Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (262)

Search Parameters:
Keywords = water continuum

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2862 KiB  
Article
Characterization of Soil Bacterial Communities in Different Vegetation Types on the Lava Plateau of Jingpo Lake
by Yanli Zhang, Jiaxing Huang, Jiaxin Xue, Kaining Zhang, Xintong Chen, Jianhui Jia and Qingyang Huang
Microorganisms 2025, 13(7), 1648; https://doi.org/10.3390/microorganisms13071648 - 11 Jul 2025
Viewed by 371
Abstract
To explore the interactions within the vegetation–soil–microorganism continuum on the Jingpo Lake lava platform, five vegetation types—grassland (GL), shrubland (SL), deciduous broad-leaved forest (DB), coniferous and broad-leaved mixed forest (CB), and coniferous forest (CF)—were examined. Significant differences in the soil physical and chemical [...] Read more.
To explore the interactions within the vegetation–soil–microorganism continuum on the Jingpo Lake lava platform, five vegetation types—grassland (GL), shrubland (SL), deciduous broad-leaved forest (DB), coniferous and broad-leaved mixed forest (CB), and coniferous forest (CF)—were examined. Significant differences in the soil physical and chemical properties were identified among these types (p < 0.05). The soil bacterial community structures also varied significantly (p < 0.05), with Actinobacteriota, Proteobacteria, and Acidobacteria as the dominant phyla, exhibiting notable genus-level differences (p < 0.05). The soil organic matter (SOM), available nitrogen (AN), total nitrogen (TN), and soil water content (SWC) were significantly correlated with the bacterial community structure (p < 0.05 or p < 0.01), acting as key determinants of the microbial community structure and function. PICRUSt2 functional predictions revealed significant variations in the metabolic functions of the soil bacterial communities across vegetation types, indicating distinct functional specializations. In conclusion, the Jingpo Lake lava plateau harbors abundant bacterial resources. When devising vegetation adaptation strategies, it is essential to take into account variations in the rhizosphere soil bacteria across different vegetation types. Furthermore, prioritizing the implementation of forest vegetation is crucial in the adaptive management of the lava plateau. This approach holds significant implications for studying the bacterial diversity in the lava plateau and exploring the cultivation and application of functional bacteria in extreme environments. Full article
Show Figures

Figure 1

16 pages, 3764 KiB  
Article
Luminescence of Carbon Dots Induced by MeV Protons
by Mariapompea Cutroneo, Vladimir Havranek, Vaclav Holy, Petr Malinsky, Petr Slepicka, Selena Cutroneo and Lorenzo Torrisi
Chemosensors 2025, 13(7), 245; https://doi.org/10.3390/chemosensors13070245 - 9 Jul 2025
Viewed by 341
Abstract
In this study, we describe the preparation of carbon dots (CDs) from natural charcoal by laser ablation in a liquid. A continuum wave (CW) laser diode operating at a wavelength of 450 nm, hitting a solid carbon target placed into a biocompatible liquid, [...] Read more.
In this study, we describe the preparation of carbon dots (CDs) from natural charcoal by laser ablation in a liquid. A continuum wave (CW) laser diode operating at a wavelength of 450 nm, hitting a solid carbon target placed into a biocompatible liquid, constituted of a phosphate-buffered saline (PBS) solution and distilled water, was used for the generation of the CDs suspension. Exploring the practical applications of carbon dots, it was observed that the luminescence of the produced CDs can be used as bioimaging in living organisms, environmental monitoring, chemical analysis, targeted drug delivery, disease diagnosis, therapy, and others. The CDs’ luminescence can be induced by UV irradiation and, as demonstrated in this study, by energetic MeV proton beams. The fluorescence was revealed mainly at 480 nm when UV illuminated the CDs, and also in the region at 514–642 nm when the CDs were irradiated by energetic proton ions. Atomic force microscopy (AFM) of the CD films revealed their spherical shape with a size of about 10 nm. The significance of the manuscript lies in the use of CDs produced by laser ablation exhibiting luminescence under irradiation of an energetic proton beam. Full article
(This article belongs to the Section Materials for Chemical Sensing)
Show Figures

