Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,035)

Search Parameters:
Keywords = water demand mechanism

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 1095 KB  
Review
Lactic Acid Bacteria for Fungal Control and Shelf-Life Extension in Fresh Pasta: Mechanistic Insights and Clean-Label Strategies
by Noor Sehar, Roberta Pino, Michele Pellegrino and Monica Rosa Loizzo
Molecules 2026, 31(2), 389; https://doi.org/10.3390/molecules31020389 (registering DOI) - 22 Jan 2026
Abstract
The global food industry is undergoing a major shift driven by increasing consumer demand for clean-label and naturally preserved foods. Fresh pasta is highly vulnerable to fungal damage because of its high water activity (aw > 0.85), typically ranging between 0.92 and [...] Read more.
The global food industry is undergoing a major shift driven by increasing consumer demand for clean-label and naturally preserved foods. Fresh pasta is highly vulnerable to fungal damage because of its high water activity (aw > 0.85), typically ranging between 0.92 and 0.97, moderate to near-neutral pH (around 5.0–7.0), and nutrient-rich composition, all of which create favorable conditions for fungal growth during refrigeration, mainly by genera such as Penicillium and Aspergillus. Fungal contamination results in significant economic losses due to reduced product quality and poses potential health risks associated with mycotoxin production. Although conventional chemical preservatives are relatively effective in preventing spoilage, their use conflicts with clean-label trends and faces growing regulatory and consumer scrutiny. In this context, antifungal lactic acid bacteria (LAB) have emerged as a promising natural alternative for biopreservation. Several LAB strains, particularly those isolated from cereal-based environments (e.g., Lactobacillus plantarum and L. amylovorus), produce a broad spectrum of antifungal metabolites, including organic acids, phenylalanine-derived acids, cyclic dipeptides, and volatile compounds. These metabolites act synergistically to inhibit fungal growth through multiple mechanisms, such as cytoplasmic acidification, energy depletion, and membrane disruption. However, the application of LAB in fresh pasta production requires overcoming several challenges, including the scale-up from laboratory to industrial processes, the maintenance of metabolic activity within the complex pasta matrix, and the preservation of desirable sensory attributes. Furthermore, regulatory approval (GRAS/QPS status), economic feasibility, and effective consumer communication are crucial for successful commercial implementation. This review analyzes studies published over the past decade on fresh pasta spoilage and the antifungal activity of lactic acid bacteria (LAB), highlighting the progressive refinement of LAB-based biopreservation strategies. The literature demonstrates a transition from early descriptive studies to recent research focused on strain-specific mechanisms and technological integration. Overall, LAB-mediated biopreservation emerges as a sustainable, clean-label approach for extending the shelf life and safety of fresh pasta, with future developments relying on targeted strain selection and synergistic preservation strategies. Full article
(This article belongs to the Special Issue The Chemistry of Food Quality Changes During Processing and Storage)
Show Figures

Figure 1

33 pages, 2502 KB  
Review
A Review of Heat Wave Impacts on the Food–Energy–Water Nexus and Policy Response
by Manman Wang, Sze Yui Lu, Hairong Xin, Yuxuan Fan, Hao Zhang, Sujata Saunik and Rajib Shaw
Climate 2026, 14(1), 27; https://doi.org/10.3390/cli14010027 - 21 Jan 2026
Abstract
Heat waves have emerged as an escalating climate threat, triggering cascading disruptions across food, energy, and water systems, thereby undermining resilience and sustainability. However, reviews addressing heat wave impacts on the food–energy–water (FEW) nexus remain scarce, resulting in a fragmented understanding of cross-system [...] Read more.
Heat waves have emerged as an escalating climate threat, triggering cascading disruptions across food, energy, and water systems, thereby undermining resilience and sustainability. However, reviews addressing heat wave impacts on the food–energy–water (FEW) nexus remain scarce, resulting in a fragmented understanding of cross-system interactions and limiting the ability to assess cascading risks under extreme heat. This critical issue is examined through bibliometric analysis, scoping review, and policy analysis. A total of 103 publications from 2015 to 2024 were retrieved from Web of Science and Scopus, and 63 policy documents from the United States, the European Union, Japan, China, and India were collected for policy analysis. Bibliometric analysis was conducted to identify the most influential articles, journals, countries, and research themes in this field. The scoping review indicates that agricultural losses are most frequently reported (32), followed by multiple impacts (19) and cross-sectoral disruptions (18). The use of spatial datasets and high-frequency temporal data remains limited, and community-scale studies and cross-regional comparisons are uncommon. Mechanism synthesis reveals key pathways, including direct system-specific stress on food production, water availability, and energy supply; indirect pressures arising from rising demand and constrained supply across interconnected systems; cascading disruptions mediated by infrastructure and system dependencies; and maladaptation risks associated with uncoordinated sectoral responses. Policy analysis reveals that most countries adopt sector-based adaptation approaches with limited across-system integration, and insufficient data and monitoring infrastructures. Overall, this study proposes an integrated analytical framework for understanding heat wave impacts on the FEW nexus, identifies critical research and governance gaps, and provides conceptual and practical guidance for advancing future research and strengthening coordinated adaptation across food, energy, and water sectors. Full article
(This article belongs to the Special Issue Climate Change and Food Sustainability: A Critical Nexus)
Show Figures

