Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,051)

Search Parameters:
Keywords = water and land resources

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 4260 KiB  
Article
Analysis of Spatiotemporal Characteristics of Global TCWV and AI Hybrid Model Prediction
by Longhao Xu, Kebiao Mao, Zhonghua Guo, Jiancheng Shi, Sayed M. Bateni and Zijin Yuan
Hydrology 2025, 12(8), 206; https://doi.org/10.3390/hydrology12080206 - 6 Aug 2025
Abstract
Extreme precipitation events severely impact agriculture, reducing yields and land use efficiency. The spatiotemporal distribution of Total Column Water Vapor (TCWV), the primary gaseous form of water, directly influences sustainable agricultural management. This study, through multi-source data fusion, employs methods including the Mann–Kendall [...] Read more.
Extreme precipitation events severely impact agriculture, reducing yields and land use efficiency. The spatiotemporal distribution of Total Column Water Vapor (TCWV), the primary gaseous form of water, directly influences sustainable agricultural management. This study, through multi-source data fusion, employs methods including the Mann–Kendall test, sliding change-point detection, wavelet transform, pixel-scale trend estimation, and linear regression to analyze the spatiotemporal dynamics of global TCWV from 1959 to 2023 and its impacts on agricultural systems, surpassing the limitations of single-method approaches. Results reveal a global TCWV increase of 0.0168 kg/m2/year from 1959–2023, with a pivotal shift in 2002 amplifying changes, notably in tropical regions (e.g., Amazon, Congo Basins, Southeast Asia) where cumulative increases exceeded 2 kg/m2 since 2000, while mid-to-high latitudes remained stable and polar regions showed minimal content. These dynamics escalate weather risks, impacting sustainable agricultural management with irrigation and crop adaptation. To enhance prediction accuracy, we propose a novel hybrid model combining wavelet transform with LSTM, TCN, and GRU deep learning models, substantially improving multidimensional feature extraction and nonstationary trend capture. Comparative analysis shows that WT-TCN performs the best (MAE = 0.170, R2 = 0.953), demonstrating its potential for addressing climate change uncertainties. These findings provide valuable applications for precision agriculture, sustainable water resource management, and disaster early warning. Full article
20 pages, 2088 KiB  
Article
Sustainable Soil Management in Reservoir Riparian Zones: Impacts of Long-Term Water Level Fluctuations on Aggregate Stability and Land Degradation in Southwestern China
by Pengcheng Wang, Zexi Song, Henglin Xiao and Gaoliang Tao
Sustainability 2025, 17(15), 7141; https://doi.org/10.3390/su17157141 - 6 Aug 2025
Abstract
Soil structural instability in reservoir riparian zones, induced by water level fluctuations, threatens sustainable land use by accelerating land degradation. This study examined the impact of water-level variations on soil aggregate composition and stability based on key indicators, including water-stable aggregate content (WSAC), [...] Read more.
Soil structural instability in reservoir riparian zones, induced by water level fluctuations, threatens sustainable land use by accelerating land degradation. This study examined the impact of water-level variations on soil aggregate composition and stability based on key indicators, including water-stable aggregate content (WSAC), mean weight diameter (MWD), and geometric mean diameter (GMD). The Savinov dry sieving, Yoder wet sieving, and Le Bissonnais (LB) methods were employed for analysis. Results indicated that, with decreasing water levels and increasing soil layer, aggregates larger than 5 mm decreased, while aggregates smaller than 0.25 mm increased. Rising water levels and increasing soil layer corresponded to reductions in soil stability indicators (MWD, GMD, and WSAC), highlighting a trend toward soil structural instability. The LB method revealed the lowest aggregate stability under rapid wetting and the highest under slow wetting conditions. Correlation analysis showed that soil organic matter positively correlated with the relative mechanical breakdown index (RMI) (p < 0.05) and negatively correlated with the relative slaking index (RSI), whereas soil pH was negatively correlated with both RMI and RSI (p < 0.05). Comparative analysis of aggregate stability methods demonstrated that results from the dry sieving method closely resembled those from the SW treatment of the LB method, whereas the wet sieving method closely aligned with the FW (Fast Wetting) treatment of the LB method. The Le Bissonnais method not only reflected the outcomes of dry and wet sieving methods but also effectively distinguished the mechanisms of aggregate breakdown. The study concluded that prolonged flooding intensified aggregate dispersion, with mechanical breakdown influenced by water levels and soil layer. Dispersion and mechanical breakdown represent primary mechanisms of soil aggregate instability, further exacerbated by fluctuating water levels. By elucidating degradation mechanisms, this research provides actionable insights for preserving soil health, safeguarding water resources, and promoting sustainable agricultural in ecologically vulnerable reservoir regions of the Yangtze River Basin. Full article
Show Figures