Figure 1

13 pages, 1834 KiB  
Article
Ancient Lineages of the Western and Central Palearctic: Mapping Indicates High Endemism in Mediterranean and Arid Regions
by Şerban Procheş, Syd Ramdhani and Tamilarasan Kuppusamy
Diversity 2025, 17(7), 444; https://doi.org/10.3390/d17070444 - 23 Jun 2025
Viewed by 341
Abstract
The Palearctic region is characterised by high endemism in the west and east, and a low endemism centre. The endemic lineages occurring at the two ends are largely distinct, and eastern endemics are typically associated with humid climates and forests, representing the start [...] Read more.
The Palearctic region is characterised by high endemism in the west and east, and a low endemism centre. The endemic lineages occurring at the two ends are largely distinct, and eastern endemics are typically associated with humid climates and forests, representing the start of a continuum from temperate to tropical forest groups and leading to Indo-Malay endemics. In contrast, western Palearctic endemics are typically associated with arid or seasonally dry (Mediterranean) climates and vegetation. Those lineages occurring in the central Palearctic are typically of western origin. Here, we use phylogenetic age (older than 34 million years (My)) to define a list of tetrapod and vascular plant lineages endemic to the western and central Palearctic, map their distributions at the ecoregion scale, and combine these maps to illustrate and understand lineage richness and endemism patterns. Sixty-three ancient lineages were recovered, approximately half of them reptiles, with several herbaceous and shrubby angiosperms, amphibians, and rodents, and single lineages of woody conifers, insectivores, and birds. Overall, we show high lineage richness in the western Mediterranean, eastern Mediterranean, and Iran, with the highest endemism values recorded in the western Mediterranean (southern Iberian Peninsula, southern France). This paints a picture of ancient lineage survival in areas of consistently dry climate since the Eocene, but also in association with persistent water availability (amphibians in the western Mediterranean). The almost complete absence of ancient endemic bird lineages is unusual and perhaps unique among the world’s biogeographic regions. The factors accounting for these patterns include climate since the end of the Eocene, micro-habitats and micro-climates (of mountain terrain), refugia, and patchiness and isolation (of forests). Despite their aridity adaptations, some of the lineages listed here may be tested under anthropogenic climatic change, although some may extend into the eastern Palearctic. We recommend using these lineages as flagships for conservation in the study region, where their uniqueness and antiquity deserve greater recognition. Full article
Show Figures

Figure 1

19 pages, 6897 KiB  
Article
The Evolution of Sediment Microorganisms During the Transition from Freshwater to Seawater and Their Dependence on Water Quality
by Qingyu Zhu, Lingli Min, Wenzhou Zhang, Shouping Ji and Yulang Chi
Water 2025, 17(12), 1831; https://doi.org/10.3390/w17121831 - 19 Jun 2025
Viewed by 484
Abstract
Estuarine ecosystems, characterized by dynamic salinity gradients and complex physicochemical interactions, serve as critical transition zones between freshwater and marine environments. This study investigates the spatial evolution of sediment microbial communities across a freshwater–seawater continuum and their correlations with water quality parameters. Five [...] Read more.
Estuarine ecosystems, characterized by dynamic salinity gradients and complex physicochemical interactions, serve as critical transition zones between freshwater and marine environments. This study investigates the spatial evolution of sediment microbial communities across a freshwater–seawater continuum and their correlations with water quality parameters. Five sampling zones (upstream, midstream, downstream, transition zone, and ocean) were established in a typical estuary (Kuiyu Park, China). High-throughput 16S rRNA sequencing revealed significant shifts in microbial composition, with dominant phyla including Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria. Alpha diversity decreased from freshwater to the transition zone but rebounded in seawater, suggesting habitat filtering and niche differentiation. Redundancy analysis identified salinity, dissolved oxygen, nutrients, and heavy metals as key drivers of microbial community structure. Functional predictions highlighted metabolic adaptations such as methanogenesis, sulfur oxidation, and aerobic chemoheterotrophy across zones. This study explores how sediment microorganisms adapt to water quality variations during the freshwater–seawater transition, offering insights into estuarine resilience under global change. These findings elucidate microbial assembly rules in estuarine ecosystems and provide insights for ecological management under global environmental change. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

