Algal Biotechnology: Unleashing the Potential of Algae for a Sustainable Tomorrow

A special issue of Journal of Marine Science and Engineering (ISSN 2077-1312). This special issue belongs to the section "Marine Biology".

Deadline for manuscript submissions: closed (31 December 2024) | Viewed by 4268

Special Issue Editors


E-Mail Website
Guest Editor
Department of Agriculture and Natural Resources, College of Agriculture, Science, and Technology, Delaware State University, Dover, DE 19901, USA
Interests: bioactive molecules; secondary metabolites; CRISPR; tissue culture; molecular biology; bioenergy
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Agriculture and Natural Resources, College of Agriculture, Science, and Technology, Delaware State University, Dover, DE 19901, USA
Interests: habitat restoration; aquatic ecology and health; water resources; sustainable marine aquaculture and fisheries
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Algae are simple, photosynthetic organisms that can be found in diverse habitats, ranging from freshwater to marine environments. They include a wide range of organisms, such as microalgae, macroalgae (seaweeds), and cyanobacteria (blue–green algae). Algal biotechnology involves the use of algae for various applications in different fields and sustainable solutions across multiple industries, including agriculture, energy, food, medicine, animal feed, and environmental management. Research into algal biotechnology continues to advance, with ongoing efforts to optimize cultivation techniques, explore new species, and develop innovative applications for these versatile organisms. As the understanding of algae biology and related technology progresses, it is likely that new and exciting applications will emerge.

We invite you to submit original research articles, review papers, and perspective pieces that contribute to the advancement of knowledge regarding algal biotechnology and environmental remediation. Topics of interest include, but are not limited to, the following areas:

  1. Biofuel production using algae;
  2. Algal contributions to carbon capture and sequestration;
  3. Algal applications in wastewater treatment and nutrient cycling;
  4. Algae-derived biodegradable plastics and biomaterials;
  5. Pharmaceuticals and nutraceuticals from algae;
  6. Algal bioremediation strategies;
  7. Algae as a biofertilizer;
  8. Algae as an animal feed;
  9. Harmful algal utilization;
  10. Algae in cosmetic industry applications;
  11. Environmental impacts and excess nutrient removal efficiency.

Dr. Ali Parsaeimehr
Dr. Gulnihal Ozbay
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Journal of Marine Science and Engineering is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • algal biotechnology
  • bioenergy
  • sustainability
  • environmental management

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

24 pages, 4155 KiB  
Article
Environmental Impact of Irgarol 1051, a Biocide, on Marine Microalgae Metabolism: A Case Study of Chlorella salina and Dunaliella bardawil
by Mona I. A. Kaamoush, Antonio Scopa, Marios Drosos and Ahmed M. El-Zeiny
J. Mar. Sci. Eng. 2025, 13(4), 695; https://doi.org/10.3390/jmse13040695 - 30 Mar 2025
Viewed by 272
Abstract
Preventing fouling is crucial for maintaining ship performance, as it reduces speed, increases fuel consumption, raises greenhouse gas emissions, and spreads invasive species. Irgarol 1051, an antifouling agent (2, methythiol-4, tert-butylamino, 6-cyclopropylamino, s-triazine), is a toxic compound that impacts various marine species. It [...] Read more.
Preventing fouling is crucial for maintaining ship performance, as it reduces speed, increases fuel consumption, raises greenhouse gas emissions, and spreads invasive species. Irgarol 1051, an antifouling agent (2, methythiol-4, tert-butylamino, 6-cyclopropylamino, s-triazine), is a toxic compound that impacts various marine species. It inhibits algal growth and disrupts key metabolites, posing a threat to the marine ecosystem. This study aimed to assess the toxic effects of Irgarol 1051 on Chlorella salina and Dunaliella bardawil, two nutrient-rich marine algae commonly used in fish feed. In addition, the suitability of the Mediterranean Sea coast for algal proliferation was assessed using geospatial techniques. The data were statistically examined using a two-way ANOVA test. Lethal and sublethal effects of Irgarol 1051 were measured in the laboratory to identify the consequences of this biocide on certain metabolite compositions. EC50 for C. salina and D. bardawil was estimated to be 0.50 µg·L−1 and 0.025 µg·L−1 respectively. IR spectroscopy of total cell constituents, protein profile, and the damaging effects of antioxidants have been evaluated for the two algal species. The findings of this study revealed that Irgarol 1051 negatively affected all the examined metabolites in both algal species, with more pronounced impacts on the wall-less alga Dunaliella bardawil compared to the walled alga Chlorella salina. A notable increase in total antioxidants was observed in both algae as the Irgarol concentration increased. The study reveals high algal growth areas near the Nile Delta along the Egyptian coast, potentially vulnerable to the effects of Irgarol 1051 due to nutrient runoff and eutrophication. The spatial analyses showed that the growth of C. saline and D. bardawil in Egyptian seawater is high in front of the Nile delta governorates: Port Said, Damietta, and Dakhalia shores reporting 6, 4.5, and 4 mg·m−3, respectively. The level of mass chlorophyll “a” in front of the Egyptian northern governorates can be ordered as follows: Port Said > Damietta > Dakahlia > North Sinia > Kafr El-Sheikh > Alexandria > Matrouh. This study highlights the use of spatial analyses to assess algal distribution, pollution impact, and ecosystem vulnerability along the Egyptian Mediterranean coast for effective environmental management. Full article
Show Figures