Figure 1

16 pages, 2576 KiB  
Article
Modeling and Spatiotemporal Analysis of Actual Evapotranspiration in a Desert Steppe Based on SEBS
by Yanlin Feng, Lixia Wang, Chunwei Liu, Baozhong Zhang, Jun Wang, Pei Zhang and Ranghui Wang
Hydrology 2025, 12(8), 205; https://doi.org/10.3390/hydrology12080205 - 6 Aug 2025
Abstract
Accurate estimation of actual evapotranspiration (ET) is critical for understanding hydrothermal cycles and ecosystem functioning in arid regions, where water scarcity governs ecological resilience. To address persistent gaps in ET quantification, this study integrates multi-source remote sensing data, energy balance modeling, and ground-based [...] Read more.
Accurate estimation of actual evapotranspiration (ET) is critical for understanding hydrothermal cycles and ecosystem functioning in arid regions, where water scarcity governs ecological resilience. To address persistent gaps in ET quantification, this study integrates multi-source remote sensing data, energy balance modeling, and ground-based validation that significantly enhances spatiotemporal ET accuracy in the vulnerable desert steppe ecosystems. The study utilized meteorological data from several national stations and Landsat-8 imagery to process monthly remote sensing images in 2019. The Surface Energy Balance System (SEBS) model, chosen for its ability to estimate ET over large areas, was applied to derive modeled daily ET values, which were validated by a large-weighted lysimeter. It was shown that ET varied seasonally, peaking in July at 6.40 mm/day, and reaching a minimum value in winter with 1.83 mm/day in December. ET was significantly higher in southern regions compared to central and northern areas. SEBS-derived ET showed strong agreement with lysimeter measurements, with a mean relative error of 4.30%, which also consistently outperformed MOD16A2 ET products in accuracy. This spatial heterogeneity was driven by greater vegetation coverage and enhanced precipitation in the southeast. The steppe ET showed a strong positive correlation with surface temperatures and vegetation density. Moreover, the precipitation gradients and land use were primary controllers of spatial ET patterns. The process-based SEBS frameworks demonstrate dual functionality as resource-optimized computational platforms while enabling multi-scale quantification of ET spatiotemporal heterogeneity; it was therefore a reliable tool for ecohydrological assessments in an arid steppe, providing critical insights for water resource management and drought monitoring. Full article
(This article belongs to the Section Hydrological and Hydrodynamic Processes and Modelling)
Show Figures