14 pages, 3395 KiB  
Article
Numerical Analysis Method of Water Inrush During Blasting in Water-Resistant Rock Mass Tunnels Based on FEM-SPH Coupling Algorithm
by Yanqing Men, Zixuan Zhang, Jing Wang, Xiao Yu, Chuan Wang, Kai Wang and Xingzhi Ba
Buildings 2025, 15(11), 1765; https://doi.org/10.3390/buildings15111765 - 22 May 2025
Cited by 1 | Viewed by 428
Abstract
In recent years, geological disasters such as water inrush during drilling and blasting operations have posed significant challenges in tunnel engineering. This paper presents a novel continuous-discrete coupling method based on LS-DYNA, combining the finite element method (FEM) and smoothed particle hydrodynamics (SPH), [...] Read more.
In recent years, geological disasters such as water inrush during drilling and blasting operations have posed significant challenges in tunnel engineering. This paper presents a novel continuous-discrete coupling method based on LS-DYNA, combining the finite element method (FEM) and smoothed particle hydrodynamics (SPH), to simulate the water inrush phenomenon in blasting engineering. The proposed FEM-SPH model effectively captures the propagation of explosion shock waves, simulates small deformation areas with solid grids, and models water behavior using SPH. This study systematically investigates the dynamic evolution of water inrush, divided into three distinct phases: the rupture of the water-resistant rock layer, the emergence of fluid-conducting channels, and the onset of large-scale water influx. Results indicate that under blasting load, the stress of the surrounding rock increases sharply, leading to instantaneous water inrush. The FEM-SPH model demonstrates superior performance in simulating the complex interactions between blasting stress waves, water pressure, and rock mass damage. This research provides new insights and methods for water control in tunnel engineering and offers significant potential for preventing water inrush disasters in underground construction. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

27 pages, 8245 KiB  
Article
Dead Sea Stromatolite Reefs: Testing Ground for Remote Sensing Automated Detection of Life Forms and Their Traces in Harsh Environments
by Nuphar Gedulter, Amotz Agnon and Noam Levin
Remote Sens. 2025, 17(9), 1613; https://doi.org/10.3390/rs17091613 - 1 May 2025
Viewed by 389
Abstract
The Dead Sea is one of the most saline terminal lakes on Earth, and few organisms survive in this harsh environment. In some onshore spring pools, active and diverse microbial communities flourish. In the geological past, microbial-rich environments left their marks in the [...] Read more.
The Dead Sea is one of the most saline terminal lakes on Earth, and few organisms survive in this harsh environment. In some onshore spring pools, active and diverse microbial communities flourish. In the geological past, microbial-rich environments left their marks in the form of stromatolites. Stromatolites are studied to better understand the appearance of life on Earth and potentially on other planets. Hyperspectral methodologies have been shown to be useful for detecting structures in stromatolites. In an effort to characterize the biosignatures and chemical composition inherent to stromatolites, we created a spectral classification scheme for distinguishing between stromatolites and their bedrock environment—typically carbonatic rocks, mostly dolomites. The overarching aim comprises the development of an automated hyperspectral reflectance method for detecting the presence of stromatolites. We collected and measured 82 field samples with an ASD spectrometer and used our spectral dataset to train three machine learning algorithms (linear regression, K-Nearest Neighbor, XGBoost). The results show the successful detection of stromatolites, with all three prediction methods giving high accuracy rates (stromatolite > 0.9, bedrock dolomite > 0.8). The continuum removal and spectral ratio technique results identified two significant spectral regions, ~1900 nm (water) and ~2310–2320 nm (carbonates), that allow one to differentiate between stromatolites and dolomites. This study establishes the grounds for the automated detection of a fossilized livable environment in a carbonatic terrain based on its hyperspectral reflectance data. The results have significant implications for future mapping efforts and emphasize the feasibility of automated mapping, extending the data acquisition to airborne or satellite-based hyperspectral remote sensing technologies to detect life forms in extreme environments. Full article
Show Figures

