The Effect of Indigo (Indigofera tinctoria L.) Waste on Growth Performance, Digestibility, Rumen Fermentation, Hematology and Immune Response in Growing Beef Cattle
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Procedure
2.2. Animals, Treatments and Experimental Design
2.3. Feed Costs Analysis
2.4. Data Collection and Sampling Procedures
2.5. Statistical Analysis
3. Results
3.1. Feed Cost Analysis and Chemical Composition of Diets
3.2. Feed Intake and Digestibility
3.3. Performance
3.4. Rumen Fermentation
3.5. Blood Urea Nitrogen and Hematological Parameters
3.6. Immune Response
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gunun, P.; Wanapat, M.; Anantasook, N. Effects of physical form and urea treatment of rice straw on rumen fermentation, microbial protein synthesis and nutrient digestibility in dairy steers. Asian Australas. J. Anim. Sci. 2013, 26, 1689–1697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wanapat, M.; Foiklang, S.; Sukjai, S.; Tamkhonburi, P.; Gunun, N.; Gunun, P.; Phesatcha, K.; Norrapoke, T.; Kang, S. Feeding tropical dairy cattle with local protein and energy sources for sustainable production. J. Appl. Anim. Res. 2018, 46, 232–236. [Google Scholar] [CrossRef]
- Makkar, H.P.; Beever, D. Optimization of feed use efficiency in ruminant production systems. In Proceedings of the FAO Symposium, Bangkok, Thailand, 27 November 2012; FAO Animal Production and Health Division: Rome, Italy, 2013. [Google Scholar]
- Gunun, N.; Khejornsart, P.; Polyorach, S.; Kaewpila, C.; Kimprasit, T.; Sanjun, I.; Cherdthong, A.; Wanapat, M.; Gunun, P. Utilization of mao (Antidesma thwaitesianum Muell. Arg.) pomace meal to substitute rice bran on feed utilization and rumen fermentation in tropical beef cattle. Vet. Sci. 2022, 9, 585. [Google Scholar] [CrossRef] [PubMed]
- Miranda, M.S.; Arcaro, J.R.P.; Saran Netto, A.; Silva, S.L.; Pinheiro, M.G.; Leme, P.R. Effects of partial replacement of soybean meal with other protein sources in diets of lactating cows. Animal 2019, 13, 1403–1411. [Google Scholar] [CrossRef] [PubMed]
- Halmemies-Beauchet-Filleau, A.; Rinne, M.; Lamminen, M.; Mapato, C.; Ampapon, T.; Wanapat, M.; Vanhatalo, A. Review: Alternative and novel feeds for ruminants: Nutritive value, product quality and environmental aspects. Animal 2018, 12, s295–s309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palangi, V.; Kaya, A.; Kaya, A.; Giannenas, I. Ecofriendly usability of mushroom cultivation substrate as a ruminant feed: Anaerobic digestion using gas production techniques. Animals 2022, 12, 1583. [Google Scholar] [CrossRef]
- Gunun, N.; Ouppamong, T.; Khejornsart, P.; Cherdthong, A.; Wanapat, M.; Polyorach, S.; Kaewpila, C.; Kang, S.; Gunun, P. Effects of rubber seed kernel fermented with yeast on feed utilization, rumen fermentation and microbial protein synthesis in dairy heifers. Fermentation 2022, 8, 288. [Google Scholar] [CrossRef]
