVDF) sensors, and surface acoustic wave (SAW) sensors. Our evaluation encompassed the performance of PVDF and SAW sensors in leak detection, comparing them to PZT sensors under a variety of conditions, including different leak sizes, flow rates, and distances from the leak. The results showed that all three sensors, when they were placed in the same position, were able to detect water leaks in plastic pipes with different sensitivities. For small leaks (1 mm, 2 mm), the PVDF sensor showed the greatest sensitivity (0.4 dB/L/h, 0.33 dB/L/h), followed by the SAW sensor (0.16 dB/L/h, 0.14 dB/L/h), and finally the PZT (0.13 dB/L/h, 0.12 dB/L/h). Similarly, for larger leaks (4 mm, 10 mm), the PVDF sensor continued to show superior sensitivity (0.2 dB/L/h, 0.17 dB/L/h), followed by the SAW sensor (0.13 dB/L/h, 0.11), and finally the PZT sensor (0.12 dB/L/h, 0.1 dB/L/h), outperforming the PZT sensor. This suggests that SAW and PVDF sensors, have the potential to serve as valuable, cost-effective alternatives to traditional commercial leak noise transducers. The outcomes of this comparative study involving three acoustic sensors hold the potential to advance the development of robust and dependable systems for the detection of water leaks in plastic pipelines. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

26 pages, 7496 KiB  
Article
Evaluation of Early Concrete Damage Caused by Chloride-Induced Steel Corrosion Using a Deep Learning Approach Based on RNN for Ultrasonic Pulse Waves
by Julfikhsan Ahmad Mukhti, Kevin Paolo V. Robles, Keon-Ho Lee and Seong-Hoon Kee
Materials 2023, 16(9), 3502; https://doi.org/10.3390/ma16093502 - 1 May 2023
Cited by 17 | Viewed by 3232
Abstract
The objective of this study is to explore the feasibility of using ultrasonic pulse wave measurements as an early detection method for corrosion-induced concrete damages. A series of experiments are conducted using concrete cube specimens, at a size of 200 mm, with a [...] Read more.
The objective of this study is to explore the feasibility of using ultrasonic pulse wave measurements as an early detection method for corrosion-induced concrete damages. A series of experiments are conducted using concrete cube specimens, at a size of 200 mm, with a reinforcing steel bar (rebar) embedded in the center. The main variables include the water-to-cement ratio of the concrete (0.4, 0.5, and 0.6), the diameter of the rebar (10 mm, 13 mm, 19 mm, and 22 mm), and the corrosion level (ranging from 0% to 20% depending on rebar diameter). The impressed current technique is used to accelerate corrosion of rebars in concrete immersed in a 3% NaCl solution. Ultrasonic pulse waves are collected from the concrete specimens using a pair of 50 kHz P-wave transducers in the through-transmission configuration before and after the accelerated corrosion test. Deep learning techniques, specifically three recurrent neural network (RNN) models (long short-term memory, gated recurrent unit, and bidirectional long short-term memory), are utilized to develop a classification model for early detection of concrete damage due to rebar corrosion. The performance of the RNN models is compared to conventional ultrasonic testing parameters, namely ultrasonic pulse velocity and signal consistency. The results demonstrate that the RNN method outperforms the other two methods. Among the RNN methods, the bidirectional long short-term memory RNN model had the best performance, achieving an accuracy of 74% and a Cohen’s kappa coefficient of 0.48. This study establishes the potentiality of utilizing deep learning of ultrasonic pulse waves with RNN models for early detection of concrete damage associated with steel corrosion. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

