Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = waste acetate fibers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 8241 KiB  
Article
Chemical Recycling of Bio-Based Thermosetting Epoxy Composite Produced by Vacuum-Assisted Resin Infusion Process
by Liberata Guadagno, Raffaele Longo, Marialuigia Raimondo, Luigi Vertuccio, Francesca Aliberti, Lorenzo Bonadies, Simone Morciano, Luigia Longo, Roberto Pantani and Elisa Calabrese
Polymers 2025, 17(9), 1241; https://doi.org/10.3390/polym17091241 - 2 May 2025
Viewed by 801
Abstract
This research work focuses on the chemical recycling of a Carbon Fiber-Reinforced Composite (CFRC) manufactured through a vacuum-assisted resin infusion (VARI) process, characterized by a high Young’s modulus of approximately 7640 MPa. The recycling reaction was performed using a mixture of eco-sustainable solvents, [...] Read more.
This research work focuses on the chemical recycling of a Carbon Fiber-Reinforced Composite (CFRC) manufactured through a vacuum-assisted resin infusion (VARI) process, characterized by a high Young’s modulus of approximately 7640 MPa. The recycling reaction was performed using a mixture of eco-sustainable solvents, composed of acetic acid and hydrogen peroxide, and was conducted at three different temperatures (70, 80, and 90 °C). The reaction yield values, evaluated with an innovative approach that involved the use of thermogravimetric analysis (TGA), confirmed the importance to recycle at a temperature corresponding to the glass transition temperature (Tg = 90.3 °C) of the resin. Spectroscopic investigations highlighted that the chemical bond cleavage occurred through the selective breaking of the C-N bonds of the cross-linked matrix structure, allowing the recovery of both the reinforcing phase of the epoxy matrix and the initial oligomers/monomers of the epoxy matrix. The morphological and electrical investigations carried out on the recovered fibers further confirmed the efficiency of the recycling process conducted at the highest explored temperature, allowing the recovery of cleaner fibers with an electrical conductivity value (8.04 × 102 S/m) closer to that of virgin fibers (2.20 × 103 S/m). The proposed strategy is a true challenge in terms of saving energy, solving waste disposal problems, preserving the earth, and preventing the depletion of planet resources. Full article
(This article belongs to the Section Circular and Green Sustainable Polymer Science)
Show Figures

Figure 1

17 pages, 6902 KiB  
Article
Effect of Waste Cigarette Butt Fibers on the Properties and CO2 Footprint of Bitumen
by Kai Yang, Cheng Cheng, Yong Yan, Qinglin Wu and Ru Du
Materials 2025, 18(9), 2059; https://doi.org/10.3390/ma18092059 - 30 Apr 2025
Viewed by 348
Abstract
This research utilized recycled acetate fibers from discarded cigarette butts (CBs) as reinforcing materials, reducing solid waste and enhancing the properties of bitumen. The surface properties of the fibers significantly impacted the binder characteristics. The treatment of CB fibers with anhydrous ethanol was [...] Read more.
This research utilized recycled acetate fibers from discarded cigarette butts (CBs) as reinforcing materials, reducing solid waste and enhancing the properties of bitumen. The surface properties of the fibers significantly impacted the binder characteristics. The treatment of CB fibers with anhydrous ethanol was employed to remove the plasticizer glycerol triacetate (GTA), enabling the better homogeneity of the fibers in the binder. Thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) were used to assess the effectiveness of the fiber treatment. A dynamic shear rheometer (DSR) was used to explore the properties of bitumen with varying CB contents (0%, 0.25%, 0.75%, and 1.25% by weight). A whole life cycle analysis further confirmed the eco-efficiency of CB binders. The results show that the pretreatment effectively removed GTA, leading to a more homogeneous dispersion of fibers in the binder. Adding CBs can significantly improve bitumen properties, but this effect does not increase with higher dosages; when the CB content exceeded 1.25%, a reduction in fatigue resistance was observed. Among the tested dosages, the optimal amount was 0.75%, which improved the high-temperature performance of the binder by 2.7 times, the medium-temperature fatigue life by 1.78 times, and the low-temperature performance by 1.08 times. In terms of ecological benefits, the addition of CB fibers to bitumen pavement reduced carbon emissions by two-thirds compared to traditional bitumen pavement, resulting in a significant decrease in carbon emissions. This study provides valuable insights into the construction of sustainable transportation infrastructure. Full article
Show Figures

