Dead Sea Stromatolite Reefs: Testing Ground for Remote Sensing Automated Detection of Life Forms and Their Traces in Harsh Environments
Remote Sensing Applications along the Dead Sea Fault: From the Red Sea to Anatolia
)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling the Spectral Dataset with a Lab Spectrometer
2.3. Machine Learning Prediction Algorithms
2.3.1. Trained Predictors
2.3.2. Dimensionality Reduction
2.4. Spectral Analysis
2.5. Simulation of Spaceborne Sensors
3. Results
3.1. Spectral Analysis Results
3.2. Automated Stromatolite Detection
3.3. Feature Importance Results
4. Discussion
4.1. Machine Learning Implications
4.2. Spectral Signature and Previous Works Comparison
4.3. Mars Relevance
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Paper Name | Writers (Sorted by Year) | Number of Samples | Spectral Methods | Statistical Methods | Spectral Range |
---|---|---|---|---|---|
Short-wave infrared reflectance investigation of sites of paleo-biological interest: applications for Mars exploration. | [5] | 50 × 30 m section of outcrop. 1500 digital photographs were taken of the outcrop. Over 250 SWIR spectra were obtained by a hand-held PIMA II spectrometer at an outcrop of a heavily silicified, stromatolitic Archean carbonate–chert succession | the Portable Infrared Mineral Analyzer (PIMA)— reflectance spectroscopy of the SWIR region | Rocks were categorized according to color and texture, as indicated in the paper. Following the rock type and unit categorization based on visual evidence, the area was surveyed with the PIMA spectrometer in the manner that a rover might examine an outcrop. This was achieved by acquiring several spectra of each unit. | (1300–2500 nm) |
Remote and in situ detection of environmental and biological Signatures: ground-truthing hyperspectral imaging for planetary exploration | [26] | 40,000 spectra from a 200 × 200 pixel image of a 1 square kilometer region | airborne—the HyMap camera obtained 126-band images from an altitude of 2.5 km | Principal Component Analysis, Hierarchical Cluster Analysis, stochastic nonlinear artificial neural network. | (400–2400 nm) |
Hyperspectral imaging spectroscopy of a Mars analog environment at the North Pole Dome, Pilbara Craton, Western Australia. | [23] | The dataset at the North Pole Dome consists of 14 flight lines that are 2.3 km wide on average and from 6 to 22 km long | airborne—the HyMap camera obtained 126-band images from 2.4 km above ground level | False-color continuum-removed image. | 400–2500 nm |
Distinguishing in situ stromatolite biosignatures from silicification and dolomitization using shortwave, visible near-, and thermal infrared spectroscopy: A Mars analogue study. | [17] | 7 samples in total | PIMA II spectrometer, ASD) FieldSpec3- spectrometer, total internal reflection fluorescence microscope (infrared microscope) | The reflectance spectra were used for analysis. Where the spectra were obscured, the hull quotient feature was applied to delineate absorption features more clearly. | 390–2500 nm 2500–25,000 nm |