9 pages, 777 KiB  
Article
Experimental Study on Potential Influence of the Invasive Hedychium coronarium J. König on the Evapotranspiration of Riparian Plant Community
by Driélli de Carvalho Vergne, Lívia Malacarne Pinheiro Rosalem, Edson Cezar Wendland, Jamil Alexandre Ayach Anache, Márcia Cristina Martins da Silva, Raquel Stucchi Boschi and Dalva Maria da Silva Matos
Plants 2023, 12(9), 1746; https://doi.org/10.3390/plants12091746 - 24 Apr 2023
Cited by 1 | Viewed by 1795
Abstract
The balance between precipitation and evapotranspiration (ET) has direct effect on vegetation, and any change in its structure and composition can influence it. The aim of this study is to determine experimentally the daily evapotranspiration (ET) of the invasive species, Hedychium coronarium, and [...] Read more.
The balance between precipitation and evapotranspiration (ET) has direct effect on vegetation, and any change in its structure and composition can influence it. The aim of this study is to determine experimentally the daily evapotranspiration (ET) of the invasive species, Hedychium coronarium, and to compare with a group of four native species of the riparian forest. The experiment was carried out in a greenhouse with three different treatments: (1) only the invasive species; (2) only native species; and (3) a mixture of invasive and native species. In each lysimeter, pressure transducers recorded the water level at every 15 min along 14 months. Daily ET was calculated by the method of Gribovszki et al. (2008) and varied according to the treatment, indicating that different species (invasive or native) use the water differently. The maximum accumulated daily ET occurred for mixture treatment (2540.16 mm), while the treatment with the invasive plant presented the lowest value (2172.53 mm). H. coronarium, in monodominant stands, can reduce evapotranspiration on invaded areas and increase it when immersed in the riparian forest. Full article
(This article belongs to the Special Issue Plant Invasion 2022)
Show Figures

Figure 1

10 pages, 2763 KiB  
Article
Agar Gel as a Non-Invasive Coupling Medium for Reflectance Photoacoustic (PA) Imaging: Experimental Results on Wall-Painting Mock-Ups
by Antonina Chaban, George J. Tserevelakis, Evgenia Klironomou, Giannis Zacharakis and Jana Striova
J. Imaging 2022, 8(9), 235; https://doi.org/10.3390/jimaging8090235 - 30 Aug 2022
Cited by 5 | Viewed by 3097
Abstract
The new reflectance set-up configuration extended the applicability of the photoacoustic (PA) imaging technique to art objects of any thickness and form. Until now, ultrasound gel or distilled water have been necessary as coupling mediums between the immersion-type transducer and the object’s surface. [...] Read more.
The new reflectance set-up configuration extended the applicability of the photoacoustic (PA) imaging technique to art objects of any thickness and form. Until now, ultrasound gel or distilled water have been necessary as coupling mediums between the immersion-type transducer and the object’s surface. These media can compromise the integrity of real artwork; therefore, known applications of reflectance PA imaging have been limited to only experimental mock-ups. In this paper, we evaluate an alternative non-invasive PA coupling medium, agar gel, applied in two layers of different consistency: first, rigid—for the protection of the object’s surface, and second, fluid—for the transducer’s immersion and movement. Agar gel is widely used in various conservation treatments on cultural heritage objects, and it has been proven to be safely applicable on delicate surfaces. Here, we quantify and compare the contrast and signal-to-noise ratio (SNR) of PA images, obtained in water and in agar gel on the same areas, at equal experimental conditions. The results demonstrate that the technique’s performance in agar is comparable to that in water. The study uncovers the advanced potential of the PA approach for revealing hidden features, and is safely applicable for future real-case studies. Full article
(This article belongs to the Special Issue Spectral Imaging for Cultural Heritage)
Show Figures

Figure 1

19 pages, 3722 KiB  
Article
Modification of Mechanical and Electromechanical Resonances of Cellular Ferroelectret Films Depending on the External Load
by Julio Quirce Aguilar and Tomás Gómez Álvarez-Arenas
Polymers 2021, 13(19), 3239; https://doi.org/10.3390/polym13193239 - 24 Sep 2021
Cited by 1 | Viewed by 1778
Abstract
Ferroelectret films are cellular polymers with electrically charged pores that exhibit piezoelectric response. Among other applications, ferroelectret films have been widely used as active elements in air-coupled ultrasonic transducers. More recently, they have also been tested in water immersion. They show a promising [...] Read more.
Ferroelectret films are cellular polymers with electrically charged pores that exhibit piezoelectric response. Among other applications, ferroelectret films have been widely used as active elements in air-coupled ultrasonic transducers. More recently, they have also been tested in water immersion. They show a promising wide frequency band response, but a poor sensitivity produced by the disappearance of the electromechanical resonances. This paper studies in detail the modification of FE films response when put into water immersion, both the mechanical and the electromechanical responses (the latter in transmission and reception modes). The lack of electromechanical thickness resonances when the films are put into water is explained as the result of the different profile of the modification of the polarization vector along the film thickness imposed by the large mechanical load produced by the water. This different electromechanical response can also be the reason for the subtle modification of the mechanical thickness resonances that is also observed and analyzed. Full article
(This article belongs to the Special Issue Advanced Cellular Polymers)
Show Figures