Figure 1

16 pages, 4977 KiB  
Article
The Rheological and Fatigue Properties of Waste Acetate Fiber-Modified Bitumen
by Cheng Cheng, Kai Yang, Jianwei Luo, Shu Yang and Yong Yan
Molecules 2025, 30(8), 1784; https://doi.org/10.3390/molecules30081784 - 16 Apr 2025
Viewed by 367
Abstract
The rheological properties of fiber-reinforced binders are remarkable. The research on acetate fibers as reinforcing agents is scant. Acetate fibers exhibit more environmental benefits than lignocellulose and other fibers. In this study, acetate fibers were pretreated with anhydrous ethanol as the extractant to [...] Read more.
The rheological properties of fiber-reinforced binders are remarkable. The research on acetate fibers as reinforcing agents is scant. Acetate fibers exhibit more environmental benefits than lignocellulose and other fibers. In this study, acetate fibers were pretreated with anhydrous ethanol as the extractant to disperse the fibers uniformly in the bitumen and the high/medium-temperature fatigue properties of waste acetate fibers blended with binders were investigated. Infrared spectroscopy (FT-IR) tests showed that pretreatment was effective in removing plasticizers from CBs so that the fibers could be more uniformly dispersed in the binders. The roadworthiness and fatigue performance of the adhesives were tested based on frequency sweep (FS), multiple stress creep recovery (MSCR), and linear amplitude sweep (LAS) tests with different CB (cigarette butt) doping levels. Ultimately, CBs were added to effectively improve all aspects of bitumen performance, but this phenomenon was not enhanced with an increase in the amount of admixture—optimal covariance was 0.25%. Moreover, a further correlation analysis was performed for the three traditional predicted fatigue failure points. The best correlation was R2 = 0.98 for a 50% decrease in dynamic shear modulus, followed by R2 = 0.96 for peak stress–strain, and R2 = 0.88 for fatigue factor. Full article
(This article belongs to the Special Issue Advances in the Preparation and Application of Cellulose)
Show Figures

Figure 1

19 pages, 3295 KiB  
Article
Performance Evaluation of Porous Asphalt Mixture Reinforced with Waste Cellulose Acetate Fibers
by Jing Yan, Xiaobo Du and Hongwei Lin
Sustainability 2025, 17(8), 3447; https://doi.org/10.3390/su17083447 - 12 Apr 2025
Viewed by 590
Abstract
Cellulose acetate fiber (CAF), a typical waste product derived from cigarette filters, has attracted growing attention for its potential reuse in asphalt materials. However, its application in porous asphalt (PA) mixtures remains underexplored. This study investigates the effects of CAF on the performance [...] Read more.
Cellulose acetate fiber (CAF), a typical waste product derived from cigarette filters, has attracted growing attention for its potential reuse in asphalt materials. However, its application in porous asphalt (PA) mixtures remains underexplored. This study investigates the effects of CAF on the performance of asphalt binders and PA-13 mixtures through a series of laboratory tests. The results demonstrate that CAF significantly enhances the high-temperature rheological performance of asphalt binders. A 1% CAF content improved the low-temperature rheological performance of asphalt binder, while a higher CAF content resulted in performance degradation. A fatigue life analysis revealed a parabolic relationship with CAF content with the optimal Nf50 observed at a 1% CAF-a 4.3% increase over the original binder. Compared to 3% lignin fiber (LF)-modified binders, 3% CAF-modified binders exhibited reduced temperature sensitivity in high-temperature performance, at least a 4.6% improvement in low-temperature performance and an 8.4% increase in the fatigue life. As for PA-13 mixtures, the incorporation of CAF progressively improved rutting, moisture and stripping resistance with increasing CAF content, achieving the highest dynamic stability, highest tensile strength ratio and lowest mass loss rate at 5% CAF. The low-temperature performance and fatigue life (S = 0.45) of PA-13 mixtures exhibited a parabolic trend, peaking at 3% CAF. Moreover, the 3% CAF-modified PA-13 mixture demonstrated improved low-temperature performance and fatigue resistance, while exhibiting a slight decrease in high-temperature stability, water resistance and resistance to disintegration. Overall, CAF is a viable alternative to LF for improving the durability and service life of asphalt pavements. Full article
(This article belongs to the Section Sustainable Engineering and Science)
Show Figures