Figure 1

41 pages, 4303 KiB  
Article
Land Use–Future Climate Coupling Mechanism Analysis of Regional Agricultural Drought Spatiotemporal Patterns
by Jing Wang, Zhenjiang Si, Tao Liu, Yan Liu and Longfei Wang
Sustainability 2025, 17(15), 7119; https://doi.org/10.3390/su17157119 - 6 Aug 2025
Abstract
This study assesses future agricultural drought risk in the Ganjiang River Basin under climate change and land use change. A coupled analysis framework was established using the SWAT hydrological model, the CMIP6 climate models (SSP1-2.6, SSP2-4.5, SSP5-8.5), and the PLUS land use simulation [...] Read more.
This study assesses future agricultural drought risk in the Ganjiang River Basin under climate change and land use change. A coupled analysis framework was established using the SWAT hydrological model, the CMIP6 climate models (SSP1-2.6, SSP2-4.5, SSP5-8.5), and the PLUS land use simulation model. Key methods included the Standardized Soil Moisture Index (SSMI), travel time theory for drought event identification and duration analysis, Mann–Kendall trend test, and the Pettitt change-point test to examine soil moisture dynamics from 2027 to 2100. The results indicate that the CMIP6 ensemble performs excellently in temperature simulations, with a correlation coefficient of R2 = 0.89 and a root mean square error of RMSE = 1.2 °C, compared to the observational data. The MMM-Best model also performs well in precipitation simulations, with R2 = 0.82 and RMSE = 15.3 mm, compared to observational data. Land use changes between 2000 and 2020 showed a decrease in forestland (−3.2%), grassland (−2.8%), and construction land (−1.5%), with an increase in water (4.8%) and unused land (2.7%). Under all emission scenarios, the SSMI values fluctuate with standard deviations of 0.85 (SSP1-2.6), 1.12 (SSP2-4.5), and 1.34 (SSP5-8.5), with the strongest drought intensity observed under SSP5-8.5 (minimum SSMI = −2.8). Drought events exhibited spatial and temporal heterogeneity across scenarios, with drought-affected areas ranging from 25% (SSP1-2.6) to 45% (SSP5-8.5) of the basin. Notably, abrupt changes in soil moisture under SSP5-8.5 occurred earlier (2045–2050) due to intensified land use change, indicating strong human influence on hydrological cycles. This study integrated the CMIP6 climate projections with high-resolution human activity data to advance drought risk assessment methods. It established a framework for assessing agricultural drought risk at the regional scale that comprehensively considers climate and human influences, providing targeted guidance for the formulation of adaptive water resource and land management strategies. Full article
(This article belongs to the Special Issue Sustainable Future of Ecohydrology: Climate Change and Land Use)
Show Figures

Figure 1

17 pages, 287 KiB  
Article
Nutritional Quality and Safety of Windowpane Oyster Placuna placenta from Samal, Bataan, Philippines
by Jessica M. Rustia, Judith P. Antonino, Ravelina R. Velasco, Edwin A. Yates and David G. Fernig
Fishes 2025, 10(8), 385; https://doi.org/10.3390/fishes10080385 - 6 Aug 2025
Abstract
The windowpane oyster (Placuna placenta) is common in coastal areas of the Philippines, thriving in brackish waters. Its shells underpin the local craft industries. While its meat is edible, only small amounts are consumed locally, most going to waste. Utilization of [...] Read more.
The windowpane oyster (Placuna placenta) is common in coastal areas of the Philippines, thriving in brackish waters. Its shells underpin the local craft industries. While its meat is edible, only small amounts are consumed locally, most going to waste. Utilization of this potential nutrient source is hindered by the lack of information concerning its organic and mineral content, the possible presence of heavy metal ions, and the risk of microbial pathogens. We report extensive analysis of the meat from Placuna placenta, harvested during three different seasons to account for potential variations. This comprises proximate analysis, mineral, antioxidant, and microbial analyses. While considerable seasonal variation was observed, the windowpane oyster was found to be a rich source of protein, fats, minerals, and carbohydrates, comparing well with the meats of other shellfish and land animals. Following pre-cooking (~90 °C, 25–30 min), the standard local method for food preparation, no viable E. coli or Salmonella sp. were detected. Mineral content was broadly similar to that reported in fish, although iron, zinc, and copper were more highly represented, nevertheless, heavy metals were below internationally acceptable levels, with the exception of one of three samples, which was slightly above the only current standard, FSANZ. Whether the arsenic was in the safer organic form, which is commonly the case for shellfish, or the more toxic inorganic form remains to be established. This and the variation of arsenic over time will need to be considered when developing food products. Overall, the meat of the windowpane oyster is a valuable food resource and its current (albeit low-level) use should lower any barriers to its acceptance, making it suitable for commercialization. The present data support its development for high-value food products in urban markets. Full article
(This article belongs to the Section Processing and Comprehensive Utilization of Fishery Products)
20 pages, 5212 KiB  
Article
Assessing the Land Surface Temperature Trend of Lake Drūkšiai’s Coastline
by Jūratė Sužiedelytė Visockienė, Eglė Tumelienė and Rosita Birvydienė
Land 2025, 14(8), 1598; https://doi.org/10.3390/land14081598 - 5 Aug 2025
Abstract
This study investigates long-term land surface temperature (LST) trends along the shoreline of Lake Drūkšiai, a transboundary lake in eastern Lithuania that formerly served as a cooling reservoir for the Ignalina Nuclear Power Plant (INPP). Although the INPP was decommissioned in 2009, its [...] Read more.
This study investigates long-term land surface temperature (LST) trends along the shoreline of Lake Drūkšiai, a transboundary lake in eastern Lithuania that formerly served as a cooling reservoir for the Ignalina Nuclear Power Plant (INPP). Although the INPP was decommissioned in 2009, its legacy continues to influence the lake’s thermal regime. Using Landsat 8 thermal infrared imagery and NDVI-based methods, we analysed spatial and temporal LST variations from 2013 to 2024. The results indicate persistent temperature anomalies and elevated LST values, particularly in zones previously affected by thermal discharges. The years 2020 and 2024 exhibited the highest average LST values; some years (e.g., 2018) showed lower readings due to localised environmental factors such as river inflow and seasonal variability. Despite a slight stabilisation observed in 2024, temperatures remain higher than those recorded in 2013, suggesting that pre-industrial thermal conditions have not yet been restored. These findings underscore the long-term environmental impacts of industrial activity and highlight the importance of satellite-based monitoring for the sustainable management of land, water resources, and coastal zones. Full article
Show Figures

