Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (407)

Search Parameters:
Keywords = warm core

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 8650 KiB  
Article
Exploring the Impact of Architectural Landscape Characteristics of Urban Functional Areas in Xi’an City on the Thermal Environment in Summer Using Explainable Machine Learning
by Jiayue Xu, Le Xuan, Cong Li, Mengxue Zhang and Xuhui Wang
Sustainability 2025, 17(14), 6489; https://doi.org/10.3390/su17146489 - 16 Jul 2025
Viewed by 364
Abstract
Rapid urbanization has exacerbated the urban heat island effect, posing a significant threat to human health and urban ecosystems. While numerous studies have demonstrated that urban morphology significantly influences land surface temperatures (LSTs), few have systematically explored the impact and contribution of urban [...] Read more.
Rapid urbanization has exacerbated the urban heat island effect, posing a significant threat to human health and urban ecosystems. While numerous studies have demonstrated that urban morphology significantly influences land surface temperatures (LSTs), few have systematically explored the impact and contribution of urban morphology on LST across different functional zones. Therefore, this study takes Xi’an as a case and employs an interpretable CatBoost-SHAP machine learning model to evaluate the nonlinear influence of building landscape features on LST in different functional zones during summer. The results indicate the following: (1) The highest LST in the study area reached 52.68 °C, while the lowest was 21.68 °C. High-temperature areas were predominantly concentrated in the urban center and industrial zones with dense buildings, whereas areas around water bodies and green spaces exhibited relatively lower temperatures. (2) SHAP analysis revealed that landscape indicators exerted the most substantial impact across all functional zones, with green space zones contributing up to 62%. Among these, fractional vegetation coverage (FVC), as a core landscape factor, served as the primary cooling factor in all six functional zones and consistently demonstrated a negative effect. (3) Population density (POP) exhibited a generally high SHAP contribution across all functional zones, showing a positive correlation. Its effect was most pronounced in commercial zones, accounting for 16%. When POP ranged between 0 and 250 people, the warming effect was particularly prominent. (4) The mean building height (MBH) constituted a major influencing factor in most functional zones, especially in residential zones, where the SHAP value reached 0.7643. Within the range of 10–20 m, the SHAP value increased sharply, indicating a significant warming effect. (5) This study proposes targeted cooling strategies tailored to six functional zones, providing a scientific basis for formulating targeted mitigation strategies for different functional zones to alleviate the urban heat island effect. Full article
Show Figures

Figure 1

32 pages, 857 KiB  
Review
Integrating Technological Innovations and Sustainable Practices to Abate Methane Emissions from Livestock: A Comprehensive Review
by Amr S. Morsy, Yosra A. Soltan, Waleed Al-Marzooqi and Hani M. El-Zaiat
Sustainability 2025, 17(14), 6458; https://doi.org/10.3390/su17146458 - 15 Jul 2025
Viewed by 535
Abstract
Livestock farming is a vital component of global food security, yet it remains a major contributor to greenhouse gas (GHG) emissions, particularly methane (CH4), which has a global warming potential 28 times greater than carbon dioxide (CO2). This review [...] Read more.
Livestock farming is a vital component of global food security, yet it remains a major contributor to greenhouse gas (GHG) emissions, particularly methane (CH4), which has a global warming potential 28 times greater than carbon dioxide (CO2). This review provides a comprehensive synthesis of current knowledge surrounding the sources, biological mechanisms, and mitigation strategies related to CH4 emissions from ruminant livestock. We first explore the process of methanogenesis within the rumen, detailing the role of methanogenic archaea and the environmental factors influencing CH4 production. A thorough assessment of both direct and indirect methods used to quantify CH4 emissions is presented, including in vitro techniques (e.g., syringe method, batch culture, RUSITEC), in vivo techniques (e.g., respiration chambers, Greenfeed, laser CH4 detectors), and statistical modeling approaches. The advantages and limitations of each method are critically analyzed in terms of accuracy, cost, feasibility, and applicability to different farming systems. We then examine a wide range of mitigation strategies, organized into four core pillars: (1) animal and feed management (e.g., genetic selection, pasture quality improvement), (2) diet formulation (e.g., feed additives such as oils, tannins, saponins, and seaweed), (3) rumen manipulation (e.g., probiotics, ionophores, defaunation, vaccination), and (4) manure management practices and policy-level interventions. These strategies are evaluated not only for their environmental impact but also for their economic and practical viability in diverse livestock systems. By integrating technological innovations with sustainable agricultural practices, this review highlights pathways to reduce CH4 emissions while maintaining animal productivity. It aims to support decision-makers, researchers, and livestock producers in the global effort to transition toward climate-smart, low-emission livestock farming. Full article
Show Figures

