Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (125)

Search Parameters:
Keywords = vulnerable marine ecosystems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 3909 KiB  
Article
Exploring How Climate Change Scenarios Shape the Future of Alboran Sea Fisheries
by Isabella Uzategui, Susana Garcia-Tiscar and Paloma Alcorlo
Water 2025, 17(15), 2313; https://doi.org/10.3390/w17152313 - 4 Aug 2025
Viewed by 39
Abstract
Climate change is disrupting marine ecosystems, necessitating a deeper understanding of environmental and fishing-related impacts on exploited species. This study examines the effects of physical factors (temperature, thermal anomalies, salinity, seabed conditions), biogeochemical elements (pH, oxygen levels, nutrients, primary production), and fishing pressure [...] Read more.
Climate change is disrupting marine ecosystems, necessitating a deeper understanding of environmental and fishing-related impacts on exploited species. This study examines the effects of physical factors (temperature, thermal anomalies, salinity, seabed conditions), biogeochemical elements (pH, oxygen levels, nutrients, primary production), and fishing pressure on the biomass of commercially important species in the Alboran Sea from 1999 to 2022. Data were sourced from the Copernicus observational program, focusing on the geographical sub-area 1 (GSA-1) zone across three depth ranges. Generalized Additive Models were applied for analysis. Rising temperatures and seasonal anomalies have largely negative effects, disrupting species’ physiological balance. Changes in water quality, including improved nutrient and oxygen concentrations, have yielded complex ecological responses. Fishing indices highlight the vulnerability of small pelagic fish to climate change and overfishing, underscoring their economic and ecological significance. These findings stress the urgent need for ecosystem-based management strategies that integrate climate change impacts to ensure sustainable marine resource management. Full article
(This article belongs to the Special Issue Impact of Climate Change on Marine Ecosystems)
Show Figures

Figure 1

17 pages, 7301 KiB  
Article
Environmental Analysis for the Implementation of Underwater Paths on Sepultura Beach, Southern Brazil: The Case of Palythoa caribaeorum Bleaching Events at the Global Southern Limit of Species Distribution
by Rafael Schroeder, Lucas Gavazzoni, Carlos E. N. de Oliveira, Pedro H. M. L. Marques and Ewerton Wegner
Coasts 2025, 5(3), 26; https://doi.org/10.3390/coasts5030026 - 28 Jul 2025
Viewed by 205
Abstract
Recreational diving depends on healthy marine ecosystems, yet it can harm biodiversity through species displacement and habitat damage. Bombinhas, a biodiverse diving hotspot in southern Brazil, faces growing threats from human activity and climate change. This study assessed the ecological structure of Sepultura [...] Read more.
Recreational diving depends on healthy marine ecosystems, yet it can harm biodiversity through species displacement and habitat damage. Bombinhas, a biodiverse diving hotspot in southern Brazil, faces growing threats from human activity and climate change. This study assessed the ecological structure of Sepultura Beach (2018) for potential diving trails, comparing it with historical data from Porto Belo Island. Using visual censuses, transects, and photo-quadrats across six sampling campaigns, researchers documented 2419 organisms from five zoological groups, identifying 14 dominant species, including Haemulon aurolineatum and Diplodus argenteus. Cluster analysis revealed three ecological zones, with higher biodiversity at the site’s edges (Groups 1 and 3), but these areas also hosted endangered species like Epinephelus marginatus, complicating trail planning. A major concern was the widespread bleaching of the zoanthid Palythoa caribaeorum, a key ecosystem engineer, likely due to rising sea temperatures (+1.68 °C from 1961–2018) and declining chlorophyll-a levels post-2015. Comparisons with past data showed a 0.33 °C increase in species’ thermal preferences over 17 years, alongside lower trophic levels and greater ecological vulnerability, indicating tropicalization from the expanding Brazil Current. While Sepultura Beach’s biodiversity supports diving tourism, conservation efforts must address coral bleaching and endangered species protection. Long-term monitoring is crucial to track warming impacts, and adaptive management is needed for sustainable trail development. The study highlights the urgent need to balance ecotourism with climate resilience in subtropical marine ecosystems. Full article
Show Figures