- Rodrigues, T.C.G.C.; Santos, S.A.; Cirne, L.G.A.; Pina, D.S.; Alba, H.D.R.; de Araújo, M.L.G.M.L.; Silva, W.P.; Nascimento, C.O.; Rodrigues, C.S.; Tosto, M.S.L.; et al. Palm kernel cake in high-concentrate diets for feedlot goat kids: Nutrient intake, digestibility, feeding behavior, nitrogen balance, blood metabolites, and performance. Trop. Anim. Health Prod. 2021, 53, 454. [Google Scholar] [CrossRef]
- Janicek, B.N.; Kononoff, P.J.; Gehman, A.M.; Doane, P.H. The effect of feeding dried distillers grains plus solubles on milk production and excretion of urinary purine derivatives. J. Dairy Sci. 2008, 91, 3544–3553. [Google Scholar] [CrossRef] [Green Version]
- Yang, K.; Qing, Y.; Yu, Q.; Tang, X.; Chen, G.; Fang, R.; Liu, H. By-product feeds: Current understanding and future perspectives. Agriculture 2021, 11, 207. [Google Scholar] [CrossRef]
- Besharati, M.; Palangi, V.; Moaddab, M.; Nemati, Z.; Pliego, A.B.; Salem, A.Z. Influence of cinnamon essential oil and monensin on ruminal biogas kinetics of waste pomegranate seeds as a biofriendly agriculture environment. Waste Biomass Valorization 2020, 12, 2333–2342. [Google Scholar] [CrossRef]
- Senasri, N.; Sriyasak, P.; Suwanpakdee, S.; Chumnanka, N.; Tongkasee, P.; Sriputhorn, K. Toxicity of indigo dye-contaminated water on silver barbs (Barbonymus gonionotus) and pathology in the gills. EnvironmentAsia 2022, 15, 106–115. [Google Scholar]
- Tayade, P.B.; Adivarekar, R.V. Extraction of indigo dye from Couroupita guianensis and its application on cotton fabric. Fash. Text. 2014, 1, 16. [Google Scholar] [CrossRef] [Green Version]
- Alagbe, J.O. Chemical evaluation of proximate, vitamin and amino acid profile of leaf, stem bark and root of Indigofera Tinctoria. Int. J. Integr. Educ. 2020, 3, 150–157. [Google Scholar] [CrossRef]
- Bhatta, R.; Saravanan, M.; Baruah, L.; Sampath, K.T.; Prasad, C.S. Effect of plant secondary compounds on in vitro methane, ammonia production and ruminal protozoa population. J. Appl. Microbiol. 2013, 115, 455–465. [Google Scholar] [CrossRef]
- Muda, I.; Prastowo, J.; Nurcahyo, W.; Sarmin, S. Anthelmintic effect of Indigofera tinctoria L on Haemonchus contortus obtained from sheep in Indonesia. Vet. World 2021, 14, 1272–1278. [Google Scholar] [CrossRef]
- Pattanaik, L.; Naik, S.N.; Hariprasad, P. Valorization of waste Indigofera inctoria L. biomass generated from indigo dye extraction process-potential towards biofuels and compost. Biomass Convers. Biorefin. 2019, 9, 445–457. [Google Scholar] [CrossRef]
- Van Zanten, H.H.; Van Ittersum, M.K.; De Boer, I.J. The role of farm animals in a circular food system. Glob. Food Secur. 2019, 21, 18–22. [Google Scholar] [CrossRef]
- Boothapandi, M.; Ramanibai, R. Immunomodulatory activity of Indigofera tinctoria leaf extract on in vitro macrophage responses and lymphocyte proliferation. Int. J. Pharm. Pharm. Sci. 2016, 8, 58–63. [Google Scholar]
- Madakkannu, B.; Ravichandran, R. In vivo immunoprotective role of Indigofera tinctoria and Scoparia dulcis aqueous extracts against chronic noise stress induced immune abnormalities in Wistar albino rats. Toxicol. Rep. 2017, 4, 484–493. [Google Scholar] [CrossRef]