Figure 1

27 pages, 53601 KiB  
Article
Depositional Evolution and Controlling Factors of the Lower–Middle Jurassic in the Kuqa Depression, Tarim Basin, Northwest China
by Ming Ma, Changsong Lin, Yongfu Liu, Hao Li, Wenfang Yuan, Jingyan Liu, Chaoqun Shi, Manli Zhang and Fan Xu
Appl. Sci. 2025, 15(14), 7783; https://doi.org/10.3390/app15147783 - 11 Jul 2025
Viewed by 265
Abstract
The Lower–Middle Jurassic of the Kuqa Depression consists of terrestrial clastic deposits containing coal seams and thick lacustrine mudstones, and is of great significance for oil and gas exploration. Based on the comprehensive analysis of core, well-logging, outcrop, and seismic data, the sequence [...] Read more.
The Lower–Middle Jurassic of the Kuqa Depression consists of terrestrial clastic deposits containing coal seams and thick lacustrine mudstones, and is of great significance for oil and gas exploration. Based on the comprehensive analysis of core, well-logging, outcrop, and seismic data, the sequence stratigraphy, depositional systems, and the controlling factors of the basin filling in the depression are systematically documented. Four primary depositional systems, including braided river delta, meandering river delta, lacustrine, and swamp deposits, are identified within the Ahe, Yangxia, and Kezilenuer Formations of the Lower–Middle Jurassic. The basin fills can be classified into two second-order and nine third-order sequences (SQ1–SQ9) confined by regional or local unconformities and their correlative conformities. This study shows that the sedimentary evolution has undergone the following three stages: Stage I (SQ1–SQ2) primarily developed braided river, braided river delta, and shallow lacustrine deposits; Stage II (SQ3–SQ5) primarily developed meandering river, meandering river delta, and extensive deep and semi-deep lacustrine deposits; Stage III (SQ6–SQ9) primarily developed swamp (SQ6–SQ7), meandering river delta, and shore–shallow lacustrine deposits (SQ8–SQ9). The uplift of the Tianshan Orogenic Belt in the Early Jurassic (Stage I) may have facilitated the development of braided fluvial–deltaic deposits. The subsequential expansion of the sedimentary area and the weakened sediment supply can be attributed to the planation of the source area and widespread basin subsidence, with the transition of the depositional environments from braided river delta deposits to meandering river delta and swamp deposits. The regional expansion or rise of the lake during Stage II was likely triggered by the hot and humid climate conditions, possibly associated with the Early Jurassic Toarcian Oceanic Anoxic Event. The thick swamp deposits formed during Stage III may be controlled by the interplay of rational accommodation, warm and humid climatic conditions, and limited sediment supply. Milankovitch cycles identified in Stage III further reveal that coal accumulation was primarily modulated by long-period eccentricity forcing. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