Figure 1

10 pages, 632 KB  
Proceeding Paper
Simulation of Green Diesel by Hydrotreatment of Waste Vegetable Oil
by Pascal Mwenge, Thubelihle Mahlangu and Andani Munonde
Eng. Proc. 2025, 117(1), 27; https://doi.org/10.3390/engproc2025117027 - 20 Jan 2026
Abstract
Due to the world’s rising energy demand and reliance on fossil fuels, exploring cleaner energy sources is urgent. Green diesel from renewable resources, such as waste vegetable oil, is promising because it is compatible with petroleum diesel from fossil fuels. This study examined [...] Read more.
Due to the world’s rising energy demand and reliance on fossil fuels, exploring cleaner energy sources is urgent. Green diesel from renewable resources, such as waste vegetable oil, is promising because it is compatible with petroleum diesel from fossil fuels. This study examined the simulation of the hydrotreatment process of waste cooking oil (WCO) to produce green diesel. ChemCAD version 8.1 was used to develop the simulation, along with a kinetic model based on the Langmuir–Hinshelwood mechanism (an LH-C-ND model), where fatty acids, such as oleic, stearic, and palmitic acid, in WCO are converted into long-chain hydrocarbons (C15, C16, C17, and C18). The influence of process parameters on green diesel yield was assessed at various temperatures, pressures, and H2/oil ratios. The best process conditions for green diesel production were identified as a temperature of 275 °C, a pressure of 30 bars, and an H2/oil ratio of 0.3. Minimising the formation of CO2, CO, and water. Under these conditions, a high green diesel yield was achieved, with WCO conversion exceeding 90%, and over 80% of the products were suitable for green diesel. This research supports SDG 7, which aims for universal access to affordable, reliable, sustainable, and modern energy, by exploring cleaner energy options, such as green diesel from waste vegetable oil. It is recommended to perform a life cycle assessment to evaluate the overall environmental impact. Full article
Show Figures

Figure 1

17 pages, 4945 KB  
Article
Effects of Simulated Water Depth and Nitrogen Addition on Phragmites australis Root Anatomy
by Mingyu Zhang, Changwei Zhang, Guijun Wang, Zhenwen Xu and Yanjing Lou
Water 2026, 18(2), 243; https://doi.org/10.3390/w18020243 - 16 Jan 2026
Viewed by 190
Abstract
Root anatomy serves as a critical indicator for understanding wetland plant adaptation strategies to environmental changes. Since water depth determines root oxygen demand while nitrogen addition regulates nutrient acquisition, the two factors exert significant and interactive effects on root anatomical structure. In this [...] Read more.
Root anatomy serves as a critical indicator for understanding wetland plant adaptation strategies to environmental changes. Since water depth determines root oxygen demand while nitrogen addition regulates nutrient acquisition, the two factors exert significant and interactive effects on root anatomical structure. In this study, we established a controlled experiment employing three water depth treatments (W1: −10 cm; W2: 10 cm; W3: 30 cm), two nitrogen (N) forms (ammonium-N, nitrate-N), and four N addition levels (N0: 0 mg/L; N1: 40 mg/L; N2: 80 mg/L; N3: 160 mg/L). This design enabled us to analyze the effects of water–nitrogen interactions on the anatomical structure of reed roots to reveal wetland plants’ adaptive strategies to water-nitrogen fluctuations. The results indicate that (1) under nitrogen-free treatment, compared to the control group, the W1 treatment reduced the root aerenchyma proportion and the stele-to-root diameter ratio by 15.8% and 37.0%, respectively. In contrast, exodermis thickness increased by 32.4%, while epidermis thickness decreased by 33.7%. Under the W3 treatment, the aerenchyma proportion increased by 21.0%, the stele-to-root diameter ratio decreased by 22.2%, and exodermis thickness increased by 35.3%. (2) Compared to the nitrogen-free treatment, nitrate addition increased the root aerenchyma proportion under W1, W2, and W3 by 18.8%, 6.9%, and 18.3%. The stele-to-root diameter ratio increased by 27.9% and 12.7% under W1 and W2, but decreased by 10.8% under W3. Exodermis thickness increased by 26.3% under W2, whereas it decreased by 10.8% under W3. Epidermis thickness increased by 36.1% and 22.2% under W1 and W3, while a decrease of 12.7% occurred under W2. (3) Compared to the nitrogen-free treatment, ammonium addition increased the root aerenchyma proportion under W1, W2, and W3 by 13.6%, 13.2%, and 10.0%. The stele-to-root diameter ratio increased by 28.1% under W1 but decreased by 10.4% under W3. Conversely, exodermis thickness decreased by 20.2% under W1 while increasing by 12.6% under W3. Epidermis thickness increased by 26.3% and 20.8% under the W1 and W3 treatments. In summary, the root anatomical structure of P. australis adaptively responds to variations in water depth, nitrogen forms, and nitrogen concentrations by modulating aerenchyma proportion, the stele-to-root diameter ratio, exodermis thickness, and epidermis thickness. Future research should strengthen the study of the relationship between root anatomical traits and plant functions, to more comprehensively explore the adaptation mechanisms of wetland plants to global environmental change. Full article
(This article belongs to the Section Ecohydrology)
Show Figures