Figure 1

20 pages, 4989 KiB  
Article
Analysis of the Trade-Off/Synergy Effect and Driving Factors of Ecosystem Services in Hulunbuir City, China
by Shimin Wei, Jian Hou, Yan Zhang, Yang Tai, Xiaohui Huang and Xiaochen Guo
Agronomy 2025, 15(8), 1883; https://doi.org/10.3390/agronomy15081883 - 4 Aug 2025
Viewed by 182
Abstract
An in-depth understanding of the spatiotemporal heterogeneity of ecosystem service (ES) trade-offs and synergies, along with their driving factors, is crucial for formulating key ecological restoration strategies and effectively allocating ecological environmental resources in the Hulunbuir region. This study employed an integrated analytical [...] Read more.
An in-depth understanding of the spatiotemporal heterogeneity of ecosystem service (ES) trade-offs and synergies, along with their driving factors, is crucial for formulating key ecological restoration strategies and effectively allocating ecological environmental resources in the Hulunbuir region. This study employed an integrated analytical approach combining the InVEST model, ArcGIS geospatial processing, R software environment, and Optimal Parameter Geographical Detector (OPGD). The spatiotemporal patterns and driving factors of the interaction of four major ES functions in Hulunbuir area from 2000 to 2020 were studied. The research findings are as follows: (1) carbon storage (CS) and soil conservation (SC) services in the Hulunbuir region mainly show a distribution pattern of high values in the central and northeast areas, with low values in the west and southeast. Water yield (WY) exhibits a distribution pattern characterized by high values in the central–western transition zone and southeast and low values in the west. For forage supply (FS), the overall pattern is higher in the west and lower in the east. (2) The trade-off relationships between CS and WY, CS and SC, and SC and WY are primarily concentrated in the western part of Hulunbuir, while the synergistic relationships are mainly observed in the central and eastern regions. In contrast, the trade-off relationships between CS and FS, as well as FS and WY, are predominantly located in the central and eastern parts of Hulunbuir, with the intensity of these trade-offs steadily increasing. The trade-off relationship between SC and FS is almost widespread throughout HulunBuir. (3) Fractional vegetation cover, mean annual precipitation, and land use type were the primary drivers affecting ESs. Among these factors, fractional vegetation cover demonstrates the highest explanatory power, with a q-value between 0.6 and 0.9. The slope and population density exhibit relatively weak explanatory power, with q-values ranging from 0.001 to 0.2. (4) The interactions between factors have a greater impact on the inter-relationships of ESs in the Hulunbuir region than individual factors alone. The research findings have facilitated the optimization and sustainable development of regional ES, providing a foundation for ecological conservation and restoration in Hulunbuir. Full article
Show Figures