Complex patterns in fossilized stromatolites revealed by hyperspectral imaging (400–2496 nm). | [15] | 4 samples | hyperspectral imaging, separate sensors to measure the VNIR (400–970 nm) and SWIR (1000–2496 nm) parts of the spectrum | Processed to identify reflectance and mineral absorption features and quantify their intensity (as an index of mineral abundance) using automated feature extraction. | (400–2496 nm) |
Method | Hyperparameters (Are All Defaults) |
---|---|
UMAP | (n_neighbors = 10, min_dist = 0.2, n_components = num, verbose = True) |
Linear Regression | ‘C’: 1.0, ‘dual’: False, ‘fit_intercept’: True, ‘intercept_scaling’: 1, ‘max_iter’: 1000, ‘multi_class’: ‘deprecated’, ‘penalty’: ‘l2’, ‘random_state’: 10, ‘solver’: ‘lbfgs’, ‘tol’: 0.0001, ‘verbose’: 0, ‘warm_start’: False} |
XGB | {‘objective’: ‘binary:logistic’, ‘enable_categorical’: False, ‘eval_metric’: ‘logloss’, ‘missing’: nan} |
KNN | {‘algorithm’: ‘auto’, ‘leaf_size’: 30, ‘metric’: ‘minkowski’, ‘n_neighbors’: 6, ‘p’: 2, ‘weights’: ‘uniform’} |
Linear Regression | 1 | 0 |
1 | 0.98 | 0.02 |
0 | 0.06 | 0.94 |
XGBoost | 1 | 0 |
1 | 0.93 | 0.07 |
0 | 0.15 | 0.85 |
K-Nearest Neighbor | 1 | 0 |
1 | 0.93 | 0.07 |
0 | 0.19 | 0.81 |
Appendix A.1. K-Fold Cross-Validation
Appendix A.2. Flow Chart
References
- Hofmann, H.J. Stromatolites: Characteristics and Utility. Earth-Sci. Rev. 1973, 9, 339–373. [Google Scholar] [CrossRef]
- Gabriel, N.W.; Papineau, D.; She, Z.; Leider, A.; Fogel, M.L. Organic Diagenesis in Stromatolitic Dolomite and Chert from the Late Palaeoproterozoic McLeary Formation. Precambrian Res. 2021, 354, 106052. [Google Scholar] [CrossRef]
- Lisker, S.; Vaks, A.; Bar-Matthews, M.; Porat, R.; Frumkin, A. Stromatolites in Caves of the Dead Sea Fault Escarpment: Implications to Latest Pleistocene Lake Levels and Tectonic Subsidence. Quat. Sci. Rev. 2009, 28, 80–92. [Google Scholar] [CrossRef]
- Murphy, A.E.; Wieman, S.T.; Gross, J.; Stern, J.C.; Steele, A.; Glamoclija, M. Preservation of Organic Carbon in Dolomitized Cambrian Stromatolites and Implications for Microbial Biosignatures in Diagenetically Replaced Carbonate Rock. Sediment. Geol. 2020, 410, 105777. [Google Scholar] [CrossRef]
- Brown, A.; Walter, M.; Cudahy, T. Short-Wave Infrared Reflectance Investigation of Sites of Paleobiological Interest: Applications for Mars Exploration. Astrobiology 2004, 4, 359–376. [Google Scholar] [CrossRef] [PubMed]
- Clarke, J.D.A.; Stoker, C.R. Searching for Stromatolites: The 3.4Ga Strelley Pool Formation (Pilbara Region, Western Australia) as a Mars Analogue. Icarus 2013, 224, 413–423. [Google Scholar] [CrossRef]
- Thomas, C. Investigating the Subsurface Biosphere of a Hypersaline Environment—The Dead Sea (Levant). Ph.D. Thesis, Université de Genève, Genève, Switzerland, 2015. [Google Scholar]
- Popall, R.M.; Bolhuis, H.; Muyzer, G.; Sánchez-Román, M. Stromatolites as Biosignatures of Atmospheric Oxygenation: Carbonate Biomineralization and UV-C Resilience in a Geitlerinema sp.—Dominated Culture. Front. Microbiol. 2020, 11, 948. [Google Scholar] [CrossRef]