Figure 1

16 pages, 8173 KiB  
Article
One-Pot Fabrication of Ginger-Waste-Derived Ionic Liquid Electrospun Films: An Efficient Preparation Strategy with Enhanced Antibacterial Functionality
by Xingran Kou, Kangning Ma, Xin Huang, Hui Wang and Qinfei Ke
Foods 2025, 14(6), 1058; https://doi.org/10.3390/foods14061058 - 20 Mar 2025
Cited by 1 | Viewed by 526
Abstract
In the process of ginger deep processing, a lot of waste is generated which is rich in biopolymers and active ingredients such as cellulose, starch, gingerol, and gingerol, but its low utilization rate leads to waste of resources. In this study, ginger waste [...] Read more.
In the process of ginger deep processing, a lot of waste is generated which is rich in biopolymers and active ingredients such as cellulose, starch, gingerol, and gingerol, but its low utilization rate leads to waste of resources. In this study, ginger waste residue, cellulose, and bioactive substances were spun into fiber materials by wet electrospinning technology with 1-butyl-3-methylimidazole acetate ([Bmim]Ac) as solvent. Fiber plasticization and [Bmim]Ac removal were achieved by dynamic deionized water coagulation bath. Scanning electron microscopy (SEM) and tensile strength analysis showed that the obtained GC-1 and GC-2 films have a non-uniform diameter, with a clear fiber structure and strong tensile strength. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) confirmed that cellulose transforms from type I to type II crystal structure, and [Bmim]Ac is effectively removed. The inhibition rate of 6-Shogaol-impregnated GC film against Escherichia coli and Staphylococcus aureus was 99%. The experiment of strawberry preservation verified the potential of GC film in food preservation. In this study, the high-value utilization of ginger waste in food packaging was realized by preparing antibacterial electrospun fiber films. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Figure 1

11 pages, 268 KiB  
Article
The Effects of Indigo Waste Silage Prepared with Additives on Feed Availability, Rumen Fermentation Patterns, Blood Metabolites, and Hematological Indices in Beef Cattle
by Nirawan Gunun, Chatchai Kaewpila, Waroon Khota, Wasana Phlaetita and Pongsatorn Gunun
Vet. Sci. 2024, 11(12), 588; https://doi.org/10.3390/vetsci11120588 - 22 Nov 2024
Cited by 1 | Viewed by 1340
Abstract
The purpose of this study was to evaluate the impact of different additives in fermented indigo waste on feed availability, rumen fermentation patterns, blood chemistry, and hematology in beef cattle. Four male crossbred beef cattle with a body weight (BW) of 230 ± [...] Read more.
The purpose of this study was to evaluate the impact of different additives in fermented indigo waste on feed availability, rumen fermentation patterns, blood chemistry, and hematology in beef cattle. Four male crossbred beef cattle with a body weight (BW) of 230 ± 14 kg and 25 months of age were used in a 4 × 4 Latin square design. The indigo waste was ensiled without additive (CON) and with calcium hydroxide (CH), molasses (M), or cellulase (C). The indigo waste silage was incorporated into a fermented total mixed ration (FTMR). The neutral detergent fiber (NDF) content was lower in C-treated silage. The feed intake did not alter among treatments (p > 0.05). The ensiled indigo waste with additives had no influence on nutrient digestibility (p > 0.05), whereas the ensiled indigo waste with M increased CP digestibility (p < 0.01). The rumen pH, ammonia-nitrogen (NH3-N), or volatile fatty acid (VFA) proportions did not change by additive (p > 0.05). However, adding M increased the acetate-to-propionate ratio (C2:C3) (p = 0.04). In addition, the total protein in the blood was higher in C-treated silage (p = 0.01). The homological indices did not change by additive (p > 0.05), except for lymphocytes, which decreased when M and C were added (p < 0.01). In conclusion, adding M and C to indigo waste silage could enhance its nutritional value and improve digestibility, blood chemistry, or health status in beef cattle. Full article
Show Figures