Figure 1

14 pages, 11645 KiB  
Article
Changes of Ecosystem Service Value in the Water Source Area of the West Route of the South–North Water Diversion Project
by Zhimin Du, Bo Li, Bingfei Yan, Fei Xing, Shuhu Xiao, Xiaohe Xu, Yakun Yuan and Yongzhi Liu
Water 2025, 17(15), 2305; https://doi.org/10.3390/w17152305 - 3 Aug 2025
Viewed by 220
Abstract
To ensure water source security and sustainability of the national major strategic project “South-to-North Water Diversion”, this study aims to evaluate the spatio-temporal evolution characteristics of the ecosystem service value (ESV) in its water source area from 2002 to 2022. This study reveals [...] Read more.
To ensure water source security and sustainability of the national major strategic project “South-to-North Water Diversion”, this study aims to evaluate the spatio-temporal evolution characteristics of the ecosystem service value (ESV) in its water source area from 2002 to 2022. This study reveals its changing trends and main influencing factors, and thereby provides scientific support for the ecological protection and management of the water source area. Quantitative assessment of the ESV of the region was carried out using the Equivalence Factor Method (EFM), aiming to provide scientific support for ecological protection and resource management decision-making. In the past 20 years, the ESV has shown an upward trend year by year, increasing by 96%. The regions with the highest ESV were Garzê Prefecture and Aba Prefecture, which increased by 130.3% and 60.6%, respectively. The ESV of Xinlong county, Danba county, Rangtang county, and Daofu county increased 4.8 times, 1.5 times, 12.5 times, and 8.9 times, respectively. In the last two decades, arable land has decreased by 91%, while the proportions of bare land and water have decreased by 84% and 91%, respectively. Grassland had the largest proportion. Forests and grasslands, vital for climate regulation, water cycle management, and biodiversity conservation, have expanded by 74% and 43%, respectively. It can be seen from Moran’s I index values that the dataset as a whole showed a slight positive spatial autocorrelation, which increased from −0.041396 to 0.046377. This study reveals the changing trends in ESV and the main influencing factors, and thereby provides scientific support for the ecological protection and management of the water source area. Full article
(This article belongs to the Special Issue Watershed Ecohydrology and Water Quality Modeling)
Show Figures