Figure 1

16 pages, 6248 KiB  
Article
Global Hotspots of Whale–Ship Collision Risk: A Multi-Species Framework Integrating Critical Habitat Zonation and Shipping Pressure for Conservation Prioritization
by Bei Wang, Linlin Zhao, Tong Lu, Linjie Li, Tingting Li, Bailin Cong and Shenghao Liu
Animals 2025, 15(14), 2144; https://doi.org/10.3390/ani15142144 - 20 Jul 2025
Viewed by 674
Abstract
The expansion of global maritime activities threatens marine ecosystems and biodiversity. Collisions between ships and marine megafauna profoundly impact vulnerable species such as whales, who serve as keystone predators. However, the specific regions most heavily affected by shipping traffic and the multi-species facing [...] Read more.
The expansion of global maritime activities threatens marine ecosystems and biodiversity. Collisions between ships and marine megafauna profoundly impact vulnerable species such as whales, who serve as keystone predators. However, the specific regions most heavily affected by shipping traffic and the multi-species facing collision risk remain poorly understood. Here, we analyzed global shipping data to assess the distribution of areas with high shipping pressure and identify global hotspots for whale–ship collisions. The results reveal that high-pressure habitats are primarily distributed within exclusive economic zones (EEZs), which are generally consistent with the distribution of collision hotspots. High-pressure habitats exhibit significant spatial mismatch: 32.9% of Marine Protected Areas endure high shipping stress and yet occupy merely 1.25% of protected ocean area. Additionally, 25.1% of collision hotspots (top 1% risk) affect four or more whale species, forming critical aggregation in regions like the Gulf of St. Lawrence and Northeast Asian marginal seas. Most of these high-risk areas lack protective measures. These findings offer actionable spatial priorities for implementing targeted conservation strategies, such as the introduction of mandatory speed restrictions and dynamic vessel routing in high-risk, multi-species hotspots. By focusing on critical aggregation areas, these strategies will help mitigate whale mortality and enhance marine biodiversity protection, supporting the sustainable coexistence of maritime activities with vulnerable marine megafauna. Full article
(This article belongs to the Section Ecology and Conservation)
Show Figures

Figure 1

26 pages, 9214 KiB  
Article
Fishing-Related Plastic Pollution on Bocassette Spit (Northern Adriatic): Distribution Patterns and Stakeholder Perspectives
by Corinne Corbau, Alexandre Lazarou and Umberto Simeoni
J. Mar. Sci. Eng. 2025, 13(7), 1351; https://doi.org/10.3390/jmse13071351 - 16 Jul 2025
Viewed by 358
Abstract
Plastic pollution in marine environments is a globally recognized concern that poses ecological and economic threats. While 80% of plastic originates from land, 20% comes from sea-based sources like shipping and fishing. Comprehensive assessments of fishing-related plastics are limited but crucial for mitigation. [...] Read more.
Plastic pollution in marine environments is a globally recognized concern that poses ecological and economic threats. While 80% of plastic originates from land, 20% comes from sea-based sources like shipping and fishing. Comprehensive assessments of fishing-related plastics are limited but crucial for mitigation. This study analyzed the distribution and temporal evolution of three fishing-related items (EPS fish boxes, fragments, and buoys) along the Bocassette spit in the northern Adriatic Sea, a region with high fishing and aquaculture activity. UAV monitoring (November 2019, June/October 2020) and structured interviews with Po Delta fishermen were conducted. The collected debris was mainly EPS, with boxes (54.8%) and fragments (39.6%). Fishermen showed strong awareness of degradation, identifying plastic as the primary litter type and reporting gear loss. Litter concentrated in active dunes and the southern sector indicates human and riverine influence. Persistent items (61%) at higher elevations suggest longer residence times. Mapped EPS boxes could generate billions of micro-particles (e.g., ~1013). The results reveal a complex interaction between natural processes and human activities in litter distribution. This highlights the need for integrated management strategies, like improved waste management, targeted cleanup, and community involvement, to reduce long-term impacts on vulnerable coastal ecosystems. Full article
(This article belongs to the Section Marine Environmental Science)
Show Figures