Graphical abstract

22 pages, 14940 KiB  
Article
New Eco-Friendly Thermal Insulation and Sound Absorption Composite Materials Derived from Waste Black Tea Bags and Date Palm Tree Surface Fibers
by Mohamed Ali, Redhwan Almuzaiqer, Khaled Al-Salem, Hassan Alshehri, Abdullah Nuhait, Abdullah Alabdullatif and Abdulrahman Almubayrik
Polymers 2024, 16(21), 2989; https://doi.org/10.3390/polym16212989 - 25 Oct 2024
Cited by 6 | Viewed by 2346
Abstract
A tremendous amount of waste black tea bags (BTBs) and date palm surface fibers (DPSFs), at the end of their life cycle, end up in landfills, leading to increased pollution and an increase in the negative impact on the environment. Therefore, this study [...] Read more.
A tremendous amount of waste black tea bags (BTBs) and date palm surface fibers (DPSFs), at the end of their life cycle, end up in landfills, leading to increased pollution and an increase in the negative impact on the environment. Therefore, this study aims to utilize these normally wasted materials efficiently by developing new composite materials for thermal insulation and sound absorption. Five insulation composite boards were developed, two were bound (BTB or DPSF with polyvinyl Acetate resin (PVA)) and three were hybrids (BTB, DPSF, and resin). In addition, the loose raw waste materials (BTB and DPSF) were tested separately with no binder. Thermal conductivity and sound absorption coefficients were determined for all boards. Thermal stability analysis was reported for the components of the tea bag (string, label, and bag) and one of the composite hybrid boards. Mechanical properties of the boards such as flexural strain, flexural stress, and flexural elastic modulus were determined for the bound and hybrid composites. The results showed that the thermal conductivity coefficients for all the hybrid composite sample boards are less than 0.07 at the ambient temperature of 24 °C and they were enhanced as the BTB ratio was reduced in the hybrid composite boards. The noise reduction coefficient for bound and all hybrid composite samples is greater than 0.37. The composite samples are thermally stable up to 291 °C. Most composite samples have a high flexure modulus between 4.3 MPa and 10.5 MPa. The tea bag raw materials and the composite samples have a low moisture content below 2.25%. These output results seem promising and encouraging using such developed sample boards as eco-friendly thermal insulation and sound absorption and competing with the synthetic ones developed from petrochemicals in building insulation. Moreover, returning these waste materials to circulation and producing new eco-friendly composites can reduce the number of landfills, the level of environmental pollution, and the use of synthetic materials made from fossil resources. Full article
(This article belongs to the Special Issue Advances in Functional Polymers and Composites)
Show Figures

Figure 1

16 pages, 5979 KiB  
Article
Preparation and Characterization of Particleboard Made from Industrial-Type Wood Particles and Discarded Duck Feathers
by Nidal Del Valle Raydan, Bertrand Charrier, Grzegorz Kowaluk and Eduardo Robles
J. Compos. Sci. 2024, 8(7), 241; https://doi.org/10.3390/jcs8070241 - 25 Jun 2024
Cited by 2 | Viewed by 2386
Abstract
Global poultry waste production is substantial, with billions of poultry raised annually for meat and egg production, resulting in significant feather waste. Conventional poultry waste disposal methods are restricted due to environmental concerns. Meanwhile, wood-composite panel industries face raw material shortages, emphasizing the [...] Read more.
Global poultry waste production is substantial, with billions of poultry raised annually for meat and egg production, resulting in significant feather waste. Conventional poultry waste disposal methods are restricted due to environmental concerns. Meanwhile, wood-composite panel industries face raw material shortages, emphasizing the need for sustainable, renewable fiber sources. In this study, in the core layer of panels, wood particles were replaced with 5 wt% clean duck feathers without pretreatment to take advantage of feather attributes like hydrophobicity, thermal insulation, and sound damping as an alternative construction material. Three adhesives—urea-formaldehyde (UF), polymeric 4,4′-diphenylmethane diisocyanate (pMDI), and polyvinyl acetate (PVAc)—were examined for resin–feather compatibility. The control panels in this study were identical but wood was not replaced with feathers. The results revealed that wood–feather particleboard with pMDI and PVAc resins meets the requirements of the relevant standard for P2 boards (where applicable) concerning their modulus of rupture (MOR: 11 N·mm−2), modulus of elasticity (MOE: 1600 N·mm−2), internal bond (IB: 0.35 N·mm−2), and screw withdrawal resistance (SWR). However, those produced with UF resin did not meet the standards for IB and MOE. Furthermore, the physical properties showed similar water resistance and thickness swelling to control panels with pMDI. Notably, substituting 5 wt% wood with feathers improved thermal insulation by approximately 10% for UF and pMDI resins. Additionally, particleboard with feathers demonstrated improved sound absorption at high frequencies, ranging from 2500 to 500 Hz, particularly with pMDI resin, approaching Class B classification according to EN ISO 11654:1997. This study identifies the higher compatibility of pMDI over PVAc and UF adhesives for feather-based composite materials in construction applications. Full article
(This article belongs to the Special Issue From Waste to Advance Composite Materials)
Show Figures