- Sorin, L.; Anton, V.; Miryam, B.-M.; Roi, P.; Amos, F. Late Pleistocene Palaeoclimatic and Palaeoenvironmental Reconstruction of the Dead Sea Area (Israel), Based on Speleothems and Cave Stromatolites. Quat. Sci. Rev. 2010, 29, 1201–1211. [Google Scholar] [CrossRef]
- Monty, C. Phanerozoic Stromatolites: Case Histories; Springer: Berlin/Heidelberg, Germany, 1981; ISBN 978-3-642-67915-5. [Google Scholar]
- Buchbinder, B.; Friedman, G.; Begin, Z. Pleistocene Algal Tufa of Lake Lisan, Dead Sea Area, Israel. Isr. J. Earth Sci. 1974, 23, 131–138. [Google Scholar]
- Van Der Meer, F.D.; Van Der Werff, H.M.A.; Van Ruitenbeek, F.J.A.; Hecker, C.A.; Bakker, W.H.; Noomen, M.F.; Van Der Meijde, M.; Carranza, E.J.M.; Smeth, J.B.D.; Woldai, T. Multi- and Hyperspectral Geologic Remote Sensing: A Review. Int. J. Appl. Earth Obs. Geoinf. 2012, 14, 112–128. [Google Scholar] [CrossRef]
- Bedini, E. The Use of Hyperspectral Remote Sensing for Mineral Exploration: A Review. Jour. Hypers. Rem. Sensg. 2017, 7, 189–211. [Google Scholar] [CrossRef]
- Clark, R.N. Manual of Remote Sensing, Chapter Spectroscopy of Rocks and Minerals, and Principles of Spectroscopy. Remote Sens. Earth Sci. 1999, 3–58. [Google Scholar]
- Murphy, R.J.; Van Kranendonk, M.J.; Kelloway, S.J.; Wainwright, I.E. Complex Patterns in Fossilized Stromatolites Revealed by Hyperspectral Imaging (400–2496 Nm). Geobiology 2016, 14, 419–439. [Google Scholar] [CrossRef]
- Gargaud, M.; Amils, R.; Quintanilla, J.C.; Cleaves, H.J.; Irvine, W.M.; Pinti, D.L.; Viso, M. (Eds.) Encyclopedia of Astrobiology; Springer: Berlin/Heidelberg, Germany, 2011; ISBN 978-3-642-11271-3. [Google Scholar]
- Kose, S.H.; George, S.C.; Lau, I.C. Distinguishing in Situ Stromatolite Biosignatures from Silicification and Dolomitisation Using Short Wave, Visible-near and Thermal Infrared Spectroscopy: A Mars Analogue Study. Vib. Spectrosc. 2016, 87, 67–80. [Google Scholar] [CrossRef]
- Brown, A.J.; Hook, S.J.; Baldridge, A.M.; Crowley, J.K.; Bridges, N.T.; Thomson, B.J.; Marion, G.M.; De Souza Filho, C.R.; Bishop, J.L. Hydrothermal Formation of Clay-Carbonate Alteration Assemblages in the Nili Fossae Region of Mars. Earth Planet. Sci. Lett. 2010, 297, 174–182. [Google Scholar] [CrossRef]
- Bishop, J.L.; Loizeau, D.; McKeown, N.K.; Saper, L.; Dyar, M.D.; Des Marais, D.J.; Parente, M.; Murchie, S.L. What the Ancient Phyllosilicates at Mawrth Vallis Can Tell Us about Possible Habitability on Early Mars. Planet. Space Sci. 2013, 86, 130–149. [Google Scholar] [CrossRef]
- Bibring, J.-P.; Langevin, Y.; Gendrin, A.; Gondet, B.; Poulet, F.; Berthé, M.; Soufflot, A.; Arvidson, R.; Mangold, N.; Mustard, J.; et al. Mars Surface Diversity as Revealed by the OMEGA/Mars Express Observations. Science 2005, 307, 1576–1581. [Google Scholar] [CrossRef]
- Seelos, F.P.; Seelos, K.D.; Murchie, S.L.; Novak, M.A.M.; Hash, C.D.; Morgan, M.F.; Arvidson, R.E.; Aiello, J.; Bibring, J.-P.; Bishop, J.L. The CRISM Investigation in Mars Orbit: Overview, History, and Delivered Data Products. Icarus 2023, 416, 115612. [Google Scholar] [CrossRef]