- Sharma, V.; Agarwal, A. Physicochemical and antioxidant assays of methanol and hydromethanol extract of ariel parts of Indigofera tinctoria Linn. Indian J. Pharm. Sci. 2015, 77, 729–734. [Google Scholar] [CrossRef]
- Vijayan, R.; Joseph, S.; Mathew, B. Indigofera tinctoria leaf extract mediated green synthesis of silver and gold nanoparticles and assessment of their anticancer, antimicrobial, antioxidant and catalytic properties. Artif. Cells Nanomed. Biotechnol. 2018, 46, 861–871. [Google Scholar] [CrossRef]
- Serrapica, F.; Masucci, F.; De Rosa, G.; Calabrò, S.; Lambiase, C.; Di Francia, A. Chickpea can be a valuable local produced protein feed for organically reared, native bulls. Animals 2021, 11, 2353. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Official Method of Analysis, 20th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 2016. [Google Scholar]
- Udén, P.; Robinson, P.H.; Wiseman, J. Use of detergent system terminology and criteria for submission of manuscripts on new, or revised, analytical methods as well as descriptive information on feed analysis and/or variability. Anim. Feed Sci. Technol. 2005, 118, 181–186. [Google Scholar] [CrossRef]
- Burns, R.E. Method for estimation of tannin in the grain sorghum. Agron. J. 1971, 163, 511–512. [Google Scholar] [CrossRef]
- Kwon, J.H.; Belanger, J.; Pare, M.R.; Yaylayan, V.A. Application of the microwave-assisted process (MAPTM) to the fast excretion of ginseng saponins. Food Res. Int. 2003, 36, 491–498. [Google Scholar] [CrossRef]
- Poungchompu, O.; Wanapat, M.; Wachirapakorn, C.; Wanapat, S.; Cherdthong, A. Manipulation of ruminal fermentation and methane production by dietary saponins and tannins from mangosteen peel and soapberry fruit. Arch. Anim. Nutr. 2009, 63, 389–400. [Google Scholar] [CrossRef]
- Van Keulen, J.; Young, B.A. Evaluation of acid insoluble ash as a neutral marker in ruminant digestibility studies. J. Anim. Sci. 1977, 44, 282–287. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1995. [Google Scholar]
- Cai, Y. Analysis method for silage. In Field and Laboratory Methods for Grassland Science; Japanese Society of Grassland Science, Ed.; Tosho Printing Co., Ltd.: Tokyo, Japan, 2004; pp. 279–282. [Google Scholar]
- Crocker, C.L. Rapid determination of urea nitrogen in serum or plasma without deproteinization. Am. J. Med. Technol. 1967, 33, 361–365. [Google Scholar]
- Statistical Analysis Systems (SAS). SAS/STAT User’s Guide. In Statistical Analysis Systems Institute, 5th ed.; SAS Institute Inc.: Cary, NC, USA, 1996. [Google Scholar]
- Harper, K.J.; McNeill, D.M. The role iNDF in the regulation of feed intake and the importance of its assessment in subtropical ruminant systems (the role of iNDF in the regulation of forage intake). Agriculture 2015, 5, 778–790. [Google Scholar] [CrossRef] [Green Version]