Figure 1

23 pages, 5991 KiB  
Article
Screening of Microplastics in Aquaculture Systems (Fish, Mussel, and Water Samples) by FTIR, Scanning Electron Microscopy–Energy Dispersive Spectroscopy and Micro-Raman Spectroscopies
by Kleopatra Miserli, Christos Lykos, Angelos G. Kalampounias and Ioannis Konstantinou
Appl. Sci. 2023, 13(17), 9705; https://doi.org/10.3390/app13179705 - 28 Aug 2023
Cited by 19 | Viewed by 6038
Abstract
In the last decade, plastic waste has become one of the main threats to marine ecosystems and their biodiversity due to its abundance and increased persistence. Microplastics can be classified as either primary, i.e., fabricated for commercial use, or secondary, i.e., resulting from [...] Read more.
In the last decade, plastic waste has become one of the main threats to marine ecosystems and their biodiversity due to its abundance and increased persistence. Microplastics can be classified as either primary, i.e., fabricated for commercial use, or secondary, i.e., resulting from the fragmentation/weathering processes of larger plastic pieces in the environment. In general, microplastics are detected in a number of aquatic organisms (e.g., fish, bivalves, mollusks, etc.) with alarming effects on their health. Therefore, the present work focuses on the detection and identification of microplastics in fish species (Dicentrarchus labrax, Sparus aurata) and mussels (Mytilus galloprovincialis) from aquaculture systems since these aquatic organisms are largely commercially available for consumption. In addition, seawater was also screened for the types of polymers present as well as their aging. The experimental protocol for biota samples contains a digestion step using Fenton’s reagent (0.05 M FeSO4⋅7H2O with 30% H2O2 at a volume ratio of 1:1) to remove organic material followed by filtration and a density separation step where the sample material was mixed with a saturated ZnCl2 solution to separate microplastic particles from heavier material. For seawater samples (sampled by a microplastic net sampler), only sieving on stainless steel sieves followed by filtration on silica filters was applied. Detection of microplastics and identification of their polymeric composition was achieved through the combined use of micro-Raman analysis, Attenuated Total Reflectance–Fourier Transform Infrared spectroscopy, and Scanning Electron Microscopy in tandem with Energy Dispersive X-ray spectroscopy. Microplastic abundance was 16 ± 1.7 items/individual in mussels and 22 ± 2.1 items/individual in sea bass, and 40 ± 3.9 items/individual in sea bream, with polyethylene (74.4%) being the most detected polymer type, while polyethylene-co-vinyl acetate (65%), polyvinyl-butyral (36.8%), polyvinyl alcohol (20%), and polybutyl methacrylate (15.8%) were also detected to a lesser extent. The microplastics isolated from seawater samples were films (30%), fragments (30%), and fibers (20%), while some of them were derived from foams (20%). Also, in most of these seawater-recovered microplastics, a relatively high degree of oxidation (carbonyl index > 0.31) was observed, which was further confirmed by the results of Energy Dispersive X-ray spectroscopy. Finally, the Scanning Electron Microscopy images showed various morphological characteristics (cracks, cavities, and burrs) on the surfaces of the microplastics, which were attributed to environmental exposure. Full article
Show Figures

Figure 1

14 pages, 2522 KiB  
Article
Lignin from Brewers’ Spent Grain: Structural and Thermal Evaluations
by Oluwashina Philips Gbenebor, Oludolapo Akanni Olanrewaju, Mohammed Awwalu Usman and Samson Oluropo Adeosun
Polymers 2023, 15(10), 2346; https://doi.org/10.3390/polym15102346 - 17 May 2023
Cited by 13 | Viewed by 5322
Abstract
Lignocellulose is a renewable ubiquitous material that comprises cellulose, hemicellulose, and lignin. Lignin has been isolated from different lignocellulosic biomass via chemical treatments, but there has been little or no investigation carried out on the processing of lignin from brewers’ spent grain (BSG) [...] Read more.
Lignocellulose is a renewable ubiquitous material that comprises cellulose, hemicellulose, and lignin. Lignin has been isolated from different lignocellulosic biomass via chemical treatments, but there has been little or no investigation carried out on the processing of lignin from brewers’ spent grain (BSG) to the best of authors’ knowledge. This material makes up 85% of the brewery industry’s byproducts. Its high moisture content hastens its deterioration, which has posed a huge challenge to its preservation and transportation; this eventually causes environmental pollution. One of the methods of solving this environmental menace is the extraction of lignin as a precursor for carbon fiber production from this waste. This study considers the viability of sourcing lignin from BSG with the use of acid solutions at 100 °C. Structural and thermal analyses were carried out on extracted samples, and the results were compared with other biomass-soured lignin to assess the proficiency of this isolation technique. Wet BSG sourced from Nigeria Breweries (NB), Lagos, was washed and sun-dried for 7 days. Tetraoxosulphate (VI) (H2SO4), hydrochloric (HCl), and acetic acid, each of 10 M, were individually reacted with dried BSG at 100 °C for 3 h and designated as H2, HC, and AC lignin. The residue (lignin) was washed and dried for analysis. Wavenumber shift values from Fourier transform infrared spectroscopy (FTIR) show that intra- and intermolecular OH interactions in H2 lignin are the strongest and possess the highest magnitude of hydrogen-bond enthalpy (5.73 kCal/mol). The thermogravimetric analysis (TGA) results show that a higher lignin yield can be achieved when it is isolated from BSG, as 82.9, 79.3, and 70.2% were realized for H2, HC, and AC lignin. The highest size of ordered domains (0.0299 nm) displayed by H2 lignin from X-ray diffraction (XRD) informs that it has the greatest potential of forming nanofibers via electrospinning. The enthalpy of reaction values of 133.3, 126.6, and 114.1 J/g recorded for H2, HC, and AC lignin, respectively, from differential scanning calorimetry (DSC) results affirm that H2 lignin is the most thermally stable with the highest glass transition temperature (Tg = 107 °C). Full article
Show Figures