Graphical abstract

17 pages, 7478 KiB  
Article
Preliminary Determination of the Optimal Parameters When Using an Ultrasonic Probe to Measure Cavern Geometry Where a Metal Borehole Pipe Is Present
by Tomasz Kubacka and Chau Nguyen Dinh
Acoustics 2021, 3(2), 425-441; https://doi.org/10.3390/acoustics3020028 - 15 Jun 2021
Cited by 1 | Viewed by 4456
Abstract
In order to determine the optimal parameters when using an ultrasonic probe to measure cavern geometry when a metal borehole pipe is present, an investigation was firstly carried out on influence of a vertical metal plates with a thickness from 1 mm to [...] Read more.
In order to determine the optimal parameters when using an ultrasonic probe to measure cavern geometry when a metal borehole pipe is present, an investigation was firstly carried out on influence of a vertical metal plates with a thickness from 1 mm to 15 mm immersed in water on transmitted and reflected ultrasonic waves. The results obtained will be used as an indicator for the measurement of underground geometry in which the ultrasonic probe is placed inside a metal pipe lining a borehole. These studies were performed both by experiment and computer simulation. The results show that the wavelength of the incident ultrasonic signals should be equal to half the thickness of the metal plate or an integer times smaller than this thickness. When the thickness of the barrier is unknown, an ultrasonic signal with linear frequency modulation (LFM) should be used. Due to the reverberation of the ultrasonic waves inside the pipe for caverns filled with water, the distance from the transducer to the cavern wall can be measured if it is longer than three times of the pipe diameter. Frequency analysis of both the reflected and the transmitted waves enables an optimal frequency of the incident ultrasonic wave to be selected, which can be used in the measurement of cavern geometry in conditions in which the ultrasonic probe is inside a metal pipe. Full article
(This article belongs to the Special Issue Elastic Wave Scattering in Heterogeneous Media)
Show Figures

Figure 1

24 pages, 39532 KiB  
Article
Development of a 2-D Array Ultrasonic Transducer for 3-D Imaging of Objects Immersed in Water
by Estevão Patricio Rodrigues, Timoteo Francisco de Oliveira, Marcelo Yassunori Matuda and Flávio Buiochi
Sensors 2021, 21(10), 3501; https://doi.org/10.3390/s21103501 - 18 May 2021
Cited by 6 | Viewed by 10289
Abstract
Most works that address 2-D array ultrasonic transducers for underwater applications are about the geometry aspects of the array and beamforming techniques to make 3-D images. They look for techniques to reduce the number of elements from wide apertures, maintaining the side lobes [...] Read more.
Most works that address 2-D array ultrasonic transducers for underwater applications are about the geometry aspects of the array and beamforming techniques to make 3-D images. They look for techniques to reduce the number of elements from wide apertures, maintaining the side lobes and the grating lobes at acceptable levels, but not many details about the materials and fabrication processes are described. To overcome these gaps, this paper presents in detail the development of a 2-D array ultrasonic transducer prototype that can individually emit and receive ultrasonic pulses to make 3-D images of immersed reflectors within a volume of interest (VOI). It consists of a 4 × 4 matrix ultrasonic transducer with a central frequency of 480 kHz. Each element is a 5 mm sided square cut into a 1–3 piezocomposite. The center-to-center distance of two contiguous elements (pitch) was chosen to be greater than half wavelength, to increase the amplitude of emission and reception of signals with larger elements. Artifacts generated by grating lobes were avoided by restricting the field of view in the azimuth and elevation directions within 40° × 40° and applying the sign coherence factor (SCF) filter. Two types of backing layer materials were tested, one with air and another made of epoxy resin, on the transducers called T1 and T2, respectively. The pulse echoes measured with T1 had 2.6 dB higher amplitude than those measured with T2, and the bandwidths were 54% and 50% @ −6 dB, respectively, exciting the element with a single rectangular negative pulse. The 3-D images obtained with full matrix capture (FMC) data sets acquired of objects from 0.2 to 1.15 m motivate the development of a 2-D array transducer with more elements, to increase the angular resolution and the range. Full article
(This article belongs to the Special Issue Applications of Ultrasonic Sensors)
Show Figures