24 pages, 7542 KiB  
Article
Supporting Oral Language Development in Preschool Children Through Instructional Scaffolding During Drawing Activity: A Qualitative Case Study
by Mengyun Xiao, Fadzilah Amzah, Noor Azlina Mohamed Khalid, Weihan Rong and Xiaolong Zhou
Behav. Sci. 2025, 15(7), 908; https://doi.org/10.3390/bs15070908 - 4 Jul 2025
Viewed by 548
Abstract
The research on teaching scaffolding for preschool children’s oral language development (OLD) has become an important topic in the academic world. However, there remains a lack of evidence-based research on the integration of scaffolding strategies integrated into creative art contexts to support children’s [...] Read more.
The research on teaching scaffolding for preschool children’s oral language development (OLD) has become an important topic in the academic world. However, there remains a lack of evidence-based research on the integration of scaffolding strategies integrated into creative art contexts to support children’s creative expression and language production. In this study, a qualitative case study was conducted to analyze the non-participatory observation and artwork analysis of five-year-old children’s drawing activities in a kindergarten in China based on socio-cultural and scaffolding theories. Three types of core scaffolding strategies were summarized. The findings reveal that the three strategies work together dynamically within the children’s Zone of Proximal Development (ZPD): (1) the visual prompt strategy enriches the vocabulary diversity of metaphors, adjectives, and ordinal words; (2) dialogic narrative co-construction effectively improves narrative coherence across exposition, rising action, climax, and resolution; and (3) emotional engagement strategies foster a safe expressive environment, promoting the integration of affective vocabulary with intrinsic motivation. Accordingly, a three-dimensional integrated “visual-linguistic-emotional” scaffolding model was constructed, emphasizing the practical guidelines of simultaneous scaffolding and gradual scaffolding withdrawal during the warm-up, creation, and sharing sessions of the drawing activity. This study expands the application of scaffolding theory in unstructured art contexts, and provides a systematic practical framework for the design of cross-contextual language support strategies and teacher training in preschool education. Full article
(This article belongs to the Topic Educational and Health Development of Children and Youths)
Show Figures

Figure 1

21 pages, 5785 KiB  
Article
Impacts of the Assimilation of Radar Radial Velocity Data Using the Ensemble Kalman Filter (EnKF) on the Analysis and Forecast of Typhoon Lekima (2019)
by Jiping Guan, Jiajun Chen, Xinya Li, Mengting Liu and Mingyang Zhang
Remote Sens. 2025, 17(13), 2258; https://doi.org/10.3390/rs17132258 - 30 Jun 2025
Viewed by 351
Abstract
High-resolution radar observations are essential to improving the numerical predictions of high-impact weather systems with data assimilation techniques. The numerical simulations of the landfall of Typhoon Lekima (2019) are conducted in the framework of the WRF model, investigating the impact of assimilating radar [...] Read more.
High-resolution radar observations are essential to improving the numerical predictions of high-impact weather systems with data assimilation techniques. The numerical simulations of the landfall of Typhoon Lekima (2019) are conducted in the framework of the WRF model, investigating the impact of assimilating radar radial velocity observations via the Ensemble Kalman Filter (EnKF) on the typhoon’s analysis and forecast performance. The results demonstrate that the EnKF method significantly improves forecast accuracy for Typhoon Lekima, including track, intensity and the 24 h cumulative precipitation. To be specific, the control experiment significantly underestimated typhoon intensity, while EnKF-based radar radial velocity assimilation markedly improved near-surface winds (>48 m/s) in the typhoon core, refined vortex structure and reduced track forecast errors by 50–60%. Compared with the control and 3DVAR experiments, EnKF assimilation better captured typhoon precipitation patterns, with the highest ETS scores, especially for moderate-to-high precipitation intensities. Moreover, the detailed analysis and diagnostics of Lekima show that the warm core structure is better captured in the assimilation experiment. The typhoon system is also improved, as reflected by enhanced potential temperature and a more robust wind field analysis. Full article
Show Figures