Figure 1

18 pages, 2266 KiB  
Article
Valorization of Pennisetum setaceum: From Invasive Plant to Fiber Reinforcement of Injected Composites
by Patricia Cabrera-García, María Dolores Marrero, Antonio Nizardo Benítez and Rubén Paz
Plants 2023, 12(9), 1777; https://doi.org/10.3390/plants12091777 - 26 Apr 2023
Cited by 4 | Viewed by 2445
Abstract
During the control campaigns of Pennisetum setaceum (invasive species widespread worldwide), the generated waste has accumulated in landfills. This study investigates its use to obtain P. setaceum fibers for their application as reinforcement of polymeric materials for injection molding, thus facilitating and promoting [...] Read more.
During the control campaigns of Pennisetum setaceum (invasive species widespread worldwide), the generated waste has accumulated in landfills. This study investigates its use to obtain P. setaceum fibers for their application as reinforcement of polymeric materials for injection molding, thus facilitating and promoting alternatives for the long-term sustainable management of P. setaceum. The extracted fibers were treated with alkaline, silane, acetic acid, and combined alkaline and silane treatments. Different composites with 20 and 40 wt% of fiber were extruded, and test samples were obtained by injection molding using recycled polyethylene as matrix. The composition of the fibers was determined by gravimetric methods, and contrasted with the analysis of the functional chemical groups using Fourier Transform Infrared Spectroscopy. Increases of up to 47% in the cellulose content of the treated fiber were observed. The thermal degradation was also evaluated using thermogravimetric analysis, which determined an increase in the degradation temperature, from 194 to 230 °C, after the combined alkaline–silane treatment. In order to analyze the differences in the composites, tensile, flexural, and impact properties were evaluated; in addition, differential scanning calorimetry was performed. Regarding the flexural behavior, it was possible to improve the flexural modulus up to 276% compared with that of the unreinforced polymer. Full article
(This article belongs to the Special Issue Alternatives for a Sustainable Management of Invasive Plant Species)
Show Figures

Figure 1

50 pages, 11802 KiB  
Article
Fabrication of Novel Polymer Composites from Leather Waste Fibers and Recycled Poly(Ethylene-Vinyl-Acetate) for Value-Added Products
by Shubham Sharma, P. Sudhakara, Jujhar Singh, Sanjay M. R. and S. Siengchin
Sustainability 2023, 15(5), 4333; https://doi.org/10.3390/su15054333 - 28 Feb 2023
Cited by 24 | Viewed by 5769
Abstract
This investigation was focused on evaluating the utilization of Leather-waste, i.e., “Leather Shavings”, to develop “Poly(ethylene-vinyl-acetate)” (EVA) based “polymer matrix composites”. Composites with the highest ratio of 1:1 were developed using a rolling-mill, which was then subjected to hot-press molding for value-added applications, [...] Read more.
This investigation was focused on evaluating the utilization of Leather-waste, i.e., “Leather Shavings”, to develop “Poly(ethylene-vinyl-acetate)” (EVA) based “polymer matrix composites”. Composites with the highest ratio of 1:1 were developed using a rolling-mill, which was then subjected to hot-press molding for value-added applications, notably in the “floor-covering”, “structural”, “footwear”, and “transportation domain”. The specimens were examined for evaluating the “physico-mechanical characteristics” such as, “Compressive and Tensile, strength, Abrasion-resistance, Density, tear-resistance, hardness, adhesion-strength, compression, and resilience, damping, and water absorption” as per standard advanced testing techniques. Raising the leather-fiber fraction in the composites culminated in considerable enhancement in “physico-mechanical characteristics” including “modulus”, and a decline in “tensile-strain” at “fracture-breakage”. The thermo-analytic methods, viz. TGA and DSC studies have evidenced that substantial enhancement of thermo-stability (up to 211.1–213.81 °C) has been observed in the newly developed PMCs. Additionally, the DSC study showed that solid leather fibers lose water at an endothermic transition temperature of around 100 °C, are thermo-stable at around 211 degrees centigrade, and begin to degrade at 332.56-degree centigrade for neat recycled EVA samples and begin to degrade collagen at 318.47-degree centigrade for “leather shavings/recycled EVA polymer composite samples”, respectively. Additionally, the “glass transition temperature” (Tg) of the manufactured composites was determined to be between −16 and 30 °C. Furthermore, SEM and EDAX analysis have been used to investigate the morphological characteristics of the developed composites. Micrograph outcomes have confirmed the excellent “uniformity, compatibility, stability and better-bonding” of leather-fibers within the base matrix. Additionally, the “Attenuated-total-reflection” (ATR-FTIR) was carried out to test the “physicochemical chemical-bonding”, “molecular-structure”, and “functional-groups” of the “base matrix”, and its “composites” further affirm the “recycled EVA matrix” contained additives remain within the polymeric-matrix. An “X-ray diffraction study” was also conducted to identify the “chemical-constituents” or “phases” involved throughout the “crystal-structures” of the base matrix and PMCs. Additionally, AFM analysis has also been utilized to explore the “interfacial adhesion properties” of mechanically tested specimens of fabricated polymeric composite surfaces, their “surface topography mapping”, and “phase-imaging analysis” of polymer composites that have leather-shavings fibers. Full article
(This article belongs to the Special Issue Advances in Sustainable Valorization of Natural Waste and Biomass)
Show Figures