Figure 1

21 pages, 5291 KB  
Article
Green Surface Engineering of Spun-Bonded Nonwovens Using Polyphenol-Rich Berry Extracts for Bioactive and Functional Applications
by Karolina Gzyra-Jagieła, Bartosz Kopyciński, Piotr Czarnecki, Sławomir Kęska, Natalia Słabęcka, Anna Bednarowicz, Nina Tarzyńska, Dorota Zielińska, Longina Madej-Kiełbik and Patryk Śniarowski
Eng 2026, 7(1), 49; https://doi.org/10.3390/eng7010049 - 16 Jan 2026
Viewed by 263
Abstract
In response to the growing demand for environmentally friendly and sustainable yet functional technical textiles, this research developed a spun-bonded nonwoven from the biodegradable thermoplastic starch-based biopolymer BIOPLAST®, incorporating fruit extracts as natural sources of polyphenolic compounds and surface-active additives. Extracts [...] Read more.
In response to the growing demand for environmentally friendly and sustainable yet functional technical textiles, this research developed a spun-bonded nonwoven from the biodegradable thermoplastic starch-based biopolymer BIOPLAST®, incorporating fruit extracts as natural sources of polyphenolic compounds and surface-active additives. Extracts from Vaccinium myrtillus L. and Sambucus nigra L. were applied onto a nonwoven’s surface via aerographic spraying using a water/ethanol system. The resulting materials were characterized in terms of morphology, physicochemical and mechanical behavior, surface characteristics, and stability under accelerated ageing and hydrolytic conditions. Treatment with the extracts increased the tensile strength by roughly 38% and elongation at break by about 50%, and it changed the surface from hydrophobic (contact angle of 115°) to hydrophilic, with contact angles of 83° for the blueberry-modified nonwoven and 55° for the elderberry-modified nonwoven. The modified nonwovens also showed sustained release of polyphenolic compounds over 72 h, which is beneficial for biomedical, healthcare, and cosmetic applications, where short-term use, controlled release of active compounds, and bioactivity are more important than long-term durability. Overall, the results indicate that BIOPLAST®-based spun-bonded nonwovens can serve as fully bio-based carriers for fruit extracts in MedTech-related technical textiles, offering a straightforward way to introduce additional functionality into biodegradable nonwovens. Full article
Show Figures

