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Abstract: Mixotrophic denitrification has showed great potential for treating wastewater with a
low C/N ratio. Mixotrophic denitrification is the process combining autotrophic denitrification
and heterotrophic denitrification in one system. It can compensate the disadvantage of the both
denitrifications. Instead of using sodium acetate and glucose as carbon source for the heterotrophic
denitrification, agriculture solid wastes including rice straw (RS), wheat straw (WS), and corncob
(CC) were employed in this study to investigate their potential as carbon source for treating low
C/N wastewater. The carbon releasing pattern of the three carbon rich materials has been studied as
well as their capacity in denitrification. The results showed that the highest denitrification occurred
in the corncob system which was 0.34 kg N/(m3·d). Corncob was then selected to combine with
sulfur beads to build the mixotrophic denitrification system. The reactor packed with sulfur bead
on the top and corncob on the bottom achieved 0.34 kg N/(m3·d) denitrification efficiency, which
is higher than that of the reactor packed with completely mixed sulfur bead and corncob. The
autotrophic denitrification and heterotrophic denitrification were 42.2% and 57.8%, respectively.
The microorganisms in the sulfur layer were Thermomonas, Ferritrophicum, Thiobacillus belonging to
autotrophic denitrification bacteria. Kouleothrix and Geothrix were mostly found in the corncob layer,
which have the function for fiber hydrolysis and denitrification. The study has provided an insight
into agriculture solid waste application and enhancement on denitrification of wastewater treatment.

Keywords: agriculture solid waste; mixotrophic denitrification; corncob; low C/N wastewater;
waste management

1. Introduction

Due to the great concern on the eutrophication of water bodies, a discharge limit on
nitrogen concentration in the effluent of wastewater treatment becomes more strictly needed
than before in China [1]. Municipal wastewater treatment normally consists of an aerobic
step and anoxic step; sometimes anaerobic steps are also involved when phosphorus
removal is required. In aerobic step, organic matters generally presented as chemical
oxygen demand (COD) are removed and ammonia nitrogen is converted to nitrate through
nitrification. In anoxic, nitrate is turned into nitrogen gas which finally leads to the nitrogen
removal from wastewater. It can be seen that nitrification and denitrification are the key
steps for nitrogen removal from municipal wastewater by biological processes. In fact,
nitrification can be easily accomplished through the aerobic process in current wastewater
treatment. The denitrification is the main obstacle. Denitrification requires a carbon source
as an electron donor; however, the municipal wastewater generally contains low organic
matters (low COD concentration) in China [2,3]. It suggests that COD is consumed during
aerobic step and there is no (or less) extra carbon source left for denitrification.
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Sulfur-based autotrophic denitrification can achieve denitrification without the re-
quirement of a carbon source. However, it demands chemical addition to neutralize the
alkalinity and generates SO4

2− which could cause the inhibition of microorganism activity.
Engaging heterotrophic denitrification with autotrophic denitrification to establish the
mixotrophic denitrification can overcome the shortage of sulfur-based autotrophic denitrifi-
cation. The combination of heterotrophic denitrification with autotrophic denitrification is
considered as mixotrophic denitrification. Mixotrophic denitrification has been reported
for nitrogen removal in drinking water treatment, wetland, and advanced treatment of
wastewater [4–6]. The alkalinity generated by heterotrophic denitrification can neutralize
the proton generated by autotrophic denitrification [4]. The pH could be kept at around
6.5 to 7 which is suitable for denitrification. In addition, the SO4

2− formed in mixotrophic
denitrification is less compared to the solo autotrophic denitrification [7,8].