Figure 1

18 pages, 307 KiB  
Review
Factors Influencing the Adoption of Sustainable Agricultural Practices in the U.S.: A Social Science Literature Review
by Yevheniia Varyvoda, Allison Thomson and Jasmine Bruno
Sustainability 2025, 17(15), 6925; https://doi.org/10.3390/su17156925 - 30 Jul 2025
Viewed by 409
Abstract
The transition to sustainable agriculture is a critical challenge for the U.S. food system. A sustainable food system must support the production of healthy and nutritious food while ensuring economic sustainability for farmers and ranchers. It should also reduce negative environmental impacts on [...] Read more.
The transition to sustainable agriculture is a critical challenge for the U.S. food system. A sustainable food system must support the production of healthy and nutritious food while ensuring economic sustainability for farmers and ranchers. It should also reduce negative environmental impacts on soil, water, biodiversity, and climate, and promote equitable and inclusive access to land, farming resources, and food. This narrative review synthesizes U.S. social science literature to identify the key factors that support or impede the adoption of sustainable agricultural practices in the U.S. Our analysis reveals seven overarching factors that influence producer decision-making: awareness and knowledge, social factors, psychological factors, technologies and tools, economic factors, implementation capacity, and policies and regulations. The review highlights the critical role of social science in navigating complexity and uncertainty. Key priorities emerging from the literature include developing measurable, outcome-based programs; ensuring credible communication through trusted intermediaries; and designing tailored interventions. The findings demonstrate that initiatives will succeed when they emphasize measurable benefits, address uncertainties, and develop programs that capitalize on identified opportunities while overcoming existing barriers. Full article
15 pages, 2006 KiB  
Article
Hydrological Responses to Territorial Spatial Change in the Xitiaoxi River Basin: A Simulation Study Using the SWAT Model Driven by China Meteorological Assimilation Driving Datasets
by Dongyan Kong, Huiguang Chen and Kongsen Wu
Water 2025, 17(15), 2267; https://doi.org/10.3390/w17152267 - 30 Jul 2025
Viewed by 277
Abstract
The use of the Soil and Water Assessment Tool (SWAT) model driven by China Meteorological Assimilation Driving Datasets (CMADS) for runoff simulation research is of great significance for regional flood prevention and control. Therefore, from the perspective of production-living-ecological space, this article combined [...] Read more.
The use of the Soil and Water Assessment Tool (SWAT) model driven by China Meteorological Assimilation Driving Datasets (CMADS) for runoff simulation research is of great significance for regional flood prevention and control. Therefore, from the perspective of production-living-ecological space, this article combined multi-source data such as DEM, soil texture and land use type, in order to construct scenarios of territorial spatial change (TSC) across distinct periods. Based on the CMADS-L40 data and the SWAT model, it simulated the runoff dynamics in the Xitiaoxi River Basin, and analyzed the hydrological response characteristics under different TSCs. The results showed that The SWAT model, driven by CMADS-L40 data, demonstrated robust performance in monthly runoff simulation. The coefficient of determination (R2), Nash–Sutcliffe efficiency coefficient (NSE), and the absolute value of percentage bias (|PBIAS|) during the calibration and validation period all met the accuracy requirements of the model, which validated the applicability of CMADS-L40 data and the SWAT model for runoff simulation at the watershed scale. Changes in territorial spatial patterns are closely correlated with runoff variation. Changes in agricultural production space and forest ecological space show statistically significant negative correlation with runoff change, while industrial production space change exhibits a significant positive correlation with runoff change. The expansion of production space, particularly industrial production space, leads to increased runoff, whereas the enlargement of agricultural production space and forest ecological space can reduce runoff. This article contributes to highlighting the role of land use policy in hydrological regulation, providing a scientific basis for optimizing territorial spatial planning to mitigate flood risks and protect water resources. Full article
(This article belongs to the Topic Natural Hazards and Disaster Risks Reduction, 2nd Edition)
Show Figures

Figure 1

18 pages, 2111 KiB  
Article
Modelling Renewable Energy and Resource Interactions Using CLEWs to Support Thailand’s 2050 Carbon Neutrality Goal
by Nat Nakkorn, Surasak Janchai, Suparatchai Vorarat and Prayuth Rittidatch
Sustainability 2025, 17(15), 6909; https://doi.org/10.3390/su17156909 - 30 Jul 2025
Viewed by 348
Abstract
This study utilises the Open Source Energy Modelling System (OSeMOSYS) in conjunction with the Climate, Land, Energy, and Water systems (CLEWs) framework to investigate Thailand’s energy transition, which is designed to achieve carbon neutrality by 2050. Two scenarios have been devised to evaluate [...] Read more.
This study utilises the Open Source Energy Modelling System (OSeMOSYS) in conjunction with the Climate, Land, Energy, and Water systems (CLEWs) framework to investigate Thailand’s energy transition, which is designed to achieve carbon neutrality by 2050. Two scenarios have been devised to evaluate the long-term trade-offs among energy, water, and land systems. Data were sourced from esteemed international organisations (e.g., the IEA, FAO, and OECD) and national agencies and organised into a tailored OSeMOSYS Starter Data Kit for Thailand, comprising a baseline and a carbon neutral trajectory. The baseline scenario, primarily reliant on fossil fuels, is projected to generate annual CO2 emissions exceeding 400 million tons and water consumption surpassing 85 billion cubic meters by 2025. By the mid-century, the carbon neutral scenario will have approximately 40% lower water use and a 90% reduction in power sector emissions. Under the carbon neutral path, renewable energy takes the front stage; the share of renewable electricity goes from under 20% in the baseline scenario to almost 80% by 2050. This transition and large reforestation initiatives call for consistent investment in solar energy (solar energy expenditures exceeding 20 billion USD annually by 2025). Still, it provides notable co-benefits, including greater resource sustainability and better alignment with international climate targets. The results provide strategic insights aligned with Thailand’s National Energy Plan (NEP) and offer modelling evidence toward achieving international climate goals under COP29. Full article
Show Figures