Figure 1

23 pages, 5796 KiB  
Article
Motion Patterns Under Multiple Constraints and Master–Slave Control of a Serial Modular Biomimetic Robot with 3-DOF Hydraulic Muscle-Driven Continuum Segments
by Yunrui Jia, Zengmeng Zhang, Junhao Guo, Yong Yang and Yongjun Gong
Biomimetics 2025, 10(5), 278; https://doi.org/10.3390/biomimetics10050278 - 29 Apr 2025
Viewed by 488
Abstract
Soft modular biomimetic robots, driven by flexible actuators, are extensively used in various fields due to their excellent flexibility, environmental adaptability, and isomorphism. However, existing flexible modules typically possess no more than two degrees of freedom for structural limitations. In this study, a [...] Read more.
Soft modular biomimetic robots, driven by flexible actuators, are extensively used in various fields due to their excellent flexibility, environmental adaptability, and isomorphism. However, existing flexible modules typically possess no more than two degrees of freedom for structural limitations. In this study, a three-degree-of-freedom biomimetic segment driven by water hydraulic artificial muscles (WHAMs) and supported by springs was proposed, achieving integrated and modular design. The continuum robot composed of this segment can execute earthworm-, snake-, and elephant trunk-biomimetic motion modes based on operational environmental constraints. During long-distance operational tasks, distinct segments of the continuum robot can adopt varying biomimetic configurations to meet specific requirements. The closed-loop control characteristic tests were conducted on a single segment to evaluate its motion characteristics. The isomorphic master controller was designed based on the motion range of a single segment, with the maximum bending angle deviation between the master controller and biomimetic segment not exceeding 4°, and the system demonstrating favorable stability. Full article
(This article belongs to the Special Issue Bio-Inspired and Biomimetic Intelligence in Robotics: 2nd Edition)
Show Figures

Figure 1

19 pages, 2921 KiB  
Article
Influence of Side Chain–Backbone Interactions and Explicit Hydration on Characteristic Aromatic Raman Fingerprints as Analysed in Tripeptides Gly-Xxx-Gly (Xxx = Phe, Tyr, Trp)
by Belén Hernández, Yves-Marie Coïc, Sergei G. Kruglik, Santiago Sanchez-Cortes and Mahmoud Ghomi
Int. J. Mol. Sci. 2025, 26(8), 3911; https://doi.org/10.3390/ijms26083911 - 21 Apr 2025
Viewed by 758
Abstract
Because of the involvement of π-electron cyclic constituents in their side chains, the so-called aromatic residues give rise to a number of strong, narrow, and well-resolved lines spread over the middle wavenumber (1800–600 cm−1) region of the Raman spectra of [...] Read more.
Because of the involvement of π-electron cyclic constituents in their side chains, the so-called aromatic residues give rise to a number of strong, narrow, and well-resolved lines spread over the middle wavenumber (1800–600 cm−1) region of the Raman spectra of peptides and proteins. The number of characteristic aromatic markers increases with the structural complexity (Phe → Tyr → Trp), herein referred to as (Fi = 1, …, 6) in Phe, (Yi = 1, …, 7) in Tyr, and (Wi = 1, …, 8) in Trp. Herein, we undertake an overview of these markers through the analysis of a representative data base gathered from the most structurally simple tripeptides, Gly-Xxx-Gly (where Xxx = Phe, Tyr, Trp). In this framework, off-resonance Raman spectra obtained from the aqueous samples of these tripeptides were jointly used with the structural and vibrational data collected from the density functional theory (DFT) calculations using the M062X hybrid functional and 6-311++G(d,p) atomic basis set. The conformation dependence of aromatic Raman markers was explored upon a representative set of 75 conformers, having five different backbone secondary structures (i.e., β-strand, polyproline-II, helix, classic, and inverse γ-turn), and plausible side chain rotamers. The hydration effects were considered upon using both implicit (polarizable solvent continuum) and explicit (minimal number of 5–7 water molecules) models. Raman spectra were calculated through a multiconformational approach based on the thermal (Boltzmann) average of the spectra arising from all calculated conformers. A subsequent discussion highlights the conformational landscape of conformers and the wavenumber dispersion of aromatic Raman markers. In particular, a new interpretation was proposed for the characteristic Raman doublets arising from Tyr (~850–830 cm−1) and Trp (~1360–1340 cm−1), definitely excluding the previously suggested Fermi-resonance-based assignment of these markers through the consideration of the interactions between the aromatic side chain and its adjacent peptide bonds. Full article
(This article belongs to the Special Issue Conformational Studies of Proteins and Peptides)
Show Figures