To achieve heterotrophic denitrification in mixotrophic denitrification to treat low C/N
wastewater, methanol, acetate and glucose are normally used as carbon sources [9–11].
In addition, a new type of carbon source, rhamnolipid, a biosurfactant generated by
bacteria, has also been utilized [12]. These types of carbon sources are soluble and can
easily be assimilated by heterotrophic denitrification bacteria, but it is very difficult to
control the dosage which might cause the COD concentration in the effluent over the
discharging limit. It suggests that slow carbon releasing materials are highly required. Solid
carbon sources, including polyvinyl alcohol (PVA), carrageenan (CG), polylactic acid (PLA),
polycaprolactone (PCL), and some their composites have been used as slow-release carbon
sources in mixotrophic denitrification, and the solid carbon source utilization showed
enhanced denitrification performance [3,13–17]. The carbon can slowly release from the
solid carbon source during degradation by microorganisms, and thus eliminates the risk
of COD concentration exceeding the discharging limit. It reveals that instead of using the
soluble materials or chemicals as a carbon source, solid carbon source would be a better
choice to provide carbon in denitrification. Simultaneous nitrification and denitrification
were found in the solid carbon source denitrification process, which would be one of the
reasons for nitrogen removal enhancement [3]. In addition, solid carbon sources could
provide the adsorption surface for denitrifying bacteria to attach to, which would assist to
enrich the denitrifying bacteria in the system and hence improve denitrification.

Chemical solid carbon sources are costly. To make the process sustainable, carbon-rich
solid wastes are a great replacement. Agriculture wastes, such as crop residues, contain
plenty of organic carbon. Crop residues are generated in large quantities and their annual
yield was up to around 970 × 106 tons in China in 2019 [18]. Combustion for cooking and
heating is the main method for their management which has been slowly banned due to
the air pollution concern. It has been reported that corncob could be used as solid carbon
source, and supporters of biofilm in constructed wetland and treating low-carbon-nitrogen
wastewater, as it could slowly release dissolved organic carbon [19–21]. A positive effect
on nitrogen removal has been observed and the total nitrogen concentration was reduced
to around 3 mg/L which meets the Class 1A of Integrated Wastewater Discharge Standard.
The utilization of crop residual as a carbon source in wastewater treatment could be a
sustainable way of handling solid waste management and treatment.

Crop residues have been attempted to be used for carbon supply in denitrification [20,
22,23]; however, their utilization as carbon sources and biofilm carriers in mixotrophic
denitrification has not been reported. It is still unknown if they would be potential carbon
sources in mixotrophic denitrification for treating low C/N wastewater. Therefore, it is of
great significance to study this aspect.

In this study, agriculture wastes including rice straw (RS), wheat straw (WS), and
corncob (CC) were tested for their capacity as a carbon source in denitrification. A biofilter
has been constructed with sulfur beads and corncob to form a mixotrophic denitrification
system. The denitrification performance of different packing style has been investigated.
The cooperation of the autotrophic denitrification and the heterotrophic denitrification has
been revealed.
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2. Materials and Methodology
2.1. Materials

Elemental sulfur (S0) beads were used as an energy source for autotrophic denitri-
fication in this study which were purchased from Guoxing Huagong Co., Ltd. (Anqing
city Anhui province of China). Rice straw (RS), wheat straw (WS), and corncob (CC) were
obtained from Hengrui Material of Gongyi in China. The sizes of the S0 beads and the solid
carbon source are in the range of 5 mm to 7 mm.

Seed sludge for denitrification was collected from the biological step of a wastewater
treatment plant in Shenzhen of China. Synthetic wastewater was used to investigate the
denitrification in this study. For the solo autotrophic and solo heterotrophic denitrification,
the wastewater contains (per L): 45–55 mg NO3−-N, 13 mg TP, 10 mg Mg2+, and 5 mg Ca2+.
While for the mixotrophic denitrification, the NO3−-N concentration was set at 30–35 mg/L,
but others were kept the same.

2.2. The Carbon Release Column Experiment

The solid carbon sources including rice straw, wheat straw, and corncob were well
washed before utilization. The water collected from washing was analyzed and it is
considered to be acceptable once their COD concentration were less than 5 mg/L. Then the
solid material was used for carbon releasing experiment. The experiment was conducted
in a cylindrical polyvinyl chloride (PVC) column filled with 10 g of the solid carbon source.
The distilled water was run through the reactor with a hydraulic retention time (HRT) of
1 h. Samples (10 mL) were taken at 1 h, 3 h, 6 h, 12 h, 24 h, 36 h, 48 h, 60 h, 72 h, 96 h,
120 h and 168 h. The samples were used to determine the BOD20, COD concentration,
ammonia nitrogen (NH4

+-N), nitrate (NO3
−-N), total nitrogen concentration (TN), and

total phosphorus concentration (TP).