Figure 1

25 pages, 5487 KiB  
Article
Blue Marketing: New Perspectives for the Responsible Tourism Development of Coastal Natural Environments
by Gema Ramírez-Guerrero, Alfredo Fernández-Enríquez, Manuel Arcila-Garrido and Juan Adolfo Chica-Ruiz
Tour. Hosp. 2025, 6(3), 136; https://doi.org/10.3390/tourhosp6030136 - 11 Jul 2025
Viewed by 459
Abstract
Tourism development in coastal zones is often guided by marketing strategies focused on promotion, without real integration with the ecological, identity, and planning challenges facing these territories. This disconnection compromises environmental resilience, dilutes local cultural identity, and hinders adaptive governance in contexts of [...] Read more.
Tourism development in coastal zones is often guided by marketing strategies focused on promotion, without real integration with the ecological, identity, and planning challenges facing these territories. This disconnection compromises environmental resilience, dilutes local cultural identity, and hinders adaptive governance in contexts of increasing tourism pressure and climate change. In response to this problem, the article presents the concept of Blue Marketing, a place-based, sustainability-oriented approach designed to guide communication, product development, and governance in marine and coastal destinations. Drawing on socio-environmental marketing and inspired by Integrated Coastal Zone Management (ICZM), the study proposes a Blue Marketing Decalogue (BMD), structured into three thematic blocks: (1) Ecosystem-focused sustainability, (2) cultural identity and territorial uniqueness, and (3) strategic planning and adaptive governance. Methodologically, the decalogue is empirically grounded in a territorial diagnosis of the Barbate–Vejer coastal corridor (Cádiz, Spain), developed through Geographic Information Systems (GIS), local planning documents, and field observations. This case study provides a detailed analysis of ecological vulnerabilities, cultural resources, and tourism dynamics, offering strategic insights transferable to other coastal contexts. The BMD incorporates both strategic and normative instruments that support the design of responsible tourism communication strategies, aligned with environmental preservation, community identity, and long-term planning. This contribution enriches current debates on sustainable tourism governance and provides practical tools for coastal destinations aiming to balance competitiveness with ecological responsibility. Ultimately, Blue Marketing is proposed as a vector for transformation, capable of reconnecting tourism promotion with the sustainability challenges and opportunities of coastal regions. Full article
Show Figures

Figure 1

20 pages, 1080 KiB  
Article
Blue Horizons for Resilient Islands: Legal–Technological Synergies Advancing SDG 7 and 13 Through the UNCLOS–Paris Agreement Integration in SIDS’ Energy Transitions
by Steel Rometius and Xiaoxue Wei
Sustainability 2025, 17(13), 6011; https://doi.org/10.3390/su17136011 - 30 Jun 2025
Viewed by 458
Abstract
Small island developing states (SIDS) face a dual constraint of “environmental vulnerability and energy dependence” in the context of climate change. How to achieve just energy transitions has become a core proposition for SIDS to address. This paper focuses on how SIDS can [...] Read more.
Small island developing states (SIDS) face a dual constraint of “environmental vulnerability and energy dependence” in the context of climate change. How to achieve just energy transitions has become a core proposition for SIDS to address. This paper focuses on how SIDS can advance Sustainable Development Goal (SDG) 7 (affordable and clean energy) and Sustainable Development Goal 13 (climate action) through UNCLOS–Paris Agreement integration in energy transitions. Grounded in the theoretical framework of the Multidimensional Vulnerability Index (MVI), this research aims to construct a comprehensive analytical system that systematically examines the energy transition challenges facing SIDS and provide multi-level energy transition solutions spanning from international to domestic contexts for climate-vulnerable SIDS. The research findings reveal that SIDS face a structural predicament of “high vulnerability–low resilience” and the triple challenge of “energy–climate–development”. International climate finance is severely mismatched with the degree of vulnerability in SIDS; the United Nations Convention on the Law of the Sea (UNCLOS) and the Paris Agreement lack institutional synergy and fail to adequately support marine renewable energy development in SIDS. In response to these challenges, this study proposes multi-level solutions to promote the synergistic achievement of SDG 7 and SDG 13: at the international level, improve climate finance rules, innovate financing mechanisms, strengthen technological cooperation, and integrate relevant international legal framework; at the domestic level, optimize the layout of marine renewable energy development, construct sustainable investment ecosystems, and strengthen environmental scientific research and local data governance. Full article
(This article belongs to the Special Issue New Horizons: The Future of Sustainable Islands)
Show Figures