Figure 1

22 pages, 1803 KB  
Article
Optimizing Al2O3 Ceramic Membrane Heat Exchangers for Enhanced Waste Heat Recovery in MEA-Based CO2 Capture
by Qiufang Cui, Ziyan Ke, Jinman Zhu, Shuai Liu and Shuiping Yan
Membranes 2026, 16(1), 43; https://doi.org/10.3390/membranes16010043 - 16 Jan 2026
Viewed by 143
Abstract
High regeneration energy demand remains a critical barrier to the large-scale deployment of ethanolamine-based (MEA-based) CO2 capture. This study adopts an Al2O3 ceramic-membrane heat exchanger (CMHE) to recover both sensible and latent heat from the stripped gas. Experiments confirm [...] Read more.
High regeneration energy demand remains a critical barrier to the large-scale deployment of ethanolamine-based (MEA-based) CO2 capture. This study adopts an Al2O3 ceramic-membrane heat exchanger (CMHE) to recover both sensible and latent heat from the stripped gas. Experiments confirm that heat and mass transfer within the CMHE follow a coupled mechanism in which capillary condensation governs trans-membrane water transport, while heat conduction through the ceramic membrane dominates heat transfer, which accounts for more than 80%. Guided by this mechanism, systematic structural optimization was conducted. Alumina was identified as the optimal heat exchanger material due to its combined porosity, thermal conductivity, and corrosion resistance. Among the tested pore sizes, CMHE-4 produces the strongest capillary-condensation enhancement, yielding a heat recovery flux (q value) of up to 38.8 MJ/(m2 h), which is 4.3% and 304% higher than those of the stainless steel heat exchanger and plastic heat exchanger, respectively. In addition, Length-dependent analyses reveal an inherent trade-off: shorter modules achieved higher q (e.g., 14–42% greater for 200-mm vs. 300-mm CMHE-4), whereas longer modules provide greater total recovered heat (Q). Scale-up experiments demonstrated pronounced non-linear performance amplification, with a 4 times area increase boosting q by only 1.26 times under constant pressure. The techno-economic assessment indicates a simple payback period of ~2.5 months and a significant reduction in net capture cost. Overall, this work establishes key design parameters, validates the governing transport mechanism, and provides a practical, economically grounded framework for implementing high-efficiency CMHEs in MEA-based CO2 capture. Full article
Show Figures

Graphical abstract

23 pages, 1468 KB  
Review
Advances and Prospects of Modified Activated Carbon-Based Slow Sand Filtration for Microplastic Removal
by Zhuangzhuang Qu, Ulan Zhantikeyev, Ulan Kakimov, Kainaubek Toshtay, Kanay Rysbekov, Nur Nabihah Binti Yusof, Ronny Berndtsson and Seitkhan Azat
Water 2026, 18(2), 228; https://doi.org/10.3390/w18020228 - 15 Jan 2026
Viewed by 226
Abstract
With the increasing prevalence of microplastics (MPs) and nanoplastics (NPs) in global aquatic environments, their potential ecotoxicological and health impacts have become a major concern in environmental science. Slow sand filtration (SSF) is widely recognized for its low energy demand, ecological compatibility, and [...] Read more.
With the increasing prevalence of microplastics (MPs) and nanoplastics (NPs) in global aquatic environments, their potential ecotoxicological and health impacts have become a major concern in environmental science. Slow sand filtration (SSF) is widely recognized for its low energy demand, ecological compatibility, and operational stability; however, its efficiency in removing small or neutrally buoyant MPs remains limited. In recent years, integrating modified activated carbon (MAC) into SSF systems has emerged as a promising approach to enhance MP removal. This review comprehensively summarizes the design principles, adsorption and bio-synergistic mechanisms, influencing factors, and recent advancements in MAC-SSF systems. The results indicate that surface modification of activated carbon—through controlled pore distribution, functional group regulation, and hydrophilic–hydrophobic balance—significantly enhances the adsorption and interfacial binding of MPs. Furthermore, the coupling between MAC and biofilm facilitates a multi-mechanistic removal process involving electrostatic attraction, hydrophobic interaction, physical entrapment, and biodegradation. In addition, this review discusses the operational stability, regeneration performance, and environmental sustainability of MAC-SSF systems, emphasizing the need for future research on green and low-cost modification strategies, interfacial mechanism elucidation, microbial community regulation, and life-cycle assessment. Overall, MAC-SSF technology provides an efficient, economical, and sustainable pathway for microplastic control, offering valuable implications for a safe water supply and aquatic ecosystem protection in the future. Full article
Show Figures