- Murchie, S.; Arvidson, R.; Bedini, P.; Beisser, K.; Bibring, J.-P.; Bishop, J.; Boldt, J.; Cavender, P.; Choo, T.; Clancy, R.T.; et al. Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO). J. Geophys. Res. 2007, 112, 2006JE002682. [Google Scholar] [CrossRef]
- Brown, A.; Walter, M.; Cudahy, T. Hyperspectral Imaging Spectroscopy of a Mars Analogue Environment at the North Pole Dome, Pilbara Craton, Western Australia. Aust. J. Earth Sci. 2005, 52, 353–364. [Google Scholar] [CrossRef]
- Wogsland, B.V.; Minitti, M.E.; Kah, L.C.; Yingst, R.A.; Abbey, W.; Bhartia, R.; Beegle, L.; Bleefeld, B.L.; Cardarelli, E.L.; Conrad, P.G.; et al. Science and science-enabling activities of the SHERLOC and WATSON imaging systems in Jezero Crater, Mars. Earth Space Sci. 2023, 10, e2022EA002544. [Google Scholar] [CrossRef]
- Hickman-Lewis, K.; Cavalazzi, B.; Giannoukos, K.; D’Amico, L.; Vrbaski, S.; Saccomano, G.; Dreossi, D.; Tromba, G.; Foucher, F.; Brownscombe, W.; et al. Advanced Two- and Three-Dimensional Insights into Earth’s Oldest Stromatolites (ca. 3.5 Ga): Prospects for the Search for Life on Mars. Geology 2023, 51, 33–38. [Google Scholar] [CrossRef]
- Storrie-Lombardi, M.C.; Brown, A.J.; Walter, M.R. Remote and In Situ Detection of Environmental and Biological Signatures: Ground-Truthing Hyperspectral Imaging for Planetary Exploration. Hoover, R.B., Levin, G.V., Rozanov, A.Y., Eds.; Society of Photo-Optical Instrumentation Engineers (SPIE): Denver, CO, USA, 2004; p. 270. [Google Scholar]
- Torfstein, A.; Goldstein, S.L.; Kagan, E.J.; Stein, M. Integrated Multi-Site U–Th Chronology of the Last Glacial Lake Lisan. Geochim. Cosmochim. Acta 2013, 104, 210–231. [Google Scholar] [CrossRef]
- Stein, M. The Evolution of Neogene-Quaternary Water-Bodies in the Dead Sea Rift Valley. In Dead Sea Transform Fault System: Reviews; Garfunkel, Z., Ben-Avraham, Z., Kagan, E., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 279–316. ISBN 978-94-017-8872-4. [Google Scholar]
- Frumkin, A.; Pe’eri, S.; Zak, I. Development of Banded Terrain in an Active Salt Diapir: Potential Analog to Mars. Geomorphology 2021, 389, 107824. [Google Scholar] [CrossRef]
- Preston, L.J.; Dartnell, L.R. Planetary Habitability: Lessons Learned from Terrestrial Analogues. Int. J. Astrobiol. 2014, 13, 81–98. [Google Scholar] [CrossRef]
- Rubinstein, H.; Abramovich, R.S.; Shikar, A.; Zagai, M.; Nevenzal, H.; Finzi, Y. The 2019 Analog Mars Mission Season at the Desert Mars Analog Ramon Station. In Proceedings of the Conference: 70th International Astronautical Congress (IAC-19), Washington, DC, USA, 21–25 October 2019. [Google Scholar]
- Agnon, A.; Weinberger, R.; Zak, I.; Sneh, A. The Geological Map of Israel, 1:50,000. Sheet 20-I, Sedom. In Vectorial Format of the 1:50,000 Geological Map of Israel; Rosensaft, M., Ed.; Geological Survey of Israel: Jerusalem, Israel, 2006. Available online: https://www.gov.il/he/pages/sdom-map (accessed on 8 April 2025).