Figure 1

22 pages, 21422 KiB  
Article
Machine Learning Approaches for Microplastic Pollution Analysis in Mytilus galloprovincialis in the Western Black Sea
by Maria Emanuela Mihailov, Alecsandru Vladimir Chiroșca, Elena Daniela Pantea and Gianina Chiroșca
Sustainability 2025, 17(12), 5664; https://doi.org/10.3390/su17125664 - 19 Jun 2025
Viewed by 554
Abstract
Microplastic pollution presents a significant and rising risk to both ecological integrity and the long-term viability of economic activities reliant on marine ecosystems. The Black Sea, a region sustaining economic sectors such as fisheries, tourism, and maritime transport, is increasingly vulnerable to this [...] Read more.
Microplastic pollution presents a significant and rising risk to both ecological integrity and the long-term viability of economic activities reliant on marine ecosystems. The Black Sea, a region sustaining economic sectors such as fisheries, tourism, and maritime transport, is increasingly vulnerable to this form of contamination. Mytilus galloprovincialis, a well-established bioindicator, accumulates microplastics, providing a direct measure of environmental pollution and indicating potential economic consequences deriving from degraded ecosystem services. While previous studies have documented microplastic pollution in the Black Sea, our paper specifically quantified microplastic contamination in M. galloprovincialis collected from four sites along the western Black Sea coast, each characterised by distinct levels of anthropogenic influence: Midia Port, Constanta Port, Mangalia Port, and 2 Mai. We used statistical analysis to quantify site-specific microplastic contamination in M. galloprovincialis and employed machine learning to develop models predicting accumulation patterns based on environmental variables. Our findings demonstrate the efficacy of mussels as bioindicators of marine plastic pollution and highlight the utility of machine learning in developing effective predictive tools for monitoring and managing marine litter contamination in marine environments, thereby contributing to sustainable economic practices. Full article
(This article belongs to the Special Issue Environment and Sustainable Economic Growth, 2nd Edition)
Show Figures

Figure 1

21 pages, 1628 KiB  
Review
Microplastics in Aquatic Ecosystems: A Global Review of Distribution, Ecotoxicological Impacts, and Human Health Risks
by Atiqur Rahman Sunny, Sharif Ahmed Sazzad, Mohammed Ariful Islam, Mahmudul Hasan Mithun, Monayem Hussain, António Raposo and Md Khurshid Alam Bhuiyan
Water 2025, 17(12), 1741; https://doi.org/10.3390/w17121741 - 9 Jun 2025
Viewed by 1715
Abstract
Microplastics (MPs), defined as synthetic polymer particles less than 5 mm in diameter, are widely acknowledged as ubiquitous contaminants in aquatic ecosystems, including freshwater, marine, and polar environments. Global concern with MPs has significantly increased; nevertheless, much of the current knowledge remains fragmented [...] Read more.
Microplastics (MPs), defined as synthetic polymer particles less than 5 mm in diameter, are widely acknowledged as ubiquitous contaminants in aquatic ecosystems, including freshwater, marine, and polar environments. Global concern with MPs has significantly increased; nevertheless, much of the current knowledge remains fragmented and, at times, limited to specific regions or ecological compartments. This study emphasizes the necessity of a thorough synthesis by critically analyzing global microplastics’ dispersion patterns, ecological consequences, and associated human health concerns. A systematic approach was employed, integrating specific search terms and establishing inclusion and exclusion criteria across various scientific databases to obtain a representative collection of literature. The study covers important topics such as the classification of MPs, their distribution, environmental impacts, and interactions with other pollutants, including heavy metals, pharmaceuticals and endocrine-disrupting chemicals. Particular emphasis is placed on comparing ecosystem-specific vulnerabilities, such as those found in tropical wetlands, marine gyres, and polar systems. The review examines potential human exposure pathways, via contaminated seafood, water, and air, while also compiling new information about cellular and physiological damage, including oxidative stress, inflammation, hormone disruption, and possible genetic effects. This investigation highlights the value of collaborative monitoring, the adoption of biodegradable alternatives, policy development, and interdisciplinary research by integrating knowledge from ecology and public health. The primary objective is to advance ecosystem-specific mitigation techniques and promote evidence-based policy development in addressing this intricate environmental issue. Full article
(This article belongs to the Special Issue Impact of Microplastic Pollution on Soil and Groundwater Environment)
Show Figures