2.3. The Denitrification Experiment

The denitrification experiments were carried out in continuous flow bioreactors (CFR)
made of cylindrical polyvinyl chloride with a diameter of 25.6 mm and a working volume
of 100 L. Sampling ports are located on the side of the reactor.

2.3.1. Heterotrophic Denitrification

For heterotrophic denitrification, the reactor was filled with RS, WS, and CC which
were merged into wastewater sludge (suspended solid concentration of 2500~4000 mg/L)
for 24 h before being placed into the reactors, respectively. The influent with a nitrite
concentration of 40~50 mg/L was pumped by peristaltic pump continuously into the
reactor from the bottom and the effluent was collected from the top of the reactor. The HRT
was set at 4 h in the beginning and then reduced to 2 h once the removal efficiency was
above 80% and kept stable.

2.3.2. Mixotrophic Denitrification

The mixotrophic denitrification system was formed by S0 to achieve autotrophic
denitrification and corncob to achieve heterotrophic denitrification. Two types of packing
were studied. One is that the reactors packed with the well mixed corncob and S0, and
other one is that the reactors packed with corncob on the bottom and S0 on the top. The
corncob and S0 were well mixed and then packed in the reactor in the former case. The
mixing volume ratio of corncob and S0 was fixed at 1:1, 1:2, 2:1, and 3:2 for different reactor.
The total packing volume was 500 mL. In the later cases, the volume ratio (corncob: S0) of
the packing is the same as the mixed system, which includes 1:1, 1:2, 2:1, and 3:2, and the
total packing volume was 500 mL.

The solid materials were treated similar way as described in heterotrophic denitrifica-
tion before being packed in the columns. The NO3

−-N feeding was in the range of 40 to
50 mg/L. The initial HRT was 4 h to develop the biofilm in the reactor and then the HRT
was adjusted to 2 h when the denitrification rate of the reactor reached over 80%.
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2.4. The Analytic Methods

The concentrations of COD, TN, NH3-N, NO3−, NO2− and TP were determined
according to the standard methods reported by APHA [24]. Sulfate concentration was
analyzed with ion chromatography. The pH and alkalinity were determined with pH meter
and titration, respectively. The surface morphology of the biofilm on the thermoplastic syn-
thetic filler and after biofilm stripping were characterized by scanning electron microscopy
(SEM). The microorganisms presenting in the denitrification system were identified by
Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE).

3. Results and Discussion
3.1. The Carbon and Nutrient Release from Solid Carbon Source

To investigate the potential of the three crop residues: RS, WS, and CC, as carbon
source for heterotrophic denitrification, the BOD5, BOD20 and COD concentration were
determined for the samples collected from 1 h, 3 h, and 6 h. It was found that the COD
concentration was almost same as the BOD20 concentration for the same sample. For
instance, the COD concentration was 70.3 ± 1.7 mg/L and the BOD20 concentration was
67.5 ± 3.3 mg/L for the sample collected at 3 h from the rector packed with WS, and
others are similar trend. It suggests that the released carbon from the agriculture wastes is
mainly organic and degradable carbon. It is known that agriculture wastes mainly contain
organic materials. As it is known that COD analysis can be done in few hours, but BOD20
analysis takes 20 days, and the study has revealed that COD could be used to express the
biodegradability of the agriculture wastes. Hence, the COD concentration was employed
to represent the organic carbon concentration in this study.