- Oren, A.; Gunde-Cimerman, N. Fungal Life in the Dead Sea. In Biology of Marine Fungi; Raghukumar, C., Ed.; Progress in Molecular and Subcellular Biology; Springer: Berlin/Heidelberg, Germany, 2012; Volume 53, pp. 115–132. ISBN 978-3-642-23341-8. [Google Scholar]
- Stein, M.; Agnon, A.; Katz, A.; Starinsky, A. Strontium Isotopes in Discordant Dolomite Bodies of the Judea Group, Dead Sea Basin. Isr. J. Earth Sci. 2002, 51, 219–224. [Google Scholar] [CrossRef]
- Oren, A. The Bioenergetic Basis for the Decrease in Metabolic Diversity at Increasing Salt Concentrations: Implications for the Functioning of Salt Lake Ecosystems. In Saline Lakes; Melack, J.M., Jellison, R., Herbst, D.B., Eds.; Springer: Dordrecht, The Netherlands, 2001; pp. 61–72. ISBN 978-90-481-5995-6. [Google Scholar]
- Ionescu, D.; Siebert, C.; Polerecky, L.; Munwes, Y.Y.; Lott, C.; Häusler, S.; Bižić-Ionescu, M.; Quast, C.; Peplies, J.; Glöckner, F.O.; et al. Microbial and Chemical Characterization of Underwater Fresh Water Springs in the Dead Sea. PLoS ONE 2012, 7, e38319. [Google Scholar] [CrossRef]
- Bodaker, I.; Sharon, I.; Suzuki, M.T.; Feingersch, R.; Shmoish, M.; Andreishcheva, E.; Sogin, M.L.; Rosenberg, M.; Maguire, M.E.; Belkin, S.; et al. Comparative Community Genomics in the Dead Sea: An Increasingly Extreme Environment. ISME J. 2010, 4, 399–407. [Google Scholar] [CrossRef]
- Rhodes, M.E.; Oren, A.; House, C.H. Dynamics and Persistence of Dead Sea Microbial Populations as Shown by High-Throughput Sequencing of rRNA. Appl. Environ. Microbiol. 2012, 78, 2489–2492. [Google Scholar] [CrossRef]
- Jara-Muñoz, J.; Agnon, A.; Fohlmeister, J.; Tomás, S.; Mey, J.; Frank, N.; Schröder, B.; Schröder-Ritzrau, A.; Garcin, Y.; Darvasi, Y.; et al. Unveiling the Transition From Paleolake Lisan to Dead Sea Through the Analysis of Lake Paleoshorelines and Radiometric Dating of Fossil Stromatolites. Geochem. Geophys. Geosystems 2024, 25, e2024GC011541. [Google Scholar] [CrossRef]
- Bartov, Y.; Agnon, A.; Enzel, Y.; Stein, M. Late Quaternary Faulting and Subsidence in the Central Dead Sea Basin. Isr. J. Earth Sci. 2006, 55, 18–31. [Google Scholar] [CrossRef]
- Parent, E.J.; Parent, S.-É.; Parent, L.E. Machine Learning Prediction of Particle-Size Distribution from Infrared Spectra, Methodologies and Soil Features. bioRxiv 2020. [Google Scholar] [CrossRef]
- Francos, N.; Notesco, G.; Ben-Dor, E. Estimation of the Relative Abundance of Quartz to Clay Minerals Using the Visible–Near-Infrared–Shortwave-Infrared Spectral Region. Appl. Spectrosc. 2021, 75, 882–892. [Google Scholar] [CrossRef] [PubMed]
- Francos, N.; Gholizadeh, A.; Demattê, J.A.M.; Ben-Dor, E. Effect of the Internal Soil Standard on the Spectral Assessment of Clay Content. Geoderma 2022, 420, 115873. [Google Scholar] [CrossRef]
- Pelta, R.; Carmon, N.; Ben-Dor, E. A Machine Learning Approach to Detect Crude Oil Contamination in a Real Scenario Using Hyperspectral Remote Sensing. Int. J. Appl. Earth Obs. Geoinf. 2019, 82, 101901. [Google Scholar] [CrossRef]
- Gholizadeh, A.; Saberioon, M.; Ben-Dor, E.; Viscarra Rossel, R.A.; Borůvka, L. Modelling Potentially Toxic Elements in Forest Soils with Vis–NIR Spectra and Learning Algorithms. Environ. Pollut. 2020, 267, 115574. [Google Scholar] [CrossRef]