- Miron, J.; Adin, G.; Solomon, R.; Nikbachat, M.; Zenou, A.; Yosef, E.; Brosh, A.; Shabtay, A.; Asher, A.; Gacitua, H.; et al. Effects of feeding cows in early lactation with soy hulls as partial forage replacement on heat production, retained energy and performance. Anim. Feed Sci. Technol. 2010, 155, 9–17. [Google Scholar] [CrossRef]
- Kongphitee, K.; Sommart, K.; Phonbumrung, T.; Gunha, T.; Suzuki, T. Feed intake, digestibility and energy partitioning in beef cattle fed diets with cassava pulp instead of rice straw. Asian Australas. J. Anim. Sci. 2018, 31, 1431–1441. [Google Scholar] [CrossRef] [PubMed]
- Lyu, J.; Yang, Z.; Wang, E.; Liu, G.; Wang, Y.; Wang, W.; Li, S. Possibility of using by-products with high NDF content to alter the fecal short chain fatty acid profiles, bacterial community, and digestibility of lactating dairy cows. Microorganisms 2022, 10, 1731. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, M.K.; MacNeil, M.D.; Dekkers, J.C.M.; Crews, D.H., Jr.; Rathje, T.A.; Enns, R.M.; Weaber, R.L. Review: Life-cycle, total industry genetic improvement of feed efficiency in beef cattle: Blueprint for the Beef Improvement Federation. Prof. Anim. Sci. 2013, 29, 559–565. [Google Scholar] [CrossRef] [Green Version]
- Kanjanapruthipong, J.; Buatong, N.; Buaphan, S. Effects of roughage neutral detergent fiber on dairy performance tropical conditions. Asian Australas. J. Anim. Sci. 2001, 14, 1400–1404. [Google Scholar] [CrossRef]
- Li, M.; Penner, G.B.; Hernandez-Sanabria, E.; Oba, M.; Guan, L.L. Effects of sampling location and time, and host animal on assessment of bacterial diversity and fermentation parameters in the bovine rumen. J. Appl. Microbiol. 2009, 107, 1929–1934. [Google Scholar] [CrossRef]
- Gunun, N.; Sanjun, I.; Kaewpila, C.; Foiklang, S.; Cherdthong, A.; Wanapat, M.; Polyorach, S.; Khota, W.; Kimprasit, T.; Kesorn, P.; et al. Effect of dietary supplementation of hydrolyzed yeast on growth performance, digestibility, rumen fermentation, and hematology in growing beef cattle. Animals 2022, 12, 2473. [Google Scholar] [CrossRef]
- Cherdthong, A.; Khonkhaeng, B.; Seankamsorn, A.; Supapong, C.; Wanapat, M.; Gunun, N.; Gunun, P.; Chanjula, P.; Polyorach, S. Effects of feeding fresh cassava root with high-sulfur feed block on feed utilization, rumen fermentation, and blood metabolites in Thai native cattle. Trop. Anim. Health Prod. 2018, 50, 1365–1371. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, G.; Li, Y.; Zhang, Y. Effects of high forage/concentrate diet on volatile fatty acid production and the microorganisms involved in VFA production in cow rumen. Animals 2020, 10, 223. [Google Scholar] [CrossRef] [Green Version]
- Bica, R.; Palarea-Albaladejo, J.; Lima, J.; Uhrin, D.; Miller, G.A.; Bowen, J.M.; Pacheco, D.; Macrae, A.; Dewhurst, R.J. Methane emissions and rumen metabolite concentrations in cattle fed two different silages. Sci. Rep. 2022, 12, 5441. [Google Scholar] [CrossRef]