The COD variation was recorded during column experiment. The results showed that
the carbon release mainly occurred at the first 12 h, and thereafter almost no further release
was detected (Figure 1a). The maximum released COD concentrations were 375, 430, and
307 mg/g solid for wheat straw, rice straw and corncob. The nitrogen and phosphorus
have also been found before the 6th h of the column experiment. Rice straw provided
the highest nitrogen release which was up to 34.9 mg/g solid. Apart from wheat straw
that phosphorus release still was observed, the concentrations of nitrogen and phosphorus
were almost 0 g/L for other cases (Figure 1b,c). Different carbon and nutrient releasing
patterns have been observed. This is mainly because of the composition difference of the
three materials [25–27]. For instance, all these three materials contain hemicellulose, but it
is mainly hyaluronic acid, arabinose, and xylose in wheat straw; and it is glucuronic acid
and xylose in wheat straw in corncob. In addition, they have different contents of protein,
phosphorus, and minerals.
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Figure 1. The carbon and nutrient release pattern of wheat straw, rice straw and corncob ((a): the 
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Figure 1. The carbon and nutrient release pattern of wheat straw, rice straw and corncob ((a): the
COD concentration variation; (b): the total nitrogen concentration variation; (c): the total phosphorus
concentration variation).

It can be seen that the phosphorus concentration was higher than 0.5 mg/L at the first
6 h, which exceeds the limit of Class 1 A of Integrated Wastewater Discharge Standard.
It suggests that phosphorus removal should be considered before discharging such as
coagulation and sedimentation. During the column experiment, distilled water was used.
It suggests that simple dissolution would not lead to the carbon or nutrient release from
WS, RS, and CC.

3.2. The Denitrification Performance of the Solid Carbon Source

From the above experiment results, it is hard to determine if wheat straw, rice straw
and corncob are suitable as carbon source for heterotrophic denitrification. The three
solid carbon sources were used to construct a heterotrophic denitrification system. The
denitrification performance of the bioreactor packed with wheat straw was shown in
Figure 2a. At the first 15 h, the operation of HRT was 4 h. The highest NO2-N concentration
in the effluent was 15.46 mg/L, which occurred in the beginning of the experiment, but
disappeared after 6 h, which suggests the success of the denitrification. The maximum
nitrogen removal efficiency was 80% which occurred on the 12th day. From the 15th
day, the nitrogen removal efficiency was gradually reduced to 34% at 49 h. This would
be because the degradation of wheat straw has become difficult, and thus the carbon
source is limited for heterotrophic denitrification. A slight increase was observed thereafter.
It is predicted that due to the difficultly, the degraded fiber was finally consumed after
long-term operation.
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Figure 2. The heterotrophic denitrification with the three crop residues (HRT presents the hydraulic
retention time; (a): nitrate concentration variation; (b): nitrate and nitrite concentration variation;
(c): nitrate removal efficiency).
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The NO3
−-N concentration in the effluent of the heterotrophic denitrification reactor

filled rice straw fluctuated greatly during the whole experiment period (Figure 3a). The
maximum nitrate removal efficiency was around 60% which occurred at 12 h and then kept
increasing for some time. The removal efficiency of NO3

−-N remained above 45% until
the 37th day. Thereafter, the rapid increase of NO3

−-N concentration in the effluent has
been observed, the removal efficiency of NO3

−-N declined to less than 10% after the 51th
day, and the denitrification efficiency was lower than 0.06 kg N/(m3·d) after continuous
operation for 60 d.
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Figure 3. The variation in NO3
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−-N (b) and SO4
2− (c) concentration and pH (d) in

the effluent of S0 and corncob mixing system (S0 presents the element sulfur; NO3
−-N presents the

nitrate nitrogen; NO2
−-N presents the nitrite nitrogen; HRT presents the hydraulic retention time;

‘effluent of 1:1 packing’, ‘effluent of 2:1 packing’, ‘effluent of 1:2 packing’ and ‘effluent of 3:2 packing’
present the effluent collected from the reactor packed with corncob and S0 with a ratio of 1:1, 2:1, 1:2
and 3:2, respectively).