Figure 1

24 pages, 6382 KiB  
Article
An Exploration of the Association Between Residents’ Sentiments and Street Functions During Heat Waves—Taking the Five Core Urban Areas of Chengdu City as an Example
by Tianrui Hua, Yufei Ru, Sining Zhang and Shixian Luo
Land 2025, 14(7), 1377; https://doi.org/10.3390/land14071377 - 30 Jun 2025
Viewed by 284
Abstract
Due to global warming, the impact of heat waves on the sentimental health of urban residents has significantly intensified. However, the associative mechanism between diverse urban functional layouts and residents’ emotions at the street scale remains underexplored. Taking the five core urban areas [...] Read more.
Due to global warming, the impact of heat waves on the sentimental health of urban residents has significantly intensified. However, the associative mechanism between diverse urban functional layouts and residents’ emotions at the street scale remains underexplored. Taking the five core urban areas of Chengdu as an example, this study used natural language processing technology to quantify the sentiments in social media texts and combined traditional geographical information for spatial analysis and correlation analysis, to explore the spatial distribution pattern of sentiments during heat waves (SDHW), as well as the correlation between SDHW and the functional categories of streets (FCS). The findings are as follows: (1) There are significant differences in the spatial distribution pattern of residents’ sentiments in the five core urban areas, and positive emotions within the Second Ring Road exhibit a higher proportion than those of peripheral areas, while negative sentiments are more gathered in the eastern area. (2) The street categories of green space, park, and public show a significant promoting role on residents’ positive sentiments. (3) There is an association between the industrial and commercial categories and negative sentiments, and the impact of the traffic category on residents’ sentiments shows spatial differences. (4) The combination of the residential category and other functional categories has a strong correlation with sentiments, indicating that a reasonable functional combination within residential areas plays a crucial role in promoting residents’ positive sentiments. The current study revealed the influence mechanism of the functional categories of streets on residents’ sentiments during heat waves, providing a scientific basis from the sentimental dimension for the optimization of street functional categories, heat wave emergency management, and the construction of resilient cities. Full article
Show Figures

Figure 1

29 pages, 10402 KiB  
Article
Depositional and Paleoenvironmental Controls on Shale Reservoir Heterogeneity in the Wufeng–Longmaxi Formations: A Case Study from the Changning Area, Sichuan Basin, China
by Chongjie Liao, Lei Chen, Chang Lu, Kelin Chen, Jian Zheng, Xin Chen, Gaoxiang Wang and Jian Cao
Minerals 2025, 15(7), 677; https://doi.org/10.3390/min15070677 - 24 Jun 2025
Viewed by 332
Abstract
Numerous uncertainties persist regarding the differential enrichment mechanisms of shale gas reservoirs in southern China. This investigation systematically examines the sedimentary environments and reservoir characteristics of the Wufeng–Longmaxi formations in the Changning area of the Sichuan Basin, through the integration of comprehensive drilling [...] Read more.
Numerous uncertainties persist regarding the differential enrichment mechanisms of shale gas reservoirs in southern China. This investigation systematically examines the sedimentary environments and reservoir characteristics of the Wufeng–Longmaxi formations in the Changning area of the Sichuan Basin, through the integration of comprehensive drilling data, core samples, and analytical measurements. Multivariate sedimentary proxies (including redox conditions, terrigenous detrital influx, basinal water restriction, paleoclimatic parameters, paleowater depth variations, and paleo-marine productivity) were employed to elucidate environmental controls on reservoir development. The research findings demonstrate that during the depositional period of the Wufeng Formation in the Changning area, the bottom water was characterized by suboxic to anoxic conditions under a warm-humid paleoclimate, with limited terrigenous detrital input and strong water column restriction throughout the interval. Within the Longmaxi Formation, the depositional environment evolved from intensely anoxic conditions in the LM1 through suboxic states in the LM3 interval, approaching toxic conditions by the LM2 depositional phase. Concurrently, the paleoclimate transitioned towards warmer and more humid conditions, accompanied by progressively intensified terrigenous input from the LM1-LM6, while maintaining semi-restricted water circulation. Both paleowater depth and paleoproductivity peaked from the Wufeng Formation to the LM1 interval, followed by gradual shallowing of water depth and declining productivity during the LM3–LM6 depositional phases. Comparative analysis of depositional environments and reservoir characteristics reveals that sedimentary conditions exert a controlling influence on multiple reservoir parameters, including shale mineral composition, organic matter enrichment, pore architecture, petrophysical properties (e.g., porosity, permeability), and gas-bearing potential. Full article
(This article belongs to the Special Issue Element Enrichment and Gas Accumulation in Black Rock Series)
Show Figures