Figure 1

24 pages, 8070 KB  
Article
Research on Ecological Compensation in the Yangtze River Economic Belt Based on Water-Energy-Food Service Flows and XGBoost-SHAP Analysis
by Hao Wang, Jianshen Qu, Weidong Zhang, Peizhen Zhu, Ruoqing Zhu, Yuexia Han, Yong Cao and Bin Dong
Sustainability 2026, 18(2), 839; https://doi.org/10.3390/su18020839 - 14 Jan 2026
Viewed by 99
Abstract
Under the combined influence of global climate change and intensified human activities, quantifying ecological compensation (EC) amounts between regions and formulating scientifically sound and rational policies have become critical strategies for addressing the imbalance between economic development and ecological conservation. This study focuses [...] Read more.
Under the combined influence of global climate change and intensified human activities, quantifying ecological compensation (EC) amounts between regions and formulating scientifically sound and rational policies have become critical strategies for addressing the imbalance between economic development and ecological conservation. This study focuses on the Yangtze River Economic Belt (YREB) as the research subject, assesses ecosystem service supply and demand (ESSD) in the years 2000, 2010, and 2020 from the perspective of the water-energy-food nexus (WEF-Nexus), identifies ecosystem service flows (ESF) between supply and demand areas, develops an integrated EC model incorporating ecological, economic, and social dimensions to estimate EC amounts, and ultimately employs the XGBoost-SHAP model to analyze the underlying driving mechanisms. The results indicate the following: (1) From 2000 to 2020, the spatio-temporal variations in the three ESSDs in the YREB were substantial. Additionally, imbalances in ESSDs were observed, predominantly in economically advanced regions. (2) A total of 183 ESFs were identified among cities within the YREB, reflecting relatively active exchanges of ecosystem services (ESs). (3) Over the past two decades, the average annual total EC of the YREB amounted to 46,866.35 million yuan, with EC capital flows occurring in 117 cities. The proportion of water area in each city constitutes the primary driver of the EC amount. The EC model based on the “water-energy-food” ecosystem service flow (WEF-ESF) proposed in this study provides a valuable reference and scientific basis for formulating EC policies among YREB cities. Full article
Show Figures

Figure 1

16 pages, 2278 KB  
Article
Fine-Fraction Brazilian Residual Kaolin-Filled Coating Mortars
by Thamires Alves da Silveira, Mirian Dosolina Fusinato, Gustavo Luis Calegaro, Cristian da Conceição Gomes and Rafael de Avila Delucis
Waste 2026, 4(1), 3; https://doi.org/10.3390/waste4010003 - 13 Jan 2026
Viewed by 102
Abstract
This study investigates the use of the fine fraction of Brazilian residual kaolin, a material with no pozzolanic activity according to the modified Chapelle test, as a partial cement replacement in rendering mortars. The kaolin was classified into three granulometric fractions (coarse: 150–300 [...] Read more.
This study investigates the use of the fine fraction of Brazilian residual kaolin, a material with no pozzolanic activity according to the modified Chapelle test, as a partial cement replacement in rendering mortars. The kaolin was classified into three granulometric fractions (coarse: 150–300 µm, intermediate: 75–150 µm, and fine: <75 µm) and incorporated at two filler contents (10% and 20% by weight). Mineralogical and chemical analyses revealed that the fine fractions contained higher proportions of kaolinite and accessory oxides, while medium and coarse fractions were dominated by quartz. Intensity ratios from XRD confirmed greater structural disorder in the fine fraction, which was associated with higher water demand but also improved particle packing and pore refinement. Fresh state tests showed that mortars with fine kaolin maintained higher density and exhibited moderate increases in air content, whereas medium and coarse fractions promoted greater entrainment. In the hardened state, fine kaolin reduced water absorption by immersion and capillary rise, while medium and coarse fractions led to higher porosity. Mechanical tests confirmed these trends: although compressive and flexural strengths decreased with increasing substitution, mortars containing the fine kaolin fraction consistently exhibited more moderate strength losses than those with medium or coarse fractions, reflecting their enhanced packing efficiency and pore refinement. Tensile bond strength results further highlighted the positive contribution of the kaolin additions, as the mixtures with 10% coarse kaolin and 20% fine kaolin achieved adhesion values only about 7% and 4% lower, respectively, than the control mortar after 28 days. All mixtures surpassed the performance requirements of NBR 13281, demonstrating that the incorporation of residual kaolin—even at higher substitution levels—does not compromise adhesion and remains compatible with favorable cohesive failure modes in the mortar layer. Despite the lack of pozzolanic activity, residual kaolin was used due to its filler effect and capacity to enhance particle packing and pore refinement in rendering mortars. A life cycle assessment indicated that the partial substitution of cement with residual kaolin effectively reduces the environmental impacts of mortar production, particularly the global warming potential, when the residue is modeled as a by-product with a negligible environmental burden. This highlights the critical role of methodological choices in assessing the sustainability of industrial waste utilization. Full article
(This article belongs to the Special Issue Use of Waste Materials in Construction Industry)
Show Figures