Graphical abstract

11 pages, 1555 KiB  
Article
Changes in Fluorescence of Aquatic Dissolved Organic Matter Induced by Plastic Debris
by Cristina L. Popa, Simona I. Dontu, Dan Savastru and Elfrida M. Carstea
Materials 2025, 18(7), 1602; https://doi.org/10.3390/ma18071602 - 1 Apr 2025
Viewed by 406
Abstract
Water contamination with plastic materials represents one of the most pressing environmental problems that the modern world is facing. In this context, the present paper aims to investigate the influence of fluorescent dissolved organic matter (FDOM) released by plastic materials on the aquatic [...] Read more.
Water contamination with plastic materials represents one of the most pressing environmental problems that the modern world is facing. In this context, the present paper aims to investigate the influence of fluorescent dissolved organic matter (FDOM) released by plastic materials on the aquatic bacterial fraction and evaluate the efficiency of fluorescence spectroscopy in identifying plastic FDOM in freshwater. To this purpose, river and tap water samples were contaminated in a controlled manner in the laboratory, and the water quality parameters and bacterial occurrence for these samples were determined using standard physico-chemical characterization methods: fluorescence spectroscopy, dynamic light scattering, and flow cytometry. The results revealed that plastic debris influenced the dissolved-particulate organic matter continuum, also affecting bacterial cell proliferation in both the river and tap samples. The study highlights that the impact of plastic FDOM on bacterial proliferation should not be taken lightly, while fluorescence spectroscopy proved to be an effective method for identifying the presence of plastic FDOM in water samples of various origins. Full article
(This article belongs to the Special Issue Plastic Waste Management for Environmental Protection)
Show Figures

Figure 1

18 pages, 4071 KiB  
Article
Can We Unambiguously Define the Dipole Moment of Molecules in the Condensed Phase?
by Imre Bakó and Szilvia Pothoczki
Molecules 2025, 30(7), 1539; https://doi.org/10.3390/molecules30071539 - 30 Mar 2025
Viewed by 841
Abstract
Various theoretical methods were applied and evaluated to determine the dipole moment of polar protic (methanol, ethanol) and aprotic (acetonitrile, pyridine, acetone) dipoles in the crystal phase. In mono-alcohols, the dipole moment is influenced by the hydrogen bonding (H-bonding) environment, similarly to earlier [...] Read more.
Various theoretical methods were applied and evaluated to determine the dipole moment of polar protic (methanol, ethanol) and aprotic (acetonitrile, pyridine, acetone) dipoles in the crystal phase. In mono-alcohols, the dipole moment is influenced by the hydrogen bonding (H-bonding) environment, similarly to earlier findings with liquid water. Using localization techniques without considering the effect of neighboring molecules gives similar results for the dipole moment of mono-alcohols than those obtained from the polarized continuum model (PCM). However, the PCM for polar aprotic molecules provides significantly different dipole moment values compared to localization methods. Our results clearly show that the magnitude of the dipole moment in the condensed phase cannot be unambiguously determined. Full article
Show Figures

Figure 1

22 pages, 1736 KiB  
Article
AIRWAVE-SLSTR—An Algorithm to Estimate the Total Column of Water Vapour from SLSTR Measurements over Liquid Surfaces
by Elisa Castelli, Stefano Casadio, Enzo Papandrea, Paolo Pettinari, Massimo Valeri, Andrè Achilli, Bojan R. Bojkov, Alessio Di Roma, Camilla Perfetti and Bianca Maria Dinelli
Remote Sens. 2025, 17(7), 1205; https://doi.org/10.3390/rs17071205 - 28 Mar 2025
Viewed by 384
Abstract
In the past, the possibility to retrieve the total column of water vapour (TCWV) from the thermal infrared (TIR) day and night measurements above water surfaces of the dual-view Along Track Scanning Radiometers (ATSR) has been demonstrated, and an algorithm, named Advanced InfrarRed [...] Read more.
In the past, the possibility to retrieve the total column of water vapour (TCWV) from the thermal infrared (TIR) day and night measurements above water surfaces of the dual-view Along Track Scanning Radiometers (ATSR) has been demonstrated, and an algorithm, named Advanced InfrarRed Water Vapour Estimator (AIRWAVE), was developed and successfully applied to the measurements of the (A)ATSR instrument series. A similar instrument, the Sea and Land Surface Temperature Radiometer (SLSTR), is currently operating on board the Sentinel 3 satellite series. In this paper, we demonstrate that the AIRWAVE algorithm can be successfully applied to the SLSTR instrument to obtain reliable TCWV measurements. The steps performed for upgrading the algorithm are thoroughly described. The new AIRWAVE algorithm makes use of parameters computed offline with a state-of-the-art radiative transfer model using the most recent spectroscopic data and continuum model. For the parameters calculation, a new climatology capable of representing the average atmospheric and sea surface status during SLSTR measurements has been developed. The new algorithm, named AIRWAVE-SLSTR, has been implemented in both IDL and Python languages. In the frame of an EUMETSAT contract, AIRWAVE-SLSTR has been applied to a full year of SLSTR measurements (2021) and the retrieved TCWV have been validated with the help of both satellite- and ground-based measurements. The correlation of the retrieved TCWV with satellite MW measurements is 0.94 and the average bias is of the order of 0.66 kg/m2. When compared to ground-based measurements, the average correlation is 0.93 and the bias −0.48 kg/m2. The obtained accuracy is well within the requirements set for both numerical weather predictions (1–5 kg/m2) and for coastal altimetry applications (1.8–3 kg/m2). Therefore, the AIRWAVE-SLSTR algorithm can be safely applied to obtain a long time series of reliable TCWV above water surfaces. Full article
Show Figures