The Initial fluctuation of the NO3
−-N concentration would be because the system is

not stable and microbes are difficult to adapt. Thereafter, it became stable. However, after
37 d, the denitrification became worse. It suggests that carbon releasing supported the
denitrification; however, it became insufficient thereafter. After 51 d, it can be observed
that the denitrification has stopped, this would be due to the lack of a carbon source for
heterotrophic denitrification in the system.

In the corncob denitrification reactor, NO2
−-N accumulation was detected at the first

4 h of operation, and then turned to 0 mg/L (Figure 2b). Moreover, the NO3
−-N removal

efficiency reached 98% in the 8th day (Figure 2c). It is considered that the start-up is
successful. The nitrate-nitrogen removal efficiency remained stable and kept above 95%.
To further identify the denitrification capacity, the HRT was reduced from 4 h to 2 h at the
15th day. It can be seen that the concentration of NO3

−-N in the effluent increased rapidly,
and then was maintained at 28 mg/L. The removal efficiency of NO3

−-N was kept around
36% thereafter. The denitrification efficiency reached a maximum of 0.34 kg N/(m3·d).
After adjusting the residence time, the reactor was continuously run for another 45 d, and
the corncob maintains a relatively stable denitrification ability.

By comparing the denitrification behavior of the three crop residues, it can be observed
that corncob is more suitable as a slow releasing solid carbon source as it achieved a
higher nitrate removal capacity. Hence, corncob was selected as the carbon source in the
mixotrophic denitrification.

3.3. The Mixotrophic Denitrification

Compared with other types of sulfur, element sulfur (S0) is more suitable to be com-
bined with a solid carbon source to build the mixotrophic denitrification system as they are
all in solid phase and are easy to be packed in the column.

3.3.1. The Mixed Corncob and S0 for Mixotrophic Denitrification

In the beginning of the experiment, the HRT was set at 4 h. The HRT was reduced to
2 h after the system became stable (Figure 3a). The concentration variation of NO3

−-N and
NO2

−-N are shown in Figure 3a,b.
In the four reactors, a similar trend of NO3

−-N concentration in the effluent has been
observed. It rapidly reduced from 4.12~5.98 mg/L to 1.93~2.54 mg/L along with the
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operation going on and almost kept constant after the 9th h (Figure 3a). From 9 h to 30 h,
the nitrate removal was stable for all the cases as the nitrate concentration in the effluent
was almost stable. Compared to the reactor packed with the mixture of corncob and S0 in
the ratio of 1:2, other three achieved nearly 100% nitrate removal. This would be due to the
carbon source being sufficient in these three packings compared to 1:2 ratio case. After the
HRT was adjusted to 2 h from 4 h, an increase on NO3

−-N concentration was occurred in
each reactor. For the reactors packed with the mixture of corncob and S0 in the ratio of 1:2
and 1:1, NO3

−-N concentration remained at around 20 mg/L and 8 mg/L, respectively,
until the end of the operation. However, for the case with the ratio of 2:1 and 3:2, the
NO3

−-N concentration soon reduced to almost 0 mg/L. It suggests that the denitrification
is completed in the reactors with 2:1 and 3:2 packing ratio; however, it is not the same for
the reactors with 1:1 and 1:2 packing ratio. It would be due to the released carbon amount
not being sufficient to support the heterotrophic denitrification in the reactors with 1:1 and
1:2 packing ratio, as the corncob amount in these two reactors was less than in the reactors
with 2:1 and 3:2 packing ratio.

The COD concentration was also tracked and it was found that no COD presented
in the effluent for the case of 1:1 and 1:2 packing ratio, and around 5–8 mg/L COD was
detected in the effluent for the case of 2:1 and 3:2 packing ratio. It also suggests the carbon
sufficiency of different reactors. Moreover, from the concentration variation of SO4

2−,
which is the end product of S0 autotrophic denitrification, it can also be observed that the
autotrophic denitrification ability in the reactors with 1:1 and 1:2 packing ratio was low, as
the SO4

2− concentration was less in the reactors with 1:1 and 1:2 packing ratio that in the
reactors with 2:1 and 3:2 packing ratio (Figure 3c).