Figure 1

32 pages, 2003 KiB  
Article
Evolution of the Hydrobiological Communities of a Coastal Lake in the Novaya Zemlya Archipelago (Southern Island, Arctic Russia) in Relation to Climate Change Following the End of the Little Ice Age
by Larisa Nazarova, Andrey B. Krasheninnikov, Larisa A. Frolova, Olga V. Palagushkina, Larisa V. Golovatyuk, Liudmila S. Syrykh, Boris K. Biskaborn, Harald G. E. Fuchs and Maria V. Gavrilo
Water 2025, 17(13), 1868; https://doi.org/10.3390/w17131868 - 23 Jun 2025
Viewed by 1210
Abstract
There are very few data linking recent climatic changes to changes in biological communities in the Russian Arctic, and no palaeoecological data are available from the Novaya Zemlya archipelago (NZ). We studied chironomid, cladoceran, and diatom communities from a 165-year-old sediment core from [...] Read more.
There are very few data linking recent climatic changes to changes in biological communities in the Russian Arctic, and no palaeoecological data are available from the Novaya Zemlya archipelago (NZ). We studied chironomid, cladoceran, and diatom communities from a 165-year-old sediment core from a lake on Southern Island, NZ. Sixteen diatom and four cladoceran species new to NZ were found in the lake. Significant changes occurred in biological communities; species turnover was highest for diatoms (2.533 SD), followed by chironomids (1.781 SD) and cladocerans (0.614 SD). Biological communities showed a correlation with meteorologically recorded climate parameters. For chironomids, the strongest relationships were found for TJune, TJuly, and Tann. Both planktonic proxies, diatoms, and cladocerans showed a relationship with summer and annual air temperature and precipitation. The largest shifts in communities can be linked to recent climatic events, including the onset of steady warming following the variable conditions at the end of the LIA (ca. 1905), the cooling associated with the highest precipitation on record between 1950 and 1970, and, probably, the anthropogenic influence specific to Novaya Zemlya at this time. The new data provide a valuable basis for future ecological studies in one of the least explored and remote Arctic regions. Full article
Show Figures

Figure 1

29 pages, 2086 KiB  
Review
Impact of Temperature Stresses on Wheat Quality: A Focus on Starch and Protein Composition
by Pei Han, Yaping Wang and Hui Sun
Foods 2025, 14(13), 2178; https://doi.org/10.3390/foods14132178 - 22 Jun 2025
Viewed by 694
Abstract
With climate change, maintaining wheat quality has become essential for the functional properties, end-use, commodity value, and nutritional benefits of wheat flour. Temperature indirectly influences wheat quality by modulating grain size, starch and protein content, and the balance between these components. This review [...] Read more.
With climate change, maintaining wheat quality has become essential for the functional properties, end-use, commodity value, and nutritional benefits of wheat flour. Temperature indirectly influences wheat quality by modulating grain size, starch and protein content, and the balance between these components. This review systematically analyzes temperature-mediated alterations in wheat grain quality, with particular emphasis on the two core components: starch and protein. Specifically, daytime warming generally increases protein content while reducing starch accumulation; however, temperatures exceeding 30 °C diminish key protein quality parameters (UPP%, Glu/Gli ratio, HMW-GS/LMW-GS ratio). Nighttime warming enhances protein quality but compromises starch content and yield potential. Conversely, under low-temperature conditions, starch content declines, whereas protein content is primarily influenced by genotypes and treated temperatures. Furthermore, the underlying mechanisms driving temperature-induced changes in wheat quality traits are discussed. However, the mechanisms of temperature effects have not been fully elucidated, and the results often vary between regions or over years. Thus, identifying conserved high/low-temperature resistance genes, QTLs, epialleles, and epiQTL, as well as developing corresponding molecular markers and epi-markers, is an urgent priority. Meanwhile, genome-editing tools such as CRISPR/Cas could serve as a powerful approach for creating new wheat germplasm with durable high/low-temperature resistance. Full article
Show Figures