- Wanapat, M.; Gunun, P.; Anantasook, N.; Kang, S. Changes of rumen pH, fermentation and microbial population as influenced by different ratios of roughage (rice straw) to concentrate in dairy steers. J. Agric. Sci. 2014, 152, 675–685. [Google Scholar] [CrossRef]
- Cherdthong, A.; Wanapat, M.; Saenkamsorn, A.; Supapong, C.; Anantasook, N.; Gunun, P. Improving rumen ecology and microbial population by dried rumen digesta in beef cattle. Trop. Anim. Health Prod. 2015, 47, 921–926. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Harstad, O.M.; Mcallister, T.; Drsch, P.; Holo, H. Propionic acid bacteria enhance ruminal feed degradation and reduce methane production in vitro. Acta Agric. Scand. Sect. A—Anim. Sci. 2020, 69, 169–175. [Google Scholar] [CrossRef]
- Han, C.; Guo, Y.; Cai, X.; Yang, R. Starch properties, nutrients profiles, in vitro ruminal fermentation and molecular structure of corn processed in different ways. Fermentation 2022, 8, 315. [Google Scholar] [CrossRef]
- Li, R.; Teng, Z.; Lang, C.; Zhou, H.; Zhong, W.; Ban, Z.; Yan, X.; Yang, H.; Farouk, M.H.; Lou, Y. Effect of different forage-to-concentrate ratios on ruminal bacterial structure and real-time methane production in sheep. PLoS ONE 2019, 14, e0214777. [Google Scholar] [CrossRef]
- Ouppamong, T.; Gunun, N.; Tamkhonburee, C.; Khejornsart, P.; Kaewpila, C.; Kesorn, P.; Kimprasit, T.; Cherdthong, A.; Wanapat, M.; Polyorach, S.; et al. Fermented rubber seed kernel with yeast in the diets of tropical lactating dairy cows: Effects on feed intake, hematology, microbial protein synthesis, milk yield and milk composition. Vet. Sci. 2022, 9, 360. [Google Scholar] [CrossRef]
- Supapong, C.; Cherdthong, A.; Wanapat, M.; Chanjula, P.; Uriyapongson, S. Effects of sulfur levels in fermented total mixed ration containing fresh cassava root on feed utilization, rumen characteristics, microbial protein synthesis, and blood metabolites in Thai native beef cattle. Animals 2019, 9, 261. [Google Scholar] [CrossRef] [Green Version]
- Phesatcha, K.; Phesatcha, B.; Wanapat, M.; Cherdthong, A. The effect of yeast and roughage concentrate ratio on ruminal pH and protozoal population in Thai native beef cattle. Animals 2022, 12, 53. [Google Scholar] [CrossRef]
- Saeed, O.A.; Sazili, A.Q.; Akit, H.; Alimon, A.R.; Samsudin, A.A. Effects of corn supplementation into PKC-urea treated rice straw basal diet on hematological indices and serum mineral level in lambs. Animals 2019, 9, 781. [Google Scholar] [CrossRef] [Green Version]
- Gunun, P.; Gunun, N.; Khejornsart, P.; Ouppamong, T.; Cherdthong, A.; Wanapat, M.; Sililaophaisan, S.; Yuangklang, C.; Polyorach, S.; Kenchaiwong, W.; et al. Effects of Antidesma thwaitesianum Muell. Arg. pomace as a source of plant secondary compounds on digestibility, rumen environment, hematology, and milk production in dairy cows. Anim. Sci. J. 2019, 90, 372–381. [Google Scholar] [CrossRef]
- Herman, N.; Trumel, C.; Geffré, A.; Braun, J.-P.; Thibault, M.; Schelcher, F.; Bourgès-Abella, N. Hematology reference intervals for adult cows in France using the Sysmex XT-2000iV analyzer. J. Vet. Diagn. Investig. 2018, 30, 678–687. [Google Scholar] [CrossRef] [PubMed]