Figure 1

12 pages, 282 KiB  
Article
The Effect of Indigo (Indigofera tinctoria L.) Waste on Growth Performance, Digestibility, Rumen Fermentation, Hematology and Immune Response in Growing Beef Cattle
by Nirawan Gunun, Chatchai Kaewpila, Waroon Khota, Sineenart Polyorach, Thachawech Kimprasit, Wasana Phlaetita, Anusorn Cherdthong, Metha Wanapat and Pongsatorn Gunun
Animals 2023, 13(1), 84; https://doi.org/10.3390/ani13010084 - 26 Dec 2022
Cited by 17 | Viewed by 4535
Abstract
This experiment was conducted to assess the effect of indigo waste on the feed intake, digestibility, rumen fermentation, hematology, immune response and growth performance in growing beef cattle. Twenty crossbred beef cattle with an initial body weight (BW) of 145 ± 11 kg [...] Read more.
This experiment was conducted to assess the effect of indigo waste on the feed intake, digestibility, rumen fermentation, hematology, immune response and growth performance in growing beef cattle. Twenty crossbred beef cattle with an initial body weight (BW) of 145 ± 11 kg were fed four levels of indigo waste for 90 days in a trial. Additions of indigo waste at 0%, 10%, 20% and 30% in a concentrate diet using a completely randomized design (CRD). Cattle were fed concentrate at 1.8% BW, with rice straw fed ad libitum. The concentrate intake decreased linearly (p = 0.01) with the addition of indigo waste. The supplementation with indigo waste reduced dry matter (DM) and organic matter (OM) digestibility cubically (p = 0.03 and p = 0.02, respectively), while increasing neutral detergent fiber (NDF) digestibility cubically (p = 0.02). The final BW of beef cattle decreased linearly (p = 0.03) with the addition of indigo waste. The inclusion of indigo waste decreased the average daily gain (ADG) and gain-to-feed ratio (G:F) linearly (p < 0.01) from 0 to 90 days. The nutrient digestibility, ADG and G:F of beef cattle fed 10% indigo waste in the diet was similar when compared with the control (0% indigo waste). The ruminal pH, ammonia-nitrogen (NH3-N) and total volatile fatty acid (VFA) concentrations were similar among treatments (p > 0.05). The proportion of acetate increased linearly (p < 0.01) but propionate decreased linearly (p < 0.01), resulting in an increase in the acetate to propionate ratio (p < 0.01) when cattle were fed with indigo waste supplementation. Increasing indigo waste levels did not influence blood urea nitrogen (BUN) levels, hematological parameters or immune responses (IgA, IgM and IgG) (p > 0.05). In conclusion, the inclusion of indigo waste at 10% in a concentrate diet did not have a negative effect on feed intake, nutrient digestibility, rumen fermentation, hematology, immune function or growth performance in growing beef cattle. Full article
(This article belongs to the Special Issue Recent Advances in Animal Nutrition in Tropical Areas)
Show Figures