Figure 1

16 pages, 3247 KiB  
Article
New Territorial Unit of the Urban Structure of Cities—The Urbocell
by Liucijus Dringelis and Evaldas Ramanauskas
Urban Sci. 2025, 9(6), 227; https://doi.org/10.3390/urbansci9060227 - 16 Jun 2025
Viewed by 778
Abstract
One of the most significant factors shaping the formation of new urban structures is climate change—including global warming and the associated emerging issues—heatwaves, storms, hurricanes, floods, droughts, fires and others. In recent times, new threats have emerged, including war risks, radiation, pandemics and [...] Read more.
One of the most significant factors shaping the formation of new urban structures is climate change—including global warming and the associated emerging issues—heatwaves, storms, hurricanes, floods, droughts, fires and others. In recent times, new threats have emerged, including war risks, radiation, pandemics and other potential factors, whose devastating consequences are no less severe than those of climate change. Concerning these and other potential threats, this work aims to develop a new, sustainable urban structure element—a territorial unit or complex to be used in creating a new city planning framework. The formation of this sustainable urban unit or complex is based on three fundamental sustainability principles—social, ecological and economic—the harmonious interaction of which can enable the creation of a safe, healthy and convenient urban environment for living, working and leisure. Such a structural urban complex would consist of a group of neighbourhoods with various building densities, enclosed by public transport streets that integrate the complex into the city’s overall spatial structure. To support the complex’s functioning, a structural element—a green core—is planned at its centre, serving as a space for residents’ recreation, protection from various threats and social interaction. Given that this technical, structural and urban territorial unit, in terms of its autonomous functionality, structure, composition, significance and other characteristics, is identical to a natural cell, it is proposed (based on the principles of bionics) to name this structural urban territorial unit an ‘urban cell’ or ‘urbocell’ for semantic clarity. Full article
Show Figures

Figure 1

19 pages, 18325 KiB  
Article
Thermodynamic Study of a Mediterranean Cyclone with Tropical Characteristics in September 2020
by Sotirios T. Arsenis, Angelos I. Siozos and Panagiotis T. Nastos
Atmosphere 2025, 16(6), 722; https://doi.org/10.3390/atmos16060722 - 14 Jun 2025
Viewed by 538
Abstract
This study examines the evolution, structure, and dynamic and thermodynamic mechanisms of a Mediterranean tropical-like cyclone (TLC), or medicane (from Mediterranean–Hurricane), that occurred in the central Mediterranean region from 15 to 19 September 2020. This event is considered an extreme meteorological phenomenon, particularly [...] Read more.
This study examines the evolution, structure, and dynamic and thermodynamic mechanisms of a Mediterranean tropical-like cyclone (TLC), or medicane (from Mediterranean–Hurricane), that occurred in the central Mediterranean region from 15 to 19 September 2020. This event is considered an extreme meteorological phenomenon, particularly impacting the Greek area and affecting the country’s economic and social structures. It is one of the most significant recorded Mediterranean cyclone phenomena in the broader Mediterranean region. The synoptic and dynamic environment, as well as the thermodynamic structure of this atmospheric disturbance, were analyzed using thermodynamic parameters. The system’s development can be described through three distinct phases, characterized by its symmetrical structure and warm core, as illustrated in the phase space diagrams and further supported by dynamical analysis. During the first phase, on 15 September, the structure of the upper tropospheric layers began to strengthen the parent barometric low, which had been in the Sirte Bay region since 13 September. The influence of upper-level dynamical processes was responsible for the reconstruction of the weakened barometric low. In the second phase, during the formation of the Mediterranean cyclone, low-level diabatic processes determined the evolution of the surface cyclone without significant support from upper-tropospheric baroclinic processes. Therefore, in this phase, the system is characterized as barotropic. In the third phase, the system remained barotropic but showed a continuous weakening tendency as the sea surface pressure steadily increased. This comprehensive analysis highlights the intricate processes involved in the development and evolution of Mediterranean cyclones with tropical characteristics. Full article
(This article belongs to the Special Issue Climate and Weather Extremes in the Mediterranean)
Show Figures