Figure 1

14 pages, 2017 KiB  
Article
The Simulation of Offshore Radioactive Substances Diffusion Based on MIKE21: A Case Study of Jiaozhou Bay
by Zhilin Hu, Feng Ye, Ziao Jiao, Junjun Chen and Junjun Gong
Sustainability 2025, 17(12), 5315; https://doi.org/10.3390/su17125315 - 9 Jun 2025
Viewed by 362
Abstract
Nuclear accident-derived radionuclide dispersion poses critical challenges to marine ecological sustainability and human–ocean interdependence. While existing studies focus on hydrodynamic modeling of pollutant transport, the link between nuclear safety and sustainable ocean governance remains underexplored. This study investigates radionuclide diffusion patterns in semi-enclosed [...] Read more.
Nuclear accident-derived radionuclide dispersion poses critical challenges to marine ecological sustainability and human–ocean interdependence. While existing studies focus on hydrodynamic modeling of pollutant transport, the link between nuclear safety and sustainable ocean governance remains underexplored. This study investigates radionuclide diffusion patterns in semi-enclosed bays using a high-resolution coupled hydrodynamic particle-tracking model, explicitly addressing threats to marine ecosystem stability and coastal socioeconomic resilience. Simulations revealed that tidal oscillations and topographic constraints prolong pollutant retention by 40% compared to open seas, elevating local concentration peaks by 2–3× and intensifying bioaccumulation risks in benthic organisms. These findings directly inform sustainable marine resource management: the identified high-risk zones enable targeted monitoring of fishery resources, while diffusion pathways guide coastal zoning policies to decouple economic activities from contamination hotspots. Compared to Fukushima’s open-ocean dispersion models, our framework uniquely quantifies how semi-enclosed geomorphology exacerbates localized ecological degradation, providing actionable metrics for balancing nuclear energy development with UN Sustainable Development Goals (SDGs) 14 and 3. By integrating hydrodynamic specificity with ecosystem vulnerability thresholds, this work advances science-based protocols for sustainable nuclear facility siting and marine spatial planning. Full article
Show Figures