Figure 1

15 pages, 1911 KiB  
Article
Low-Intensity Pulsed Ultrasound Effect on MIO-M1 Cell Viability: Setup Validation and Standing Waves Analysis
by Irais Poblete-Naredo, Mario Ibrahin Gutierrez, Diana Estela Mendoza-Sánchez, Arturo Ortega, Arnulfo Albores, Josefina Gutiérrez-Martínez, Lorenzo Leija and Arturo Vera
Appl. Sci. 2021, 11(1), 271; https://doi.org/10.3390/app11010271 - 30 Dec 2020
Cited by 2 | Viewed by 3073
Abstract
Low-intensity pulsed ultrasound (LIPUS) has been proposed for novel therapies still under study, where similar parameters and protocols have been used for producing opposite effects that range from increasing cell viability to provoking cell death. Those divergent outcomes make the generalization of expected [...] Read more.
Low-intensity pulsed ultrasound (LIPUS) has been proposed for novel therapies still under study, where similar parameters and protocols have been used for producing opposite effects that range from increasing cell viability to provoking cell death. Those divergent outcomes make the generalization of expected effects difficult for cell models not yet studied. This paper presents the effect of LIPUS on the viability of the MIO-M1 cell line for two well-established setups and different protocols; the acoustic intensities, duty factors, and treatment duration were varied. Measurements and models for acoustic and thermal analysis are included for proposing a solution to improve the reproducibility of this kind of experiments. Results indicate that MIO-M1 viability is less affected for the cells treated through a dish that is partially immersed in water; in these conditions, the cells neither show detrimental nor proliferative effects at intensities lower than 0.4 W/cm2 at 20% duty factor. However, cell viability was reduced when LIPUS was followed by cell subculturing. Treating the cells through a gel, with the culture dish placed on the transducer, increases cell mortality by the production of standing waves and mixed vibration-acoustical effects. Using the water-based setup with a 1° dish inclination reduces the effects of standing waves. Full article
(This article belongs to the Special Issue Modelling, Simulation and Data Analysis in Acoustical Problems Ⅱ)
Show Figures

Figure 1

14 pages, 4274 KiB  
Article
Ferroelectret Ultrasonic Transducers for Pulse-Echo Water Immersion
by Julio Quirce, Linas Svilainis, Jorge Camacho and Tomas Gomez Alvarez-Arenas
Appl. Sci. 2020, 10(24), 8771; https://doi.org/10.3390/app10248771 - 8 Dec 2020
Cited by 8 | Viewed by 2861
Abstract
Ferroelectrets are thin and porous polymeric films with a cellular microstructure, high porosity, permanent polarization and piezoelectric response. They have been used for different applications, where one of the most interesting ones is for the fabrication of air-coupled ultrasonic transducers. More recently they [...] Read more.
Ferroelectrets are thin and porous polymeric films with a cellular microstructure, high porosity, permanent polarization and piezoelectric response. They have been used for different applications, where one of the most interesting ones is for the fabrication of air-coupled ultrasonic transducers. More recently they have been tested as water immersion transducers, showing a promising wide bandwidth but limited sensitivity along with other technical problems. This paper investigates ultrasonic transducers for water immersion and pulse-echo operation based on ferroelectret films. Two different ferroelectret foams with different resonant frequencies, acoustic impedances and cellular structures were tried. Flat and spherically focused prototypes (radius of curvature of 22 and 35 mm) were produced and tested. Finally, different materials and methods were tried to provide a protective surface coating. Acoustic field measurements for the focused transducers confirm the possibility to efficiently focus the ultrasonic beam by the proposed fabrication method, with focal spot size of 1.86 mm at −6 dB. Results show that in spite of the reduced sensitivity (about −115 dB), some of the tried ferroelectret films provide a very wide band response (−6 dB band from 0.29 to 2.7 MHz) and short pulse duration (2–3 us) that can be of interest for different applications. Full article
(This article belongs to the Special Issue Ultrasonic Transducers and Related Apparatus and Applications)
Show Figures