Graphical abstract

31 pages, 766 KB  
Review
Recent Advances in the Application of Natural Coagulants for Sustainable Water Purification
by Davide Frumento and Ştefan Ţălu
Eng 2026, 7(1), 38; https://doi.org/10.3390/eng7010038 - 10 Jan 2026
Viewed by 172
Abstract
Growing pressure from shrinking freshwater supplies and worsening pollution has heightened the demand for more effective water treatment solutions, especially those that promote reuse. This review synthesizes findings from 235 peer-reviewed papers examining plant-, mineral-, and other naturally derived coagulants used in surface [...] Read more.
Growing pressure from shrinking freshwater supplies and worsening pollution has heightened the demand for more effective water treatment solutions, especially those that promote reuse. This review synthesizes findings from 235 peer-reviewed papers examining plant-, mineral-, and other naturally derived coagulants used in surface water purification. Overall, these materials demonstrate turbidity reduction performance on par with conventional chemical coagulants across a wide range of initial turbidity levels (roughly 50–500 NTU). They are generally inexpensive, biodegradable, low in toxicity, and produce smaller volumes of residual sludge. Most function through mechanisms such as polymer-chain bridging or charge neutralization. However, their deployment at scale is still constrained by limited commercialization pathways, technical integration issues, and uneven public acceptance. Continued cross-disciplinary work is required to refine their performance and broaden their use, particularly in regions with limited resources or rural infrastructure. Full article
Show Figures

Figure 1

25 pages, 794 KB  
Article
Dual Education as an Institutional Bridge: Closing the Policy-to-Competence Gap in Kazakhstan’s Water Sector
by Aizhan Skakova, Maratbek Gabdullin, Murat Qasenuly, Arman Utepov and Meirzhan Yessenov
Sustainability 2026, 18(2), 712; https://doi.org/10.3390/su18020712 - 10 Jan 2026
Viewed by 150
Abstract
Kazakhstan’s 2025 Water Code aims to institutionalize Integrated Water Resources Management (IWRM), but its success is threatened by a persistent “implementation gap” between policy requirements and the workforce’s practical competencies. This study provides empirical evidence of a persistent misalignment between water-related higher education [...] Read more.
Kazakhstan’s 2025 Water Code aims to institutionalize Integrated Water Resources Management (IWRM), but its success is threatened by a persistent “implementation gap” between policy requirements and the workforce’s practical competencies. This study provides empirical evidence of a persistent misalignment between water-related higher education and emerging governance demands in Kazakhstan by conceptualizing the implementation gap as a human-capital deficit. We conducted a repeated two-wave survey of students enrolled in “Water Resources” programs (n1 = 39, n2 = 82) to empirically diagnose this gap and examine changes in educational preferences over time. The findings reveal an overwhelming demand for dual education (97.6%), alongside a statistically significant shift (χ2(1) = 33.53, p < 0.001) from theory-oriented learning (56.4% to 4.9%) toward practice-oriented formats (30.8% to 62.2%). Key reported constraints include limited access to modern laboratories (47.6%) and insufficient real-world professional experience (28%). Taken together, these results indicate a structural misalignment between academic training and the competency requirements implied by ongoing water-sector reforms. The study concludes that dual education may function as an institutional mechanism for narrowing the policy-to-competence gap, supporting efforts to operationalize the 2025 Water Code and advance Sustainable Development Goals 4 and 6. Full article
Show Figures