Figure 1

19 pages, 5158 KiB  
Article
Impact of Background Error Length Scale Tuning in WRF-3DVAR System on High-Resolution Radar Data Assimilation for Typhoon Doksuri Simulation
by Weidi Zhai, Feifei Shen, Jing Liu, Haiyan Fei, Liu Yi, Shen Wan and Xiaolin Yuan
Atmosphere 2025, 16(6), 679; https://doi.org/10.3390/atmos16060679 - 3 Jun 2025
Viewed by 431
Abstract
To improve the prediction of Typhoon Doksuri (2023), this paper explores how variations in horizontal scale factors used in assimilating radar-derived wind velocities influence the performance of numerical simulations and forecasts. Using the WRF-ARW model in conjunction with the WRF-3DVAR data assimilation system, [...] Read more.
To improve the prediction of Typhoon Doksuri (2023), this paper explores how variations in horizontal scale factors used in assimilating radar-derived wind velocities influence the performance of numerical simulations and forecasts. Using the WRF-ARW model in conjunction with the WRF-3DVAR data assimilation system, two assimilation configurations were tested with horizontal length scale factors of 1.0 and 0.25. Results show that a reduced length scale facilitates a more detailed reconstruction of mesoscale features, including the typhoon’s eye and inner-core circulation, leading to improved accuracy in short-term intensity and structure forecasts. The experiment utilizing the 0.25 length scale exhibited a tighter warm core, stronger cyclonic wind bands, and a better representation of the vortex’s three-dimensional structure. However, this configuration also led to growing forecast deviations in the latter stages, likely due to imbalances introduced by excessive localization. In contrast, the 1.0-scale experiment produced smoother but less accurate structures and demonstrated larger track deviations. These findings highlight a key trade-off between localized observational influence and long-term forecast stability. The study underscores the importance of optimizing horizontal scale parameterization in variational assimilation to enhance the forecasting accuracy of high-impact tropical cyclones and offers practical insights for operational forecasting systems in regions frequently affected by typhoon activity. Full article
Show Figures

Figure 1

20 pages, 3131 KiB  
Article
Optimized MaxEnt Model Predicts Future Suitable Habitats for Chinese Caterpillar Fungus Under Climate Change
by Yaqin Peng, Zhihang Zhuo, Qianqian Qian and Danping Xu
Agriculture 2025, 15(11), 1144; https://doi.org/10.3390/agriculture15111144 - 26 May 2025
Viewed by 460
Abstract
The Chinese Caterpillar Fungus (CCF) is a precious and rare traditional Chinese medicinal material that is extremely sensitive to environmental changes, making wild resources scarce. Therefore, studying the impact of climate change on the potential distribution and changes of the CCF is of [...] Read more.
The Chinese Caterpillar Fungus (CCF) is a precious and rare traditional Chinese medicinal material that is extremely sensitive to environmental changes, making wild resources scarce. Therefore, studying the impact of climate change on the potential distribution and changes of the CCF is of great significance. Employing an enhanced MaxEnt approach (optimized with ENMeval), this study determined the primary ecological constraints on CCF and mapped its potential present and future ranges. The results indicated that elevation, bio05, bio04, bio12, bio11, slope, d1_ph_water, and hf were the driving environmental factors influencing the survival of the CCF. The ideal habitat zones for the CCF were mainly distributed in the plateau and alpine climate zones of northwestern and southwestern China, covering an area of 7.42 × 104 km2. Compared with the current climate scenario, the area of suitable habitats for the CCF was expected to increase in the future. In the 2090s, under the SSP1–2.6 scenario, the highly suitable areas for the CCF will have increased the most, by 67.54%, while the low–suitability areas will have decreased by 6.87%. Overall, the highly suitable areas for the CCF will shift towards higher latitudes. The outcomes of this study can inform subsequent conservation strategies for CCF resources and facilitate research on other ecological variables affecting CCF distribution patterns. Full article
Show Figures