For the four reactors, the accumulation of NO2
−-N was high in the beginning of the

experiment and the beginning of the HRT shifting from 4 h to 2 h. At other periods, there
is little NO2

−-N accumulation (Figure 3b). In addition, it was observed that the pH was
kept between 6.8 and 7.4 (Figure 3d), which is considered suitable for denitrification. The
NO2

−-N accumulation indicates that the conversion of NO3
−-N to NO2

−-N and NO2
−-N

to N2 was balanced and there is no much residue of NO2
−-N in the reactors. Overall,

during long-term operation, the denitrification of the four reactors was stable but obviously
the reactors with 2:1 and 3:2 packing ratio have better denitrification performance than
the reactors with 1:1 and 1:2 packing ratio. It demonstrates that the suitable corncob to S0

volume ratio plays an important role in mixotrophic denitrification.
According to the reaction formula (Equation (1)) of elemental sulfur denitrification,

7.83 mg/L of SO4
2− would be generated for removal 1 mg/L of NO3

−-N, and simultane-
ously consume 3.36 mg/L alkalinity (in terms of CaCO3).

1.1S0 + NO3
− + 0.4CO2 + 0.76H2O + 0.08NH4

+ → 0.08C2H7O2N + 0.5N2 + 1.1SO4
2− + 1.28H+ (1)

It suggests that the generation of SO4
2− can directly reflect the proportion of au-

totrophic denitrification in the mixotrophic denitrification system, while the remaining part
is the heterotrophic denitrification part.

The NO3
−-N removal efficiency in the reactors packed with the mixture of corncob and

S0 in the ratio of 2:1 and 3:2 could maintain above 95% at 2 h HRT. The NO3
−-N removal

efficiency in the reactors with 1:1 and 1:2 packing ratio were 81% and 33%, respectively. The
NO3

−-N removal is from both the autotrophic and heterotrophic denitrification. As dis-
cussed, SO4

2− can be used to determine the autotrophic denitrification in the mixotrophic
denitrification system. Therefore, to identify the contribution ratio of these two denitrifi-
cations, the overall change of SO4

2− concentration during the operation has been tracked
(Figure 3c).

The SO4
2− generated in all four reactors gradually increased from 0 h to 6 h, and

thereafter it became stable, except for the beginning in the HRT which changed from 4 h
to 2 h. The SO4

2− concentration in the four reactors in the stable period was 12.20 (1:2
packing ratio), 65.40 (1:1 packing ratio), 118.77 (3:2 packing ratio) and 85.36 (2:1 packing
ratio) mg/L, respectively. It thus can be calculated that the proportions of heterotrophic
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denitrification in the four reactors were 60.9% (2:1 packing ratio), 51.3% (3:2 packing ratio),
71.5% (1:1 packing ratio) and 93.7% (1:2 packing ratio), respectively, and the rest is due
to autotrophic denitrification. It can be seen that with the decrease of the proportion of
solid carbon sources, the proportion of autotrophic denitrification decreases. Heterotrophic
denitrification can provide alkalinity for autotrophic denitrification. However, a low carbon
source would not provide enough alkalinity for autotrophic denitrification and thus lower
the autotrophic denitrification process.

3.3.2. The Separated Corncob and S0 for Mixotrophic Denitrification

Corncob and S0 may not be completely consumed at the same time and there would be
residue, which is the inert fraction of the corncob (hard to be degraded by microorganisms),
at the end. Therefore, separated packing of corncob on the bottom and S0 on the top has
been adopted. The HRT was first set at 4 h and then reduced to 2 h after the system became
stable (Figure 4a).
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−-N (a), NO2

−-N (b) and SO4
2− (c) in the effluent of S0

and corncob separated packing system (S0 presents the element sulfur; NO3
−-N presents the nitrate

nitrogen; NO2
−-N presents the nitrite nitrogen; HRT presents the hydraulic retention time; ‘effluent

of 1:1 packing’, ‘effluent of 2:1 packing’, ‘effluent of 1:2 packing’ and ‘effluent of 3:2 packing’ present
the effluent collected from the reactor packed with corncob and S0 with a ratio of 1:1, 2:1, 1:2 and
3:2, respectively).