- George, J.W.; Snipes, J.; Lane, V.M. Comparison of bovine hematology reference intervals from 1957 to 2006. Vet. Clin. Pathol. 2010, 39, 138–148. [Google Scholar] [CrossRef] [PubMed]
- Wood, D.; Quiroz-Rocha, G.F. Normal hematology of cattle. In Schalm’s Veterinary Hematology, 6th ed; Weiss, D.J., Wardrop, K.J., Eds.; Wiley: Ames, IA, USA, 2010; pp. 829–835. [Google Scholar]
- Qi-Yue, Y.; Ting, Z.; Ya-Nan, H.; Sheng-Jie, H.; Xuan, D.; Li, H.; Chun-Guang, X. From natural dye to herbal medicine: A systematic review of chemical constituents, pharmacological effects and clinical applications of indigo naturalis. Chin. Med. 2020, 15, 127. [Google Scholar] [CrossRef] [PubMed]
Item | Level of Indigo Waste (%DM) | |||
---|---|---|---|---|
0 | 10 | 20 | 30 | |
Ingredient, kg dry matter (DM) | ||||
Cassava chip | 45.0 | 45.0 | 45.0 | 45.0 |
Rice bran | 19.0 | 14.0 | 9.0 | 5.0 |
Soybean meal | 14.0 | 11.0 | 8.5 | 7.0 |
Dried brewers’ grains | 17.5 | 15.5 | 13.0 | 8.5 |
Indigo waste | 0.0 | 10.0 | 20.0 | 30.0 |
Molasses | 2.0 | 2.0 | 2.0 | 2.0 |
Mineral and vitamin mixture | 1.0 | 1.0 | 1.0 | 1.0 |
Urea | 0.5 | 0.5 | 0.5 | 0.5 |
Salt | 0.5 | 0.5 | 0.5 | 0.5 |
Sulfur | 0.5 | 0.5 | 0.5 | 0.5 |
Item | Level of Indigo Waste (%DM) | |||
---|---|---|---|---|
0 | 10 | 20 | 30 | |
Cassava chip | 14.29 | 14.29 | 14.29 | 14.29 |
Rice bran | 4.41 | 3.25 | 2.09 | 1.16 |
Soybean meal | 10.68 | 8.39 | 6.48 | 5.34 |
Dried brewers grains | 7.10 | 6.29 | 5.28 | 3.45 |
Indigo waste | 0.00 | 0.63 | 1.26 | 1.90 |
Urea | 0.43 | 0.43 | 0.43 | 0.43 |
Molasses | 0.57 | 0.57 | 0.57 | 0.57 |
Mineral and vitamin mixture | 1.51 | 1.51 | 1.51 | 1.51 |
Salt | 0.14 | 0.14 | 0.14 | 0.14 |
Sulfur | 0.46 | 0.46 | 0.46 | 0.46 |
Total feeding costs | 39.59 | 35.96 | 32.51 | 29.25 |
Safe costs (vs 0% indigo waste) | 0.00 | −3.63 | −7.08 | −10.35 |
Item | Level of Indigo Waste (%DM) | Rice Straw | Indigo Waste | |||
---|---|---|---|---|---|---|
0 | 10 | 20 | 30 | |||
Chemical composition | ||||||
Dry matter, % | 87.9 | 87.2 | 87.7 | 87.3 | 91.0 | 89.7 |
Organic matter, %DM | 90.1 | 90.4 | 92.2 | 92.3 | 87.8 | 90.5 |
Crude protein, %DM | 14.6 | 14.3 | 14.4 | 14.5 | 4.9 | 19.8 |
Neutral detergent fiber, %DM | 43.1 | 46.0 | 52.1 | 59.5 | 73.7 | 46.6 |
Acid detergent fiber, %DM | 27.8 | 28.1 | 29.8 | 30.5 | 51.9 | 32.4 |
Ash, %DM | 9.9 | 9.6 | 7.8 | 7.7 | 12.2 | 9.5 |
Gross energy, kcal/kg DM | 2861.2 | 3048.7 | 3214.8 | 3580.8 | 2797.9 | 3487.5 |
Condensed tannins, %DM | - | - | - | - | - | 5.4 |
Crude saponins, %DM | - | - | - | - | - | 13.1 |
Item | Level of Indigo Waste (%DM) | SEM | Contrast | |||||
---|---|---|---|---|---|---|---|---|
0 | 10 | 20 | 30 | Linear | Quadratic | Cubic | ||
Dry matter intake, kg/d | ||||||||
Concentrate | ||||||||
0 to 30 d | 2.8 | 2.5 | 2.4 | 2.4 | 0.19 | 0.11 | 0.61 | 0.93 |
31 to 60 d | 3.4 | 3.1 | 2.7 | 2.6 | 0.22 | 0.01 | 0.69 | 0.59 |