Figure 1

30 pages, 1761 KB  
Review
Harnessing Optical Energy for Thermal Applications: Innovations and Integrations in Nanoparticle-Mediated Energy Conversion
by José Rubén Morones-Ramírez
Processes 2026, 14(2), 236; https://doi.org/10.3390/pr14020236 - 9 Jan 2026
Viewed by 258
Abstract
Nanoparticle-mediated photothermal conversion exploits the unique light-to-heat transduction properties of engineered nanomaterials to address challenges in energy, water, and healthcare. This review first examines fundamental mechanisms—localized surface plasmon resonance (LSPR) in plasmonic metals and broadband interband transitions in semiconductors—demonstrating how tailored nanoparticle compositions [...] Read more.
Nanoparticle-mediated photothermal conversion exploits the unique light-to-heat transduction properties of engineered nanomaterials to address challenges in energy, water, and healthcare. This review first examines fundamental mechanisms—localized surface plasmon resonance (LSPR) in plasmonic metals and broadband interband transitions in semiconductors—demonstrating how tailored nanoparticle compositions can achieve >96% absorption across 250–2500 nm and photothermal efficiencies exceeding 98% under one-sun illumination (1000 W·m−2, AM 1.5G). Next, we highlight advances in solar steam generation and desalination: floating photothermal receivers on carbonized wood or hydrogels reach >95% efficiency in solar-to-vapor conversion and >2 kg·m−2·h−1 evaporation rates; three-dimensional architectures recapture diffuse flux and ambient heat; and full-spectrum nanofluids (LaB6, Au colloids) extend photothermal harvesting into portable, scalable designs. We then survey photothermal-enhanced thermal energy storage: metal-oxide–paraffin composites, core–shell phase-change material (PCM) nanocapsules, and MXene– polyethylene glycol—PEG—aerogels deliver >85% solar charging efficiencies, reduce supercooling, and improve thermal conductivity. In biomedicine, gold nanoshells, nanorods, and transition-metal dichalcogenide (TMDC) nanosheets enable deep-tissue photothermal therapy (PTT) with imaging guidance, achieving >94% tumor ablation in preclinical and pilot clinical studies. Multifunctional constructs combine PTT with chemotherapy, immunotherapy, or gene regulation, yielding synergistic tumor eradication and durable immune responses. Finally, we explore emerging opto-thermal nanobiosystems—light-triggered gene silencing in microalgae and poly(N-isopropylacrylamide) (PNIPAM)–gold nanoparticle (AuNP) membranes for microfluidic photothermal filtration and control—demonstrating how nanoscale heating enables remote, reversible biological and fluidic functions. We conclude by discussing challenges in scalable nanoparticle synthesis, stability, and integration, and outline future directions: multicomponent high-entropy alloys, modular photothermal–PCM devices, and opto-thermal control in synthetic biology. These interdisciplinary innovations promise sustainable solutions for global energy, water, and healthcare demands. Full article
(This article belongs to the Special Issue Transport and Energy Conversion at the Nanoscale and Molecular Scale)
Show Figures

Figure 1

23 pages, 4558 KB  
Article
Copper Ion Detection Using Green Precursor-Derived Carbon Dots in Aqueous Media
by Chao-Sheng Chen, Miao-Wei Lin and Chin-Feng Wan
Chemosensors 2026, 14(1), 21; https://doi.org/10.3390/chemosensors14010021 - 9 Jan 2026
Viewed by 207
Abstract
Highly accurate quantitative detection of heavy metals is crucial for preventing environmental pollution and safeguarding public health. To address the demand for sensitive and specific detection of Cu2+ ions, we have developed carbon dots using a simple hydrothermal process. The synthesized carbon [...] Read more.
Highly accurate quantitative detection of heavy metals is crucial for preventing environmental pollution and safeguarding public health. To address the demand for sensitive and specific detection of Cu2+ ions, we have developed carbon dots using a simple hydrothermal process. The synthesized carbon dots are highly stable in aqueous media, environmentally friendly, and exhibit strong blue photoluminescence at 440 nm when excited at 352 nm, with a quantum yield of 5.73%. Additionally, the size distribution of the carbon dots ranges from 2.0 to 20 nm, and they feature excitation-dependent emission. They retain consistent optical properties across a wide pH range and under high ionic strength. The photoluminescent probes are selectively quenched by Cu2+ ions, with no interference observed from other metal cations such as Ag+, Ca2+, Cr3+, Fe2+, Fe3+, Hg2+, K+, Mg2+, Sn2+, Pb2+, Sr2+, and Zn2+. The emission of carbon dots exhibits a strong linear correlation with Cu2+ concentration in the range of 0–14 μM via a static quenching mechanism, with a detection limit (LOD) of 4.77 μM in water. The proposed carbon dot sensor is low cost and has been successfully tested for detecting Cu2+ ions in general water samples collected from rivers in Taiwan. Full article
Show Figures