Figure 1

14 pages, 2672 KiB  
Article
A Bio-Inspired Flexible Arm for Subsea Inspection: A Water Hydraulically Actuated Continuum Manipulator
by Emanuele Guglielmino, David Branson and Paolo Silvestri
J. Mar. Sci. Eng. 2025, 13(4), 676; https://doi.org/10.3390/jmse13040676 - 27 Mar 2025
Viewed by 511
Abstract
This paper outlines the outcomes of a multidisciplinary initiative aimed at creating flexible arms that leverage key aspects of soft-bodied sea animal anatomy. We designed and prototyped a flexible arm inspired by nature while focusing on integrating practical engineering technologies from a system [...] Read more.
This paper outlines the outcomes of a multidisciplinary initiative aimed at creating flexible arms that leverage key aspects of soft-bodied sea animal anatomy. We designed and prototyped a flexible arm inspired by nature while focusing on integrating practical engineering technologies from a system perspective. The mechanical structure was developed by studying soft-bodied marine animals from the cephalopod order. Simultaneously, we carefully addressed engineering challenges and limitations, including material flexibility, inherent safety, energy efficiency, cost-effectiveness, and manufacturing feasibility. The design process is demonstrated through two successive generations of prototypes utilizing fluidic actuators. The first one exhibited both radial and longitudinal actuators, the second one only longitudinal actuators, thus trading off between bio-inspiration and engineering constraints. Full article
Show Figures