- Berrar, D. Cross-Validation. In Encyclopedia of Bioinformatics and Computational Biology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 542–545. ISBN 978-0-12-811432-2. [Google Scholar]
- Brownlee, J. XGBoost With Python: Gradient Boosted Trees with XGBoost and Scikit-Learn, v1.10 ed.; Machine Learning Mastery: San Francisco, CA, USA, 2016. [Google Scholar]
- McInnes, L.; Healy, J.; Melville, J. UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. arXiv 2018, arXiv:1802.03426. [Google Scholar]
- Fan, J.; Wang, X.; Wu, L.; Zhou, H.; Zhang, F.; Yu, X.; Lu, X.; Xiang, Y. Comparison of Support Vector Machine and Extreme Gradient Boosting for Predicting Daily Global Solar Radiation Using Temperature and Precipitation in Humid Subtropical Climates: A Case Study in China. Energy Convers. Manag. 2018, 164, 102–111. [Google Scholar] [CrossRef]
- Hart, S. Shapley Value. In Game Theory; Eatwell, J., Milgate, M., Newman, P., Eds.; Palgrave Macmillan UK: London, UK, 1989; pp. 210–221. ISBN 978-1-349-20181-5. [Google Scholar]
- Classification: ROC and AUC|Machine Learning. Available online: https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc (accessed on 7 April 2025).
- Harsanyi, J.C.; Chang, C.-I. Hyperspectral Image Classification and Dimensionality Reduction: An Orthogonal Subspace Projection Approach. IEEE Trans. Geosci. Remote Sens. 1994, 32, 779–785. [Google Scholar] [CrossRef]
- Ben-Dor, E.; Levin, N.; Singer, A.; Karnieli, A.; Braun, O.; Kidron, G.J. Quantitative Mapping of the Soil Rubification Process on Sand Dunes Using an Airborne Hyperspectral Sensor. Geoderma 2006, 131, 1–21. [Google Scholar] [CrossRef]
- Ben-Dor, E. The Reflectance Spectra of Organic Matter in the Visible Near-Infrared and Short Wave Infrared Region (400–2500 Nm) during a Controlled Decomposition Process. Remote Sens. Environ. 1997, 61, 1–15. [Google Scholar] [CrossRef]
- Levin, N.; Lugassi, R.; Ramon, U.; Braun, O.; Ben-Dor, E. Remote Sensing as a Tool for Monitoring Plasticulture in Agricultural Landscapes. Int. J. Remote Sens. 2007, 28, 183–202. [Google Scholar] [CrossRef]
- Guanter, L.; Kaufmann, H.; Segl, K.; Foerster, S.; Rogass, C.; Chabrillat, S.; Kuester, T.; Hollstein, A.; Rossner, G.; Chlebek, C. The EnMAP Spaceborne Imaging Spectroscopy Mission for Earth Observation. Remote Sens. 2015, 7, 8830–8857. [Google Scholar] [CrossRef]
- Cogliati, S.; Sarti, F.; Chiarantini, L.; Cosi, M.; Lorusso, R.; Lopinto, E.; Miglietta, F.; Genesio, L.; Guanter, L.; Damm, A. The PRISMA Imaging Spectroscopy Mission: Overview and First Performance Analysis. Remote Sens. Environ. 2021, 262, 112499. [Google Scholar] [CrossRef]
- Thiele, S.T.; Bnoulkacem, Z.; Lorenz, S.; Bordenave, A.; Menegoni, N.; Madriz, Y.; Dujoncquoy, E.; Gloaguen, R.; Kenter, J. Mineralogical Mapping with Accurately Corrected Shortwave Infrared Hyperspectral Data Acquired Obliquely from UAVs. Remote Sens. 2021, 14, 5. [Google Scholar] [CrossRef]
- Rozemberczki, B.; Watson, L.; Bayer, P.; Yang, H.-T.; Kiss, O.; Nilsson, S.; Sarkar, R. The Shapley Value in Machine Learning. In Proceedings of the 31st International Joint Conference on Artificial Intelligence and the 25th European Conference on Artificial Intelligence, Vienna, Austria, 23–29 July 2022. [Google Scholar]