Figure 1

11 pages, 3853 KiB  
Article
Development of a High-Density Piezoelectric Micromachined Ultrasonic Transducer Array Based on Patterned Aluminum Nitride Thin Film
by Eunjung Shin, Hong Goo Yeo, Ara Yeon, Changzhu Jin, Wonki Park, Sung-Chul Lee and Hongsoo Choi
Micromachines 2020, 11(6), 623; https://doi.org/10.3390/mi11060623 - 26 Jun 2020
Cited by 35 | Viewed by 6035
Abstract
This study presents the fabrication and characterization of a piezoelectric micromachined ultrasonic transducer (pMUT; radius: 40 µm) using a patterned aluminum nitride (AlN) thin film as the active piezoelectric material. A 20 × 20 array of pMUTs using a 1 µm thick AlN [...] Read more.
This study presents the fabrication and characterization of a piezoelectric micromachined ultrasonic transducer (pMUT; radius: 40 µm) using a patterned aluminum nitride (AlN) thin film as the active piezoelectric material. A 20 × 20 array of pMUTs using a 1 µm thick AlN thin film was designed and fabricated on a 2 × 2 mm2 footprint for a high fill factor. Based on the electrical impedance and phase of the pMUT array, the electromechanical coefficient was ~1.7% at the average resonant frequency of 2.82 MHz in air. Dynamic displacement of the pMUT surface was characterized by scanning laser Doppler vibrometry. The pressure output while immersed in water was 19.79 kPa when calculated based on the peak displacement at the resonant frequency. The proposed AlN pMUT array has potential applications in biomedical sensing for healthcare, medical imaging, and biometrics. Full article
(This article belongs to the Special Issue Selected Papers from the ICAE 2019)
Show Figures

Figure 1

30 pages, 6986 KiB  
Article
Comparative Study of Coupling Techniques in Lamb Wave Testing of Metallic and Cementitious Plates
by Santiago Vázquez, Jorge Gosálbez, Ignacio Bosch, Alicia Carrión, Carles Gallardo and Jordi Payá
Sensors 2019, 19(19), 4068; https://doi.org/10.3390/s19194068 - 20 Sep 2019
Cited by 8 | Viewed by 4371
Abstract
Lamb waves have emerged as a valuable tool to examine long plate-like structures in a faster way compared to conventional bulk wave techniques, which make them attractive in non-destructive testing. However, they present a multimodal and dispersive nature, which hinders signal identification. Oblique [...] Read more.
Lamb waves have emerged as a valuable tool to examine long plate-like structures in a faster way compared to conventional bulk wave techniques, which make them attractive in non-destructive testing. However, they present a multimodal and dispersive nature, which hinders signal identification. Oblique incidence is one of the most known methods to generate and receive Lamb waves and it is applied in different experimental arrangements with different types of sensors. In this work, several setups were conducted and compared to determine the optimal ones to launch and detect ultrasonic Lamb waves, especially in non-homogeneous specimens. The chosen arrangements were contact with angle beam transducers, immersion in a water tank, localised water coupling using conical containers and air coupling. Plates of two different materials were used, stainless steel and Portland cement mortar. Theoretical and experimental dispersion curves were compared to verify the existence of Lamb modes and good correspondence was achieved. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

24 pages, 5407 KiB  
Article
Experimental Configuration to Determine the Nonlinear Parameter β in PMMA and CFRP with the Finite Amplitude Method
by Antonio Callejas and Guillermo Rus
Sensors 2019, 19(5), 1156; https://doi.org/10.3390/s19051156 - 7 Mar 2019
Cited by 1 | Viewed by 3518
Abstract
Parameters to measure nonlinearity in polymethylmethacrylate (PMMA) and carbon fiber reinforced polymer (CFRP) materials have been determined with nonlinear ultrasound (NLUS). The nonlinear parameter β has been determined using the variation of the Finite Amplitude Method (FAM) with harmonic generation. Using this as [...] Read more.
Parameters to measure nonlinearity in polymethylmethacrylate (PMMA) and carbon fiber reinforced polymer (CFRP) materials have been determined with nonlinear ultrasound (NLUS). The nonlinear parameter β has been determined using the variation of the Finite Amplitude Method (FAM) with harmonic generation. Using this as a reference, the first contribution of this work consists of deducting the experimental configuration necessary to measure this nonlinear parameter in a correct and feasible way. Excitation level, frequency of the wave generated, number of cycles analysed and the distances transducer-specimen and specimen-hydrophone have been determined in both materials. The second contribution is a semi-analytical model that allows to obtain the nonlinear parameter in materials by removing water contribution and considering geometric and viscous attenuation, using the data obtained in an immersion tank. Finally, an application of this model has been carried out in PMMA in order to determinate the nonlinear parameter in this material. From the results, we confirm that the configuration determined in this paper to obtain the parameter β decreases the noise in the measurements. Full article
(This article belongs to the Special Issue Ultrasonic Sensors 2018)
Show Figures

Figure 1

Back to TopTop