Figure 1

23 pages, 4234 KiB  
Article
Nanoplastics Elicit Stage-Specific Physiological, Biochemical, and Gut Microbiome Responses in a Freshwater Mussel
by Yangli Chi, Hui Zhang, Jian Gao, Liang Wan, Yiying Jiao, Heyun Wang, Mingjun Liao and Ross N. Cuthbert
Toxics 2025, 13(5), 374; https://doi.org/10.3390/toxics13050374 - 5 May 2025
Viewed by 550
Abstract
Mussels are highly efficient filter feeders, playing a crucial role in managing eutrophication and assessing pollution. Although research on nanoplastic (NP) toxicity in marine organisms is expanding, studies on freshwater species remain limited despite freshwater ecosystems being disproportionately biodiverse and vulnerable to pollutants. [...] Read more.
Mussels are highly efficient filter feeders, playing a crucial role in managing eutrophication and assessing pollution. Although research on nanoplastic (NP) toxicity in marine organisms is expanding, studies on freshwater species remain limited despite freshwater ecosystems being disproportionately biodiverse and vulnerable to pollutants. Here, we quantified the effects of polystyrene nanoplastics (PS-NPs, 50 nm) at concentrations of 0, 2, 20, and 200 μg/L on different growth stages of the freshwater mussel Cristaria plicata. After a 45-day exposure, PS-NPs at concentrations ≥ 20 μg/L damaged intestinal epithelial cilia in both age groups. Exposure to 200 μg/L PS-NPs significantly increased malondialdehyde levels and decreased superoxide dismutase activity in both groups, with adults showing a significant rise in total protein content and juveniles exhibiting marked increases in respiratory and ammonia excretion rates. Additionally, PS-NP exposure significantly altered the relative abundance of gut microbial phyla, including Proteobacteria, Firmicutes, Verrucomicrobiota, and Bacteroidota, with Fusobacteriota also being affected in adults. Juveniles were more sensitive to physiological changes, whereas adults exhibited greater microbiota shifts in response to PS-NP exposure. Therefore, this study provides new insights into the stage-specific effects of PS-NPs on intestinal integrity and physiological and biochemical health in freshwater mussels, underscoring the need for targeted management strategies to protect freshwater ecosystems. Full article
Show Figures

Figure 1

14 pages, 4015 KiB  
Article
Marine Macro-Plastics Litter Features and Their Relation to the Geographical Settings of the Selected Adriatic Islands, Croatia (2018–2023)
by Natalija Špeh and Robert Lončarić
Coasts 2025, 5(2), 13; https://doi.org/10.3390/coasts5020013 - 10 Apr 2025
Viewed by 563
Abstract
Marine litter (ML), encompassing human-made objects in marine ecosystems, poses significant threats to the coasts of some Adriatic islands, despite their remoteness and sparse populations. These islands, reliant on tourism, are particularly vulnerable to ML pollution. This study hypothesized that the natural features [...] Read more.
Marine litter (ML), encompassing human-made objects in marine ecosystems, poses significant threats to the coasts of some Adriatic islands, despite their remoteness and sparse populations. These islands, reliant on tourism, are particularly vulnerable to ML pollution. This study hypothesized that the natural features of the islands influence ML distribution. It employes an integrated geographic approach combining the results of field survey (via sea kayaking) with various indicators which include: (1) coastal orientation and number density of bays, (2) vegetation exposure and biomass share, (3) island area and number density of bays, (4) bay openness and ML quantity, and (5) bay openness and plastic prevalence in ML. Focusing on islands of Lošinj, Pašman, Vis, and the Kornati and Elaphiti archipelago, the study analyzed data collected over six years (2018–2023). Results highlighted that NW-SE and W-E coastal orientations are particularly susceptible to ML accumulation, especially in the southern Adriatic. Linear Fitting Regression analyses revealed a stronger correlation between number density of polluted bays and the surface area of smaller islands (<10 km2) compared to larger islands (>10 km2). The following findings underscore the need for international collaboration and stringent policies to mitigate ML pollution, ensuring the protection of Adriatic marine ecosystems and the sustainability of local communities. Full article
Show Figures