Graphical abstract

27 pages, 3479 KB  
Article
The Water Lifting Performance of a Photovoltaic Sprinkler Irrigation System Regulated by Solar-Coupled Compressed-Air Energy Storage
by Xiaoqing Zhong, Maosheng Ge, Zhengwen Tang, Pute Wu, Xin Hui, Qianwen Zhang, Qingyan Zhang and Khusen Sh. Gafforov
Agriculture 2026, 16(2), 154; https://doi.org/10.3390/agriculture16020154 - 8 Jan 2026
Viewed by 221
Abstract
Solar-driven irrigation, a promising clean technology for agricultural water conservation, is constrained by mismatched photovoltaic (PV) pump outflow and irrigation demand, alongside unstable PV output. While compressed-air energy storage (CAES) shows mitigation potential, existing studies lack systematic explorations of pump water-lifting characteristics and [...] Read more.
Solar-driven irrigation, a promising clean technology for agricultural water conservation, is constrained by mismatched photovoltaic (PV) pump outflow and irrigation demand, alongside unstable PV output. While compressed-air energy storage (CAES) shows mitigation potential, existing studies lack systematic explorations of pump water-lifting characteristics and supply capacity under coupled meteorological and air pressure effects, limiting its practical promotion. This study focuses on a solar-coupled compressed-air energy storage regulated sprinkler irrigation system (CAES-SPSI). Integrating experimental and theoretical methods, it establishes dynamic flow models for three DC diaphragm pumps considering combined PV output and outlet back pressure, introduces pressure loss and drop coefficients to construct a nozzle pressure dynamic model via calibration and iteration, and conducts a 1-hectare corn field case study. The results indicate the following: pump flow increases with PV power and decreases with outlet pressure (model deviation < 9.24%); nozzle pressure in pulse spraying shows logarithmic decline; CAES-SPSI operates 10 h/d, with hourly water-lifting capacity of 0.317–1.01 m3/h and daily cumulation of 6.71 m3; and the low-intensity and long-duration mode extends irrigation time, maintaining total volume and optimal soil moisture. This study innovatively incorporates dynamic air pressure potential energy into meteorological-PV coupling analysis, providing a universal method for quantifying pump flow changes, clarifying CAES-SPSI’s water–energy coupling mechanism, and offering a design basis for its agricultural application feasibility. Full article
(This article belongs to the Section Agricultural Water Management)
Show Figures

Figure 1

28 pages, 4229 KB  
Article
Horizontal Ecological Compensation for Ecosystem Services Based on the Perspective of Flood-Sediment Transport, Eco-Environmental and Socio-Economic Subsystems
by Ni Geng, Guiliang Tian and Hengquan Zhang
Land 2026, 15(1), 111; https://doi.org/10.3390/land15010111 - 7 Jan 2026
Viewed by 223
Abstract
The uncoordinated water–sediment relationship, fragile eco-environment and unbalanced economic development in the Wei River Basin (WRB) pose serious challenges to its high-quality development. Most existing studies focus on static structures or single elements, making it difficult to systematically reveal the complex interrelationships among [...] Read more.
The uncoordinated water–sediment relationship, fragile eco-environment and unbalanced economic development in the Wei River Basin (WRB) pose serious challenges to its high-quality development. Most existing studies focus on static structures or single elements, making it difficult to systematically reveal the complex interrelationships among ecosystem services (ESs) supply, transmission and demand. To address this issue, this paper innovatively combines the “system perspective” with the “flow network model”. From the perspective of flood-sediment transport, eco-environmental and socio-economic (FES) subsystems, we take the WRB as its research object and systematically analyzes the supply–demand relationship of ESs, the pathways of the ESs flows and ecological compensation (EC) strategies at multiple scales. By constructing a supply–demand assessment model for six types of ESs combined with the water-related flows model, the enhanced two-step floating catchment area method and the gravity model, this paper simulates the ESs flows driven by different transmission media (water, road and atmosphere). The results showed the following: (1) a significant spatial mismatch was observed between the high-supply areas at the northern foothills of the Qinling Mountains and the high-demand areas in the Guanzhong Plains. Furthermore, the degree of this mismatch increased with decreasing scale. (2) The pathways of different ESs flows were influenced by their respective transmission media. The water-related flows passed through areas along the Wei River and the Jing River. The carbon sequestration flows were identified in the upper reaches of the Luo River and between the core urban agglomerations of the Guanzhong Plains. The crop production flows were significantly influenced by the scale of urban crop demand, radiating outward from Xi’an City. (3) At the county and watershed scales, The EC fund pools of 7.5 billion yuan and 2.6 billion yuan were formed, respectively. These EC funds covered over 90% of the areas. These findings verify the applicability of the “FES subsystems” framework for multi-scale EC and provide a theoretical basis for developing an integrated EC mechanism across the entire basin. Full article
Show Figures

Figure 1

Back to TopTop