61 to 90 d | 3.8 | 3.5 | 3.1 | 2.8 | 0.26 | <0.01 | 0.94 | 0.98 |
0 to 90 d | 3.3 | 3.0 | 2.7 | 2.6 | 0.21 | 0.01 | 0.79 | 0.87 |
Roughage | ||||||||
0 to 30 d | 1.9 | 1.7 | 1.8 | 1.8 | 0.21 | 0.69 | 0.52 | 0.73 |
31 to 60 d | 2.2 | 1.9 | 1.9 | 1.9 | 0.20 | 0.38 | 0.32 | 0.75 |
61 to 90 d | 2.2 | 2.0 | 2.0 | 2.0 | 0.21 | 0.42 | 0.65 | 0.74 |
0 to 90 d | 2.1 | 1.9 | 1.9 | 1.9 | 0.19 | 0.47 | 0.47 | 0.73 |
Total intake | ||||||||
0 to 30 d | 4.7 | 4.2 | 4.2 | 4.2 | 0.36 | 0.27 | 0.52 | 0.81 |
31 to 60 d | 5.6 | 5.0 | 4.6 | 4.6 | 0.40 | 0.07 | 0.47 | 0.88 |
61 to 90 d | 6.1 | 5.5 | 5.2 | 4.7 | 0.39 | 0.02 | 0.84 | 0.85 |
0 to 90 d | 5.5 | 4.9 | 4.7 | 4.5 | 0.37 | 0.07 | 0.60 | 0.93 |
Item | Level of Indigo Waste (%DM) | SEM | Contrast | |||||
---|---|---|---|---|---|---|---|---|
0 | 10 | 20 | 30 | Linear | Quadratic | Cubic | ||
Digestibility, % | ||||||||
Dry matter | 54.9 | 55.3 | 60.2 | 51.3 | 1.75 | 0.48 | 0.02 | 0.03 |
Organic matter | 58.8 | 58.7 | 64.1 | 55.2 | 1.74 | 0.50 | 0.02 | 0.02 |
Crude protein | 49.3 | 48.3 | 49.3 | 47.3 | 2.85 | 0.74 | 0.86 | 0.70 |
Neutral detergent fiber | 49.1 | 50.8 | 60.8 | 56.1 | 1.90 | <0.01 | 0.13 | 0.02 |
Acid detergent fiber | 46.9 | 43.2 | 47.2 | 44.2 | 1.75 | 0.63 | 0.86 | 0.10 |
Item | Level of Indigo Waste (%DM) | SEM | Contrast | |||||
---|---|---|---|---|---|---|---|---|
0 | 10 | 20 | 30 | Linear | Quadratic | Cubic | ||
Body weight, kg | ||||||||
Initial | 156.4 | 138.4 | 140.8 | 143.6 | 12.33 | 0.52 | 0.41 | 0.72 |
30 d | 185.2 | 167.2 | 158.4 | 159.6 | 13.05 | 0.16 | 0.47 | 0.98 |
60 d | 213.6 | 191.8 | 179.2 | 176.0 | 14.52 | 0.07 | 0.53 | 0.99 |
Final | 238.4 | 214.2 | 197.6 | 190.4 | 15.55 | 0.03 | 0.59 | 0.98 |
ADG, kg/d | ||||||||
0 to 30 d | 0.96 | 0.96 | 0.58 | 0.52 | 0.09 | <0.01 | 0.76 | 0.13 |
31 to 60 d | 0.94 | 0.80 | 0.70 | 0.54 | 0.07 | <0.01 | 0.89 | 0.76 |
61 to 90 d | 0.82 | 0.76 | 0.62 | 0.48 | 0.09 | 0.01 | 0.67 | 0.85 |
0 to 90 d | 0.91 | 0.84 | 0.63 | 0.51 | 0.08 | <0.01 | 0.45 | 0.82 |
G:F | ||||||||
0 to 30 d | 0.20 | 0.22 | 0.15 | 0.13 | 0.03 | 0.02 | 0.46 | 0.14 |
31 to 60 d | 0.18 | 0.16 | 0.15 | 0.12 | 0.01 | 0.02 | 0.64 | 0.93 |
61 to 90 d | 0.14 | 0.14 | 0.12 | 0.10 | 0.02 | 0.04 | 0.51 | 0.86 |
0 to 90 d | 0.17 | 0.18 | 0.14 | 0.12 | 0.06 | <0.01 | 0.41 | 0.33 |
Item | Level of Indigo Waste (%DM) | SEM | Contrast | |||||
---|---|---|---|---|---|---|---|---|
0 | 10 | 20 | 30 | Linear | Quadratic | Cubic | ||
pH | 6.8 | 6.9 | 6.9 | 6.9 | 0.07 | 0.38 | 0.23 | 0.78 |
NH3-N, mg/dL | 19.6 | 21.5 | 20.6 | 16.8 | 1.81 | 0.26 | 0.14 | 1.00 |
Total VFA, mmol/d | 54.7 | 54.6 | 58.0 | 59.8 | 2.79 | 0.15 | 0.73 | 0.68 |
VFA, mol/100 mol | ||||||||
Acetate (C2) | 58.1 | 60.8 | 61.3 | 62.7 | 0.70 | <0.01 | 0.37 | 0.32 |
Propionate (C3) | 24.2 | 20.2 | 20.1 | 18.6 | 1.10 | <0.01 | 0.26 | 0.29 |
Butyrate (C4) | 13.8 | 15.4 | 15.1 | 15.5 | 0.77 | 0.19 | 0.45 | 0.42 |
Iso-butyrate (i-C4) | 0.9 | 0.9 | 1.0 | 0.8 | 0.09 | 0.63 | 0.29 | 0.46 |
Valerate (C5) | 1.5 | 1.4 | 1.3 | 1.3 | 0.05 | <0.01 | 0.13 | 0.72 |