Figure 1

20 pages, 426 KiB  
Review
Examining the Environmental Ramifications of Asbestos Fiber Movement Through the Water–Soil Continuum: A Review
by Gergely Zoltán Macher, András Torma and Dóra Beke
Int. J. Environ. Res. Public Health 2025, 22(4), 505; https://doi.org/10.3390/ijerph22040505 - 26 Mar 2025
Cited by 1 | Viewed by 965
Abstract
The environmental pollution potential of asbestos products is a worldwide health issue, but their dissemination through the water–soil continuum is often an overlooked aspect. Similarly, the behavior of asbestos fibers released from the products is still not fully understood, although our knowledge is [...] Read more.
The environmental pollution potential of asbestos products is a worldwide health issue, but their dissemination through the water–soil continuum is often an overlooked aspect. Similarly, the behavior of asbestos fibers released from the products is still not fully understood, although our knowledge is based on studies concerning their mineralogical characteristics, health effects, and waste disposal. It has been claimed and contradicted that asbestos harm is only found in air and humans. Asbestos fibers are found not only in industrial settings but also through the industrial use of asbestos cement products, which has contributed to asbestos emissions and its movement in water and soil. Asbestos fibers are diverse in their physicochemical properties, and this diversity has a significant influence on their behavior in the environment. Recent research has confirmed that asbestos can be transported by water and spread to other parts of the environment. However, the mechanisms underlying this, such as the settling of fibers, their attachment to soil particles, or their movement in groundwater, as well as the environmental and health implications, require further investigation. This paper examines the process and impact of asbestos contamination in the interconnected water, soil, and plant environmental sectors, providing a systematic review of the latest literature. Full article
23 pages, 5085 KiB  
Article
Process Importance Identification for the SPAC System Under Different Water Conditions: A Case Study of Winter Wheat
by Lijun Wang, Liangsheng Shi and Jinmin Li
Agronomy 2025, 15(3), 753; https://doi.org/10.3390/agronomy15030753 - 20 Mar 2025
Viewed by 443
Abstract
Modeling the soil–plant–atmosphere continuum (SPAC) system requires multiple subprocesses and numerous parameters. Sensitivity analysis is effective to identify important model components and improve the modeling efficiency. However, most sensitivity analyses for SPAC models focus on parameter-level assessment, providing limited insights into process-level importance. [...] Read more.
Modeling the soil–plant–atmosphere continuum (SPAC) system requires multiple subprocesses and numerous parameters. Sensitivity analysis is effective to identify important model components and improve the modeling efficiency. However, most sensitivity analyses for SPAC models focus on parameter-level assessment, providing limited insights into process-level importance. To address this gap, this study proposes a process sensitivity analysis method that integrates the Bayesian network with variance-based sensitivity measures. Four subprocesses are demarcated based on the physical relationships between model components revealed by the network. Applied to a winter wheat SPAC system under different water conditions, the method effectively and reliably identifies critical processes. The results indicate that, under minimal water stress, the subprocesses of photosynthesis and dry matter partitioning primarily determine agricultural outputs. As the water supply decreases, the subprocesses of soil water movement and evapotranspiration gain increasing importance, becoming predominant under sever water stress. Throughout the crop season, the subprocess importance and its response to water stress are modulated by the crop phenology. Compared to conventional parameter sensitivity analysis, our method excels in synthesizing divergent parameter importance changes and identifying influential subprocesses, even without high-sensitivity parameters. This study provides new insights into adaptive SPAC modeling by dynamically simplifying unimportant subprocesses in response to environmental changes. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

31 pages, 3248 KiB  
Article
Assessment of Heavy Metal Contamination of Seawater and Sediments Along the Romanian Black Sea Coast: Spatial Distribution and Environmental Implications
by Elena Ristea, Oana Cristina Pârvulescu, Vasile Lavric and Andra Oros
Sustainability 2025, 17(6), 2586; https://doi.org/10.3390/su17062586 - 14 Mar 2025
Cited by 4 | Viewed by 1603
Abstract
This study assesses the spatial distribution and contamination levels of some heavy metals (HMs), i.e., cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), and lead (Pb), in seawater and surface sediments along the Romanian Black Sea coast (RBSC). Sampling was conducted at 40 [...] Read more.
This study assesses the spatial distribution and contamination levels of some heavy metals (HMs), i.e., cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), and lead (Pb), in seawater and surface sediments along the Romanian Black Sea coast (RBSC). Sampling was conducted at 40 stations across 12 transects during May–June 2021, and the measured levels of HM concentrations were compared with Environmental Quality Standards (EQS), i.e., maximum allowable concentration (MAC) values, for seawater and effects range-low (ERL) thresholds for sediments. HM concentrations were measured using high-resolution continuum source atomic absorption spectrometry (HR-CS AAS). In seawater, the levels of Cd, Cu, and Pb concentrations exceeded the MAC values at three stations located in areas influenced by the Danube River or anthropogenic activities. In sediments, exceedances of ERL thresholds were found for Ni at 11 stations, for Cu at three stations, and for Pb at one station. HM contamination of sediment samples collected from these stations can be caused by both natural and anthropogenic sources, e.g., the Danube River, rock/soil weathering and erosion, agricultural runoff, port and construction activities, maritime and road transport, coastal tourism, petrochemical industry, wastewater discharges, offshore oil and gas extraction. Principal Component Analysis (PCA) provided valuable information about the relationships between relevant variables, including water depth and HM concentrations in seawater and sediments, and potential sources of contamination. The results highlight the influence of fluvial inputs and localized human activities on HM contamination. While the overall chemical status of Romanian Black Sea waters and sediments remains favorable, targeted management strategies are needed to address localized pollution hotspots and mitigate potential ecological risks. These findings provide valuable insights for environmental monitoring and sustainable coastal management. Full article
(This article belongs to the Special Issue Environmental Protection and Sustainable Ecological Engineering)
Show Figures

Figure 1

Back to TopTop