Graphical abstract

16 pages, 2135 KiB  
Article
Agriculture Waste as Slow Carbon Releasing Source of Mixotrophic Denitrification Process for Treating Low C/N Wastewater
by Xiaohong Hong, Liaofan Tang, Haixia Feng, Xiaolei Zhang and Xianqiong Hu
Separations 2022, 9(10), 323; https://doi.org/10.3390/separations9100323 - 21 Oct 2022
Cited by 6 | Viewed by 2255
Abstract
Mixotrophic denitrification has showed great potential for treating wastewater with a low C/N ratio. Mixotrophic denitrification is the process combining autotrophic denitrification and heterotrophic denitrification in one system. It can compensate the disadvantage of the both denitrifications. Instead of using sodium acetate and [...] Read more.
Mixotrophic denitrification has showed great potential for treating wastewater with a low C/N ratio. Mixotrophic denitrification is the process combining autotrophic denitrification and heterotrophic denitrification in one system. It can compensate the disadvantage of the both denitrifications. Instead of using sodium acetate and glucose as carbon source for the heterotrophic denitrification, agriculture solid wastes including rice straw (RS), wheat straw (WS), and corncob (CC) were employed in this study to investigate their potential as carbon source for treating low C/N wastewater. The carbon releasing pattern of the three carbon rich materials has been studied as well as their capacity in denitrification. The results showed that the highest denitrification occurred in the corncob system which was 0.34 kg N/(m3·d). Corncob was then selected to combine with sulfur beads to build the mixotrophic denitrification system. The reactor packed with sulfur bead on the top and corncob on the bottom achieved 0.34 kg N/(m3·d) denitrification efficiency, which is higher than that of the reactor packed with completely mixed sulfur bead and corncob. The autotrophic denitrification and heterotrophic denitrification were 42.2% and 57.8%, respectively. The microorganisms in the sulfur layer were Thermomonas, Ferritrophicum, Thiobacillus belonging to autotrophic denitrification bacteria. Kouleothrix and Geothrix were mostly found in the corncob layer, which have the function for fiber hydrolysis and denitrification. The study has provided an insight into agriculture solid waste application and enhancement on denitrification of wastewater treatment. Full article
Show Figures

Figure 1

16 pages, 3965 KiB  
Article
Ethylene-Vinyl Acetate (EVA) Containing Waste Hemp-Derived Biochar Fibers: Mechanical, Electrical, Thermal and Tribological Behavior
by Maria Giulia Faga, Donatella Duraccio, Mattia Di Maro, Riccardo Pedraza, Mattia Bartoli, Giovanna Gomez d’Ayala, Daniele Torsello, Gianluca Ghigo and Giulio Malucelli
Polymers 2022, 14(19), 4171; https://doi.org/10.3390/polym14194171 - 4 Oct 2022
Cited by 14 | Viewed by 4794
Abstract
To reduce the use of carbon components sourced from fossil fuels, hemp fibers were pyrolyzed and utilized as filler to prepare EVA-based composites for automotive applications. The mechanical, tribological, electrical (DC and AC) and thermal properties of EVA/fiber biochar (HFB) composites containing different [...] Read more.
To reduce the use of carbon components sourced from fossil fuels, hemp fibers were pyrolyzed and utilized as filler to prepare EVA-based composites for automotive applications. The mechanical, tribological, electrical (DC and AC) and thermal properties of EVA/fiber biochar (HFB) composites containing different amounts of fibers (ranging from 5 to 40 wt.%) have been thoroughly studied. The morphological analysis highlighted an uneven dispersion of the filler within the polymer matrix, with poor interfacial adhesion. The presence of biochar fibers did not affect the thermal behavior of EVA (no significant changes of Tm, Tc and Tg were observed), notwithstanding a slight increase in the crystallinity degree, especially for EVA/HFB 90/10 and 80/20. Conversely, biochar fibers enhanced the thermo-oxidative stability of the composites, which increased with increasing the biochar content. EVA/HFB composites showed higher stiffness and lower ductility than neat EVA. In addition, high concentrations of fiber biochar allowed achieving higher thermal conductivity and microwave electrical conductivity. In particular, EVA/HFB 60/40 showed a thermal conductivity higher than that of neat EVA (respectively, 0.40 vs. 0.33 W·m−1 ·K−1); the same composite exhibited an up to twenty-fold increased microwave conductivity. Finally, the combination of stiffness, enhanced thermal conductivity and intrinsic lubricating features of the filler resulted in excellent wear resistance and friction reduction in comparison with unfilled EVA. Full article
(This article belongs to the Special Issue Polymer/Bio-Carbon Composites: From Manufacturing to Applications)
Show Figures

Graphical abstract

Back to TopTop