Graphical abstract

16 pages, 2460 KiB  
Article
Continuous Chamber Gangue Storage for Sustainable Mining in Coal Mines: Principles, Methods, and Environmental Benefits
by Jinhai Liu, Yuanhang Wang, Jiajie Li, Desire Ntokoma, Zhengxing Yu, Sitao Zhu and Michael Hitch
Sustainability 2025, 17(15), 6865; https://doi.org/10.3390/su17156865 - 28 Jul 2025
Viewed by 277
Abstract
Coal gangue, a major by-product of coal mining, poses significant environmental challenges due to its large-scale accumulation, land occupation, and potential for air and water pollution. This manuscript presents a comprehensive overview of continuous chamber gangue storage technology as a sustainable mining solution [...] Read more.
Coal gangue, a major by-product of coal mining, poses significant environmental challenges due to its large-scale accumulation, land occupation, and potential for air and water pollution. This manuscript presents a comprehensive overview of continuous chamber gangue storage technology as a sustainable mining solution for coal mines. The principles of this approach emphasize minimizing disturbance to overlying strata, enabling uninterrupted mining operations, and reducing both production costs and environmental risks. By storing the surface or underground gangue in continuous chambers, the proposed method ensures the roof stability, maximizes the waste storage, and prevents the interaction between mining and waste management processes. Detailed storage sequences and excavation methods are discussed, including continuous and jump-back excavation strategies tailored to varying roof conditions. The process flows for both underground and ground-based chamber storage are described, highlighting the integration of gangue crushing, paste preparation, and pipeline transport for efficient underground storage. In a case study with annual storage of 500,000 t gangue, the annual economic benefit reached CNY 1,111,425,000. This technology not only addresses the urgent need for sustainable coal gangue management, but also aligns with the goals of resource conservation, ecological protection, and the advancement of green mining practices in the coal industry. Full article
Show Figures

Figure 1

20 pages, 8154 KiB  
Article
Strategies for Soil Salinity Mapping Using Remote Sensing and Machine Learning in the Yellow River Delta
by Junyong Zhang, Xianghe Ge, Xuehui Hou, Lijing Han, Zhuoran Zhang, Wenjie Feng, Zihan Zhou and Xiubin Luo
Remote Sens. 2025, 17(15), 2619; https://doi.org/10.3390/rs17152619 - 28 Jul 2025
Viewed by 388
Abstract
In response to the global ecological and agricultural challenges posed by coastal saline-alkali areas, this study focuses on Dongying City as a representative region, aiming to develop a high-precision soil salinity prediction mapping method that integrates multi-source remote sensing data with machine learning [...] Read more.
In response to the global ecological and agricultural challenges posed by coastal saline-alkali areas, this study focuses on Dongying City as a representative region, aiming to develop a high-precision soil salinity prediction mapping method that integrates multi-source remote sensing data with machine learning techniques. Utilizing the SCORPAN model framework, we systematically combined diverse remote sensing datasets and innovatively established nine distinct strategies for soil salinity prediction. We employed four machine learning models—Support Vector Regression (SVR), Random Forest (RF), Extreme Gradient Boosting (XGBoost), and Geographical Gaussian Process Regression (GGPR) for modeling, prediction, and accuracy comparison, with the objective of achieving high-precision salinity mapping under complex vegetation cover conditions. The results reveal that among the models evaluated across the nine strategies, the SVR model demonstrated the highest accuracy, followed by RF. Notably, under Strategy IX, the SVR model achieved the best predictive performance, with a coefficient of determination (R2) of 0.62 and a root mean square error (RMSE) of 0.38 g/kg. Analysis based on SHapley Additive exPlanations (SHAP) values and feature importance indicated that Vegetation Type Factors contributed significantly and consistently to the model’s performance, maintaining higher importance than traditional salinity indices and playing a dominant role. In summary, this research successfully developed a comprehensive, high-resolution soil salinity mapping framework for the Dongying region by integrating multi-source remote sensing data and employing diverse predictive strategies alongside machine learning models. The findings highlight the potential of Vegetation Type Factors to enhance large-scale soil salinity monitoring, providing robust scientific evidence and technical support for sustainable land resource management, agricultural optimization, ecological protection, efficient water resource utilization, and policy formulation. Full article
Show Figures