Figure 1

24 pages, 4155 KiB  
Article
Environmental Impact of Irgarol 1051, a Biocide, on Marine Microalgae Metabolism: A Case Study of Chlorella salina and Dunaliella bardawil
by Mona I. A. Kaamoush, Antonio Scopa, Marios Drosos and Ahmed M. El-Zeiny
J. Mar. Sci. Eng. 2025, 13(4), 695; https://doi.org/10.3390/jmse13040695 - 30 Mar 2025
Cited by 1 | Viewed by 502
Abstract
Preventing fouling is crucial for maintaining ship performance, as it reduces speed, increases fuel consumption, raises greenhouse gas emissions, and spreads invasive species. Irgarol 1051, an antifouling agent (2, methythiol-4, tert-butylamino, 6-cyclopropylamino, s-triazine), is a toxic compound that impacts various marine species. It [...] Read more.
Preventing fouling is crucial for maintaining ship performance, as it reduces speed, increases fuel consumption, raises greenhouse gas emissions, and spreads invasive species. Irgarol 1051, an antifouling agent (2, methythiol-4, tert-butylamino, 6-cyclopropylamino, s-triazine), is a toxic compound that impacts various marine species. It inhibits algal growth and disrupts key metabolites, posing a threat to the marine ecosystem. This study aimed to assess the toxic effects of Irgarol 1051 on Chlorella salina and Dunaliella bardawil, two nutrient-rich marine algae commonly used in fish feed. In addition, the suitability of the Mediterranean Sea coast for algal proliferation was assessed using geospatial techniques. The data were statistically examined using a two-way ANOVA test. Lethal and sublethal effects of Irgarol 1051 were measured in the laboratory to identify the consequences of this biocide on certain metabolite compositions. EC50 for C. salina and D. bardawil was estimated to be 0.50 µg·L−1 and 0.025 µg·L−1 respectively. IR spectroscopy of total cell constituents, protein profile, and the damaging effects of antioxidants have been evaluated for the two algal species. The findings of this study revealed that Irgarol 1051 negatively affected all the examined metabolites in both algal species, with more pronounced impacts on the wall-less alga Dunaliella bardawil compared to the walled alga Chlorella salina. A notable increase in total antioxidants was observed in both algae as the Irgarol concentration increased. The study reveals high algal growth areas near the Nile Delta along the Egyptian coast, potentially vulnerable to the effects of Irgarol 1051 due to nutrient runoff and eutrophication. The spatial analyses showed that the growth of C. saline and D. bardawil in Egyptian seawater is high in front of the Nile delta governorates: Port Said, Damietta, and Dakhalia shores reporting 6, 4.5, and 4 mg·m−3, respectively. The level of mass chlorophyll “a” in front of the Egyptian northern governorates can be ordered as follows: Port Said > Damietta > Dakahlia > North Sinia > Kafr El-Sheikh > Alexandria > Matrouh. This study highlights the use of spatial analyses to assess algal distribution, pollution impact, and ecosystem vulnerability along the Egyptian Mediterranean coast for effective environmental management. Full article
Show Figures

Figure 1

32 pages, 22462 KiB  
Article
Spatiotemporal Dynamics of Marine Heatwaves and Ocean Acidification Affecting Coral Environments in the Philippines
by Rose Angeli Tabanao Macagga and Po-Chun Hsu
Remote Sens. 2025, 17(6), 1048; https://doi.org/10.3390/rs17061048 - 17 Mar 2025
Viewed by 1773
Abstract
The coral reefs in the Philippines are facing an unprecedented crisis. This study, based on a comprehensive analysis of marine heatwaves (MHWs), degree heating weeks (DHWs), and ocean acidification (OA) indices derived from satellite observations and reanalysis data, reveals how thermal stress and [...] Read more.
The coral reefs in the Philippines are facing an unprecedented crisis. This study, based on a comprehensive analysis of marine heatwaves (MHWs), degree heating weeks (DHWs), and ocean acidification (OA) indices derived from satellite observations and reanalysis data, reveals how thermal stress and OA have progressively eroded coral ecosystems from 1985 to 2022. This study analyzed 12 critical coral habitats adjacent to the Philippines. The monthly average sea surface temperature (SST) in the study area ranged from 26.6 °C to 29.3 °C. The coast of Lingayen Gulf was identified as the most vulnerable coral reef site in the Philippines, followed by Davao Oriental and Polillo Island. The coast of Lingayen Gulf recorded the highest total MHW days in 2022, amounting to 293 days. The coast of Lingayen Gulf also reached the highest DHW values in July and August 2022, with 8.94 °C weeks, while Davao Oriental experienced the most extended average duration of MHWs in 2020, lasting 90.5 days per event. Large-scale climate features such as the El Niño–Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO) significantly influenced the study area’s SST anomalies and MHW events. High-risk coral bleaching periods, such as 1988–1989, 1998–1999, 2007–2008, and 2009–2010, were characterized by transitions from El Niño and positive PDO phases, to La Niña and negative PDO phases. However, since 2015, global warming has led to high cumulative heat stress without specific climate background patterns. We propose a Coral Marine Environmental Vulnerability Index (CoralVI) to integrate the spatiotemporal dynamics of warming and acidification and their impacts on coral habitats. The data show a rapid increase in the marine environmental vulnerability of coral habitats in the Philippines in recent years, extending to almost the entire coastline, posing significant threats to coral survival. Full article
Show Figures