- Miller, J.R.; Hare, E.W.; Wu, J. Quantitative Characterization of the Vegetation Red Edge Reflectance 1. An Inverted-Gaussian Reflectance Model. Int. J. Remote Sens. 1990, 11, 1755–1773. [Google Scholar] [CrossRef]
- Horler, D.N.H.; Dockray, M.; Barber, J. The Red Edge of Plant Leaf Reflectance. Int. J. Remote Sens. 1983, 4, 273–288. [Google Scholar] [CrossRef]
- Clevers, J.G.P.W.; Gitelson, A.A. Remote Estimation of Crop and Grass Chlorophyll and Nitrogen Content Using Red-Edge Bands on Sentinel-2 and -3. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 344–351. [Google Scholar] [CrossRef]
- Kupssinskü, L.S.; Guimarães, T.T.; Cardoso, M.D.B.; Bachi, L.; Zanotta, D.; Estilon De Souza, I.; Falcão, A.X.; Velloso, R.Q.; Cazarin, C.L.; Veronez, M.R.; et al. Hyperspectral Data as a Proxy for Porosity Estimation of Carbonate Rocks. Aust. J. Earth Sci. 2022, 69, 861–875. [Google Scholar] [CrossRef]
- Bhartia, R.; Beegle, L.W.; DeFlores, L.; Abbey, W.; Razzell Hollis, J.; Uckert, K.; Monacelli, B.; Edgett, K.S.; Kennedy, M.R.; Sylvia, M.; et al. Perseverance’s Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) Investigation. Space Sci. Rev. 2021, 217, 58. [Google Scholar] [CrossRef]
- Harner, P.L.; Gilmore, M.S. Visible–near Infrared Spectra of Hydrous Carbonates, with Implications for the Detection of Carbonates in Hyperspectral Data of Mars. Icarus 2015, 250, 204–214. [Google Scholar] [CrossRef]
- Liuzzi, G.; Villanueva, G.L.; Crismani, M.M.J.; Smith, M.D.; Mumma, M.J.; Daerden, F.; Aoki, S.; Vandaele, A.C.; Clancy, R.T.; Erwin, J.; et al. Strong Variability of Martian Water Ice Clouds During Dust Storms Revealed From ExoMars Trace Gas Orbiter/NOMAD. JGR Planets 2020, 125, e2019JE006250. [Google Scholar] [CrossRef]
- CRISM Web Site. Available online: http://crism.jhuapl.edu/science/themes/theme1.php (accessed on 7 April 2025).
Logistic Regression | XGBoost | K-NN | |
True Positive Rate | 0.98 | 0.93 | 0.93 |
True Negative Rate | 0.94 | 0.85 | 0.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gedulter, N.; Agnon, A.; Levin, N. Dead Sea Stromatolite Reefs: Testing Ground for Remote Sensing Automated Detection of Life Forms and Their Traces in Harsh Environments. Remote Sens. 2025, 17, 1613. https://doi.org/10.3390/rs17091613
Gedulter N, Agnon A, Levin N. Dead Sea Stromatolite Reefs: Testing Ground for Remote Sensing Automated Detection of Life Forms and Their Traces in Harsh Environments. Remote Sensing. 2025; 17(9):1613. https://doi.org/10.3390/rs17091613
Chicago/Turabian StyleGedulter, Nuphar, Amotz Agnon, and Noam Levin. 2025. "Dead Sea Stromatolite Reefs: Testing Ground for Remote Sensing Automated Detection of Life Forms and Their Traces in Harsh Environments" Remote Sensing 17, no. 9: 1613. https://doi.org/10.3390/rs17091613
APA StyleGedulter, N., Agnon, A., & Levin, N. (2025). Dead Sea Stromatolite Reefs: Testing Ground for Remote Sensing Automated Detection of Life Forms and Their Traces in Harsh Environments. Remote Sensing, 17(9), 1613. https://doi.org/10.3390/rs17091613