The concentration variation in NO3
−-N and NO2

−-N are shown in Figure 4a,b. The
NO3

−-N concentration in the effluent rapidly decreased after the experiments were started,
and it remained under 5 mg/L at 4 h HRT except for the case with 1:2 packing ratio. Once
the HRT was shortened to 2 h, the NO3

−-N concentration in the effluent increased in the
beginning of the experiments and then declined to below 5 mg/L for the cases with 3:2
and 2:1 packing ratio. For the case with 1:2 and 1:1 packing ratio, the NO3

−-N removal
remained low, but the latter was better than the former (Figure 4a). The accumulation of
NO2

−-N was very little except in the beginning of experiments of the 4 h HRT and 2 h HRT
for all the cases (Figure 4b). It indicates that the denitrification was completed and NO3

−-N
was transferred to N2. However, the cooperation between autotrophic denitrification and
heterotrophic denitrification was better in the cases with 2:1 and 3:2 packing ratio than
that with 1:2 and 1:1 packing ratio. According to the concentration variation of SO4

2− in
the four cases, it can be seen that the autotrophic denitrification was higher in the cases
with 2:1 and 3:2 packing ratio than that with 1:2 and 1:1 packing ratio (Figure 4c). Based on
the calculation, the contribution of heterotrophic denitrification was 55.7% for 2:1 packing
ratio, 57.9% for 3:2 packing ratio, 78.0% for 1:1 packing ratio, and 90.2% for 1:2 packing
ratio. With a low carbon source ratio, the alkalinity generated would be low and thus it
cannot provide enough alkalinity for autotrophic denitrification, which thus causes the low
autotrophic denitrification and consequently low NO3

−-N removal.
From the above study, it can be seen that the packing pattern, thoroughly mixing the

S0 and corncob or separated packed S0 and corncob, did not impact on the denitrification
much. However, the packing ratio of S0 and corncob has very obviously influenced the
nitrate removal. It can be seen that corncob to S0 packing ratios of 2:1 and 3:2 provided
more than 95% nitrate removal and kept the total nitrogen in the effluent lower than
10 mg/L. It is comparable with the denitrification which performed with polycaprolactone,
methanol, and sodium carboxymethyl cellulose as a carbon source in the mixotrophic
denitrification [9,15,28]. It was found that corncob as a carbon source showed great potential
for nitrate removal, as it kept it removal efficiency for 60 d, which is similar as the results
reported by using commercially carbon source including polycaprolactone and methanol.
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3.4. The Microorganism in the Denitrification

The presence of denitrification microorganisms in the system are the main reason
for NO3

−-N removal. The biofilm on the S0 and corncob has been observed with SEM
(Figure S1). The surface of the original corncobs is rough, in a fish scale-like structure,
and with few pores (Figure S1a). After the experiment went on for 45 d, the porosity of
the corncob increased significantly, which would be due to the utilization of corncob by
microorganisms. The specific surface area of the used corncob was larger compared to
the original one, which helps the attachment of the biofilm. Due to the rough surface of
the corncob and the large porosity, the biofilm was not connected to a large area on its
surface, and the biofilm structure of the different layers is mainly connected together by
filamentous bacteria (Figure S1b,c).

The surface morphology of the original sulfur particles was smooth with obvious
hemispherical concave and convex spots (Figure S1e). After denitrification was carried
out for 45 d, the hemispherical concave and convex spots on the surface of sulfur particles
disappeared, and a large number of voids and cavity structures appeared (Figure S1e).
After zooming to 2000 times, it can be seen that the S0 surface has formed a more obvious
biofilm structure, and the biofilm structure is mainly based on filamentous bacteria as the
skeleton. In addition, a large number of microorganisms were connected to each other
through extracellular polymers (Figure S1e). After zooming to 5000 times, rod-shaped
microorganisms are observed as they have been found in the corncob surface (Figure S1c,f).
This is the typical shape as reported in other denitrification systems [8].