Figure 1

11 pages, 11993 KiB  
Communication
Thalassophryne maculosa (Batrachoididae: Thalassophryninae) as a Bioindicator of Mercury-Induced Genotoxicity
by Mauro Nirchio Tursellino, Nicola Noemi Coppola, Juan Ignacio Gaviria Montoya and Juan Antonio Gómez
Toxics 2025, 13(3), 206; https://doi.org/10.3390/toxics13030206 - 13 Mar 2025
Viewed by 602
Abstract
Environmental monitoring requires reliable bioindicators to assess the genotoxic effects of pollutants in aquatic ecosystems. In this study, the marine fish Thalassophryne maculosa was evaluated as a bioindicator of genotoxicity through the application of the micronucleus test. Fish were exposed to varying concentrations [...] Read more.
Environmental monitoring requires reliable bioindicators to assess the genotoxic effects of pollutants in aquatic ecosystems. In this study, the marine fish Thalassophryne maculosa was evaluated as a bioindicator of genotoxicity through the application of the micronucleus test. Fish were exposed to varying concentrations of mercuric chloride (HgCl2) (0.1, 0.25, and 0.5 µg HgCl2/g body weight) over different time intervals (24, 48, 72, and 96 h). A dose- and time-dependent increase in nuclear abnormalities, including micronuclei, was observed, with significant chromosomal damage detected at 0.25 and 0.5 µg HgCl2/g body weight. These results demonstrate the sensitivity of T. maculosa to mercury exposure, even at concentrations below regulatory safety thresholds, emphasizing its suitability as a bioindicator for detecting genotoxic contamination in coastal ecosystems. This study provides critical insights into the ecological risks posed by mercury and highlights the potential of T. maculosa to enhance environmental monitoring programs, particularly in regions vulnerable to heavy metal pollution. Full article
(This article belongs to the Section Ecotoxicology)
Show Figures

Figure 1

33 pages, 422 KiB  
Review
Modelling and Mapping Rapid-Onset Coastal Flooding: A Systematic Literature Review
by Alice Re, Lorenzo Minola and Alessandro Pezzoli
Water 2025, 17(4), 599; https://doi.org/10.3390/w17040599 - 19 Feb 2025
Viewed by 1607
Abstract
Increases in the magnitude and frequency of extreme flood events are among the most impactful consequences of climate change. Coastal areas can potentially be affected by interactions among different flood drivers at the interface of terrestrial and marine ecosystems. At the same time, [...] Read more.
Increases in the magnitude and frequency of extreme flood events are among the most impactful consequences of climate change. Coastal areas can potentially be affected by interactions among different flood drivers at the interface of terrestrial and marine ecosystems. At the same time, socio-economic processes of population growth and urbanization can lead to increases in local vulnerability to climate extremes in coastal areas. Within this context, research focusing on modelling and mapping rapid-onset coastal flooding is essential (a) to support flood risk management, (b) to design local climate adaptation policies and (c) to increase climate resilience of coastal communities. This systematic literature review delineates the state-of-the art of research on rapid-onset coastal flooding. It provides a comprehensive picture of the broad range of methodologies utilised to model flooding and highlights the commonly identified issues, both from a scientific standpoint and in terms of the policy implications of translating research outputs into actionable information. As flood maps represent fundamental instruments in the communication of research outcomes to support decision making and increase climate resilience, a focus on the spatial representation of coastal floods proposed in the literature is adopted in this review. Full article
(This article belongs to the Special Issue Climate Risk Management, Sea Level Rise and Coastal Impacts)
Show Figures

Figure 1

Back to TopTop