Figure 1

19 pages, 2828 KiB  
Review
Microbial Proteins: A Green Approach Towards Zero Hunger
by Ayesha Muazzam, Abdul Samad, AMM Nurul Alam, Young-Hwa Hwang and Seon-Tea Joo
Foods 2025, 14(15), 2636; https://doi.org/10.3390/foods14152636 - 28 Jul 2025
Viewed by 416
Abstract
The global population is increasing rapidly and, according to the United Nations (UN), it is expected to reach 9.8 billion by 2050. The demand for food is also increasing with a growing population. Food shortages, land scarcity, resource depletion, and climate change are [...] Read more.
The global population is increasing rapidly and, according to the United Nations (UN), it is expected to reach 9.8 billion by 2050. The demand for food is also increasing with a growing population. Food shortages, land scarcity, resource depletion, and climate change are significant issues raised due to an increasing population. Meat is a vital source of high-quality protein in the human diet, and addressing the sustainability of meat production is essential to ensuring long-term food security. To cover the meat demand of a growing population, meat scientists are working on several meat alternatives. Bacteria, fungi, yeast, and algae have been identified as sources of microbial proteins that are both effective and sustainable, making them suitable for use in the development of meat analogs. Unlike livestock farming, microbial proteins produce less environmental pollution, need less space and water, and contain all the necessary dietary components. This review examines the status and future of microbial proteins in regard to consolidating and stabilizing the global food system. This review explores the production methods, nutritional benefits, environmental impact, regulatory landscape, and consumer perception of microbial protein-based meat analogs. Additionally, this review highlights the importance of microbial proteins by elaborating on the connection between microbial protein-based meat analogs and multiple UN Sustainable Development Goals. Full article
Show Figures

Figure 1

22 pages, 3231 KiB  
Article
Evapotranspiration in a Small Well-Vegetated Basin in Southwestern China
by Zitong Zhou, Ying Li, Lingjun Liang, Chunlin Li, Yuanmei Jiao and Qian Ma
Sustainability 2025, 17(15), 6816; https://doi.org/10.3390/su17156816 - 27 Jul 2025
Viewed by 304
Abstract
Evapotranspiration (ET) crucially regulates water storage dynamics and is an essential component of the terrestrial water cycle. Understanding ET dynamics is fundamental for sustainable water resource management, particularly in regions facing increasing drought risks under climate change. In regions like southwestern China, where [...] Read more.
Evapotranspiration (ET) crucially regulates water storage dynamics and is an essential component of the terrestrial water cycle. Understanding ET dynamics is fundamental for sustainable water resource management, particularly in regions facing increasing drought risks under climate change. In regions like southwestern China, where extreme drought events are prevalent due to complex terrain and climate warming, ET becomes a key factor in understanding water availability and drought dynamics. Using the SWAT model, this study investigates ET dynamics and influencing factors in the Jizi Basin, Yunnan Province, a small basin with over 71% forest coverage. The model calibration and validation results demonstrated a high degree of consistency with observed discharge data and ERA5, confirming its reliability. The results show that the annual average ET in the Jizi Basin is 573.96 mm, with significant seasonal variations. ET in summer typically ranges from 70 to 100 mm/month, while in winter, it drops to around 20 mm/month. Spring ET exhibits the highest variability, coinciding with the occurrence of extreme hydrological events such as droughts. The monthly anomalies of ET effectively reproduce the spring and early summer 2019 drought event. Notably, ET variation exhibits significant uncertainty under scenarios of +1 °C temperature and −20% precipitation. Furthermore, although land use changes had relatively small effects on overall ET, they played crucial roles in promoting groundwater recharge through enhanced percolation, especially forest cover. The study highlights that, in addition to climate and land use, soil moisture and groundwater conditions are vital in modulating ET and drought occurrence. The findings offer insights into the hydrological processes of small forested basins in southwestern China and provide important support for sustainable water resource management and effective climate adaptation strategies, particularly in the context of increasing drought vulnerability. Full article
Show Figures

Figure 1

Back to TopTop