Iso-valerate (i-C5) | 1.4 | 1.3 | 1.2 | 1.0 | 0.31 | 0.01 | 0.91 | 0.74 |
C2:C3 | 2.4 | 3.0 | 3.1 | 3.5 | 0.40 | <0.01 | 0.58 | 0.27 |
Item | Level of Indigo Waste (%DM) | SEM | Contrast | |||||
---|---|---|---|---|---|---|---|---|
0 | 10 | 20 | 30 | Linear | Quadratic | Cubic | ||
BUN, mg/dL | 8.2 | 12.0 | 10.4 | 9.4 | 1.64 | 0.78 | 0.16 | 0.42 |
Red blood cells, 1012/L | 4.9 | 4.8 | 4.9 | 5.1 | 0.40 | 0.73 | 0.71 | 0.99 |
Hemoglobin, g/dL | 7.3 | 7.2 | 7.5 | 7.6 | 0.66 | 0.73 | 0.92 | 0.87 |
Hematocrit, % | 22.8 | 21.8 | 22.6 | 22.8 | 1.97 | 0.92 | 0.76 | 0.78 |
MCV, 106/fL | 46.2 | 45.8 | 46.2 | 45.4 | 0.43 | 0.32 | 0.65 | 0.32 |
MCH, pg | 21.8 | 20.6 | 19.8 | 20.6 | 1.32 | 0.46 | 0.46 | 0.84 |
White blood cells, 109/L | 13.9 | 14.2 | 10.7 | 12.9 | 1.79 | 0.42 | 0.59 | 0.25 |
Neutrophils, % | 30.8 | 34.6 | 25.2 | 30.4 | 3.89 | 0.55 | 0.85 | 0.13 |
Lymphocytes, % | 67.8 | 65.0 | 74.2 | 68.8 | 4.01 | 0.50 | 0.75 | 0.15 |
Monocytes, % | 0 | 0 | 0 | 0 | NA | NA | NA | NA |
Eosinophils, % | 1.4 | 0.4 | 0.6 | 0.8 | 0.57 | 0.54 | 0.31 | 0.64 |
Platelet count, 109/L | 214.0 | 266.0 | 274.3 | 219.0 | 33.98 | 0.88 | 0.17 | 0.91 |
Item | Level of Indigo Waste (%DM) | SEM | Contrast | |||||
---|---|---|---|---|---|---|---|---|
0 | 10 | 20 | 30 | Linear | Quadratic | Cubic | ||
IgA, mg/dL | 85.6 | 90.2 | 89.8 | 94.0 | 3.03 | 0.09 | 0.94 | 0.49 |
IgM, mg/dL | 49.2 | 48.2 | 48.4 | 40.8 | 3.93 | 0.17 | 0.41 | 0.61 |
IgG, mg/dL | 429.2 | 423.4 | 396.6 | 414.2 | 18.4 | 0.39 | 0.53 | 0.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gunun, N.; Kaewpila, C.; Khota, W.; Polyorach, S.; Kimprasit, T.; Phlaetita, W.; Cherdthong, A.; Wanapat, M.; Gunun, P. The Effect of Indigo (Indigofera tinctoria L.) Waste on Growth Performance, Digestibility, Rumen Fermentation, Hematology and Immune Response in Growing Beef Cattle. Animals 2023, 13, 84. https://doi.org/10.3390/ani13010084
Gunun N, Kaewpila C, Khota W, Polyorach S, Kimprasit T, Phlaetita W, Cherdthong A, Wanapat M, Gunun P. The Effect of Indigo (Indigofera tinctoria L.) Waste on Growth Performance, Digestibility, Rumen Fermentation, Hematology and Immune Response in Growing Beef Cattle. Animals. 2023; 13(1):84. https://doi.org/10.3390/ani13010084
Chicago/Turabian StyleGunun, Nirawan, Chatchai Kaewpila, Waroon Khota, Sineenart Polyorach, Thachawech Kimprasit, Wasana Phlaetita, Anusorn Cherdthong, Metha Wanapat, and Pongsatorn Gunun. 2023. "The Effect of Indigo (Indigofera tinctoria L.) Waste on Growth Performance, Digestibility, Rumen Fermentation, Hematology and Immune Response in Growing Beef Cattle" Animals 13, no. 1: 84. https://doi.org/10.3390/ani13010084
APA StyleGunun, N., Kaewpila, C., Khota, W., Polyorach, S., Kimprasit, T., Phlaetita, W., Cherdthong, A., Wanapat, M., & Gunun, P. (2023). The Effect of Indigo (Indigofera tinctoria L.) Waste on Growth Performance, Digestibility, Rumen Fermentation, Hematology and Immune Response in Growing Beef Cattle. Animals, 13(1), 84. https://doi.org/10.3390/ani13010084