Figure 1

16 pages, 20803 KiB  
Article
Identification of Milankovitch Cycles and Their Sedimentary Responses in Fine-Grained Depositional Strata on the Southwestern Margin of the Songliao Basin
by Xuntao Yu, Xiuli Fu, Yunfeng Zhang, Yunlong Fu, Botao Huang, Jiapeng Yuan and Siyu Du
Appl. Sci. 2025, 15(10), 5747; https://doi.org/10.3390/app15105747 - 21 May 2025
Viewed by 464
Abstract
A series of fault depressions developed in the Kailu area on the southwestern margin of the Songliao Basin, where thick lacustrine fine-grained sedimentary rocks were widely deposited during the initial faulting stage in the Early Cretaceous. These formations serve as the primary source [...] Read more.
A series of fault depressions developed in the Kailu area on the southwestern margin of the Songliao Basin, where thick lacustrine fine-grained sedimentary rocks were widely deposited during the initial faulting stage in the Early Cretaceous. These formations serve as the primary source rocks within the depressions. To investigate the depositional cyclicity framework, paleoenvironmental conditions, and source rock development patterns of fine-grained sedimentary strata, this study focuses on the Naiman Sag, selecting Well Nai-10 for wavelet transform and spectral analysis based on natural gamma ray logs. Combining core, well logging, and geochemical element analyses, Milankovitch cycles within the Yixian Formation were identified. The relationship between theoretical orbital periods and sedimentary cycles in a single well was established, enabling the high-precision identification and classification of fine-grained sedimentary cycles. Furthermore, the study explores the sedimentary response to orbital forcing and the development patterns of source rocks. The results indicate that fine-grained sedimentary strata exhibit distinct Milankovitch cyclicity, with a strong correlation between astronomical periods and sedimentary cycles. Using the 100 kyr short eccentricity cycle as the tuning curve, an astronomical timescale and high-frequency cyclic division for the target interval were established. Under the control of long eccentricity cycles, sedimentation exhibits strong response characteristics: near the peak of short eccentricity cycles, the climate was warm and humid, redox conditions were strong, and precipitation was high, facilitating organic matter accumulation. Based on this response relationship, two ideal enrichment models of mudstone and shale under different paleoclimatic conditions are proposed, providing valuable insights for identifying high-quality source rocks and unconventional hydrocarbons in hydrocarbon exploration. Full article
Show Figures

Figure 1

25 pages, 9998 KiB  
Article
The Impact of Rural Population Decline on the Economic Efficiency of Agricultural Carbon Emissions: A Case Study of the Contiguous Karst Areas in Yunnan–Guizhou Provinces, China
by Weini Chen, Dejun Han, Yu Zhan and Bo Chen
Agriculture 2025, 15(10), 1081; https://doi.org/10.3390/agriculture15101081 - 17 May 2025
Cited by 1 | Viewed by 457
Abstract
Amid global climate warming, agricultural low-carbon transition is critical for ecological governance. In China’s ecologically fragile contiguous karst areas of Yunnan–Guizhou, intensifying rural population decline poses unique challenges to emission reduction. This study analyzes population and agricultural production data from 25 cities (prefectures) [...] Read more.
Amid global climate warming, agricultural low-carbon transition is critical for ecological governance. In China’s ecologically fragile contiguous karst areas of Yunnan–Guizhou, intensifying rural population decline poses unique challenges to emission reduction. This study analyzes population and agricultural production data from 25 cities (prefectures) (2013–2022) to quantify rural population decline rates and agricultural carbon emission efficiency. We map their spatiotemporal evolution patterns, apply spatial autocorrelation models to assess spatial dependencies, and investigate mechanisms through a mediation model integrated with agricultural modernization’s three core systems: industrial, production, and management. Key findings reveal (1) divergent trajectories of carbon emission efficiency across regions with varying population decline types; (2) a global Moran’s I of −0.3519, indicating significant negative spatial correlation between population decline intensity and emission efficiency; and (3) dual impact mechanisms where population decline directly alters emission efficiency and indirectly modulates it through interactions with agricultural systems, with mechanism heterogeneity across decline patterns. To reconcile carbon reduction and agricultural growth, region-specific strategies must align population decline gradients with dynamic adjustments to agricultural systems, ensuring synchronized demographic transition and modernization. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

Back to TopTop