Figure 5a shows the relative distribution of species of sludge samples from corncobs
and S0 particles at the phylum level. The dominant phylum for both samples is Pro-
teobacteria (Proteobacteria). Compared with activated sludge, the dominant population
of S0 surface sludge does not vary much, and the proportion of proteus phylum reached
78%; however, the microbial community structure of sludge on the surface of corncobs is
similar to that of activated sludge, and the dominant population is diverse. Apart from
Proteobacteria, Chloroflexi was also a relatively abundant flora in the sludge on the surface
of corncobs. As suggested, Chloroflexi has the ability to reduce nitrate to nitrite [8] and can
achieve heterotrophic denitrification in the presence of a carbon source [29].
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class level, (c) at genus level (Scorn presents sludge obtained from corncob surface, Ss presents sludge
obtained from sulfur surface, S0 presents activated sludge).

To further analyze the species abundance at the class level, it was found that the
Proteobacteria family is still the dominant microbiota (Figure 5b). The γ-Proteobacteria
accounts for the largest proportion, and about 21% was in the corncob microbial samples,
and another 77% was in the surface of sulfur. In addition, the abundance of other dominant
flora on the surface of the corncob is similar, namely Holophagae (whole phage), Alphapro-
teobacteria (α-Proteus), Bacteroidia (Bacteroides), Blastocatellia, Anaerolineae (Anaeroxic
Jolia), Chloroflexia (Phylum Aerobicia), and Bacilli (Bacillus).

Species abundance at the genus level is analyzed and results are provided in Figure 5c.
Thermomonas on the surface of sulfur is the dominant genus. Studies have revealed that
Thermomonas is a typical autotrophic denitrifying bacterium, and that its genus have the
functions of hydrogen autotrophic denitrification, iron autotrophic denitrification, and
sulfur autotrophic denitrification [30,31]. There are also small amounts of the obligate
iron autotrophic denitrifying bacterium Ferritrophicum and the obligate sulfur autotrophic
bacterium Thiobacillus in the sludge samples on the surface of the sulfur particles [32].

On the surface of the corncob, the abundance of each functional flora is relatively
average. Xanthomonadales belongs to the nutrient-poor microorganisms. It has strong
self-coagulation capacity, is easy to grow on the solid surface of the film, and is usually
in the form of biofilms [33], the presence of such microorganisms, can make the biofilm
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structure stable. It has been noted in the literature that Kouleothrix can use lignocellulosic
materials for denitrification [34]. It also has been observed in a larger portion in the biofilm
than in activated sludge in this study (Figure 5c).

The microbial community analysis reveals that the denitrification in the system was
accomplished by autotrophic denitrification and heterotrophic denitrification. Denitrifying
functional bacteria are domain in the surface of sulfur and corncob. This is why good
denitrification performance has been obtained.

4. Conclusions

Mixotrophic denitrification has achieved by employing S0 and corncob. The packing
ratio of S0 and corncob has a great impact on the final denitrification efficiency in both
the well mixed packing mode and separated packing mode. This is because of the corn-
cob being the carbon source of the heterotrophic denitrification, and it would not have
enough alkalinity generated when the quantity of corncob is lower. The best denitrification
performance was obtained at corncob to S0 packing ratio of 2:1 and 3:2 regardless the
packing pattern (well mixing or separated packing). With a higher corncob presence in
the packing material, the NO3

−-N concentration in the effluent was lower than 5 mg/L
and the total nitrogen concentration was lower than 10 mg/L. It suggests that agriculture
waste corncob has great potential to be used as a carbon source to complete denitrification
in wastewater treatment. Phosphorus and suspended solids are also released during the
utilization of agriculture wastes, hence, coagulation and sedimentation might be required
in the following treatment before the effluent is discharged to receiving water bodies.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/separations9100323/s1, Figure S1: The surface SEM image of corn-
cob and S0.
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