Figure 1

17 pages, 1500 KiB  
Article
Lipid Characterization of Beach-Cast Seaweeds from Gran Canaria Island: Potential Use in Human and Animal Nutrition
by Ana Galindo, Coraima del Mar García, José Antonio Pérez, Beatriz Abdul-Jalbar, Marianna Venuleo, Nieves Guadalupe Acosta, Manuel Marrero and Covadonga Rodríguez
J. Mar. Sci. Eng. 2024, 12(6), 942; https://doi.org/10.3390/jmse12060942 - 4 Jun 2024
Cited by 1 | Viewed by 1182
Abstract
Macroalgal wracks can be considered unpleasant for beach users and, consequently, they are usually collected from most touristic beaches and discarded. However, seaweeds are an important source of bioactive lipid compounds, such as phospholipids, glycolipids, and n-3 polyunsaturated fatty acids (n-3 PUFA), displaying [...] Read more.
Macroalgal wracks can be considered unpleasant for beach users and, consequently, they are usually collected from most touristic beaches and discarded. However, seaweeds are an important source of bioactive lipid compounds, such as phospholipids, glycolipids, and n-3 polyunsaturated fatty acids (n-3 PUFA), displaying multiple health-promoting properties, including antioxidant and antimicrobial activities. The aim of this study is to characterize the lipid composition of twelve marine seaweed species (two green, six red, and four brown species) from macroalgal wracks of Gran Canaria Island, and to evaluate their potential use for several purposes, including human and animal nutrition. Lipid content, lipid classes, and fatty acid profiles of isolated specimens from the macroalgal wracks were determined. Lipid contents ranged between 0.27 and 3.17% of dry weight, with all species showing high phytosterols proportions and balanced omega-6/omega-3 (n-6/n-3) ratios. In addition, Cymopolia barbata, Asparagopsis sp., and Hypnea spinella seem to be an attractive source of both mono- and di-galactosyl-diacylglycerols, while A. stellata, Jania sp., and Lobophora sp. are relatively rich in n-3 LC−PUFA. Finally, both green algae showed the most favorable values for the nutritional indicators of cardiovascular health promotion. Overall, the macroalgal species analyzed could be considered as interesting sources for human and animal nutrition. Full article
Show Figures

Graphical abstract

13 pages, 11761 KiB  
Article
Molecular Characterization of the Actin Gene and 5′ Flanking Sequence from Brown Macroalga Saccharina japonica (Laminariales, Phaeophyta)
by Hao Xu, Zhenghua Wang, Yichen Zhang and Peng Jiang
J. Mar. Sci. Eng. 2024, 12(6), 887; https://doi.org/10.3390/jmse12060887 - 27 May 2024
Cited by 1 | Viewed by 1671
Abstract
The brown macroalga Saccharina japonica (Laminariales, Phaeophyta) is the most productive cultured seaweed in the world. In order to improve the biosafety of transgenic kelp, it is necessary to develop endogenous constitutive promoters, replacing those of virus origin. In this study, the housekeeping [...] Read more.
The brown macroalga Saccharina japonica (Laminariales, Phaeophyta) is the most productive cultured seaweed in the world. In order to improve the biosafety of transgenic kelp, it is necessary to develop endogenous constitutive promoters, replacing those of virus origin. In this study, the housekeeping actin gene from S. japonica (SjACT) was found to contain three exons and two introns, representing a unique actin gene structure pattern in brown algae. Additionally, the 5′ upstream region was obtained using genome walking, and fused to the reporter gene lacZ or EGFP to construct promoter-detective vectors. Using an established genetic transformation system, kelps in different life-cycle stages were transformed. The detection results showed that, in the diploid sporophyte stage, the transient expression from the lacZ gene could be observed in the frond, stipe, or holdfast of kelps, indicating a manner of being non-tissue-specific. And, in the haploid gametophyte stage of S. japonica, the fluorescence of the expressed EGFP were detected in vivo in gametophyte cells of both genders. These results indicate that the promoter of the SjACT gene (pSjACT) functions in a constitutive manner and is expected to be a key endogenous element in the genetic manipulation of kelps. Full article
Show Figures

Figure 1

Back to TopTop