Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (72)

Search Parameters:
Keywords = vorticity advection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4841 KiB  
Article
Nocturnal Convection Along a Trailing-End Cold Front: Insights from Ground-Based Remote Sensing Observations
by Kylie Hoffman, David D. Turner and Belay B. Demoz
Atmosphere 2025, 16(8), 926; https://doi.org/10.3390/atmos16080926 (registering DOI) - 30 Jul 2025
Viewed by 105
Abstract
This study examines a convergence event at the trailing end of a cold front observed in the United States’ Southern Great Plains region on 28 September 1997, using an array of in situ and remote sensing instruments. The event exhibited a structure with [...] Read more.
This study examines a convergence event at the trailing end of a cold front observed in the United States’ Southern Great Plains region on 28 September 1997, using an array of in situ and remote sensing instruments. The event exhibited a structure with elevated divergence near 3 km AGL and moisture transport over both warm and cold sectors. Data from Raman lidar (RL), Atmospheric Emitted Radiance Interferometer (AERI), and Radar Wind Profilers (RWP) were used to characterize vertical profiles of the event, revealing the presence of a narrow moist updraft, horizontal moisture advection, and cloud development ahead of the front. Convection parameters, Convective Available Potential Energy (CAPE) and Convective Inhibition (CIN), were derived from collocated AERI and RL. Regions of high CAPE were aligned with areas of high moisture, indicating that convection was more favorable at moist elevated levels than near the surface. RWP observations revealed vorticity structures consistent with existing theories. This study highlights the value of high-resolution, continuous profiling from remote sensors to resolve mesoscale processes and evaluate convection potential. The event underscores the role of elevated moisture and wind shear in modulating convection initiation along a trailing-end cold front boundary where mesoscale and synoptic forces interact. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

30 pages, 14172 KiB  
Article
Synoptic and Dynamic Analyses of an Intense Mediterranean Cyclone: A Case Study
by Ahmad E. Samman
Climate 2025, 13(6), 126; https://doi.org/10.3390/cli13060126 - 15 Jun 2025
Viewed by 590
Abstract
On 3 February 2006, a powerful Mediterranean cyclone instigated a widespread dust storm across Saudi Arabia. Meteorological observations from one station recorded strong westerly to southwesterly winds, with gusts reaching 40 m/s, accompanied by thunderstorms and dust storms. This study delves into the [...] Read more.
On 3 February 2006, a powerful Mediterranean cyclone instigated a widespread dust storm across Saudi Arabia. Meteorological observations from one station recorded strong westerly to southwesterly winds, with gusts reaching 40 m/s, accompanied by thunderstorms and dust storms. This study delves into the formation and development of this significant Mediterranean cyclone, which impacted the Mediterranean basin and the Arabian Peninsula from 26 January to 4 February 2006. Utilizing ECMWF ERA5 reanalysis data, this research analyzes the synoptic and dynamic conditions that contributed to the cyclone’s evolution and intensification. The cyclone originated over the North Atlantic as cold air from higher latitudes and was advected southward, driven by a strong upper-level trough. The initial phase of cyclogenesis was triggered by baroclinic instability, facilitated by an intense upper-level jet stream interacting with a pre-existing low-level baroclinic zone over coastal regions. Upper-level dynamics enhanced surface frontal structures, promoting the formation of the intense cyclone. As the system progressed, low-level diabatic processes became the primary drivers of its evolution, reducing the influence of upper-level baroclinic mechanisms. The weakening of the upper-level dynamics led to the gradual distortion of the low-level baroclinicity and frontal structures, transitioning the system to a more barotropic state during its mature phase. Vorticity analysis revealed that positive vorticity advection and warm air transport toward the developing cyclone played key roles in its intensification, leading to the development of strong low-level winds. Atmospheric kinetic energy analysis showed that the majority of the atmospheric kinetic energy was concentrated at 400 hPa and above, coinciding with intense jet stream activity. The generation of the atmospheric kinetic energy was primarily driven by cross-contour flow, acting as a major energy source, while atmospheric kinetic energy dissipation from grid to subgrid scales served as a major energy sink. The dissipation pattern closely mirrored the generation pattern but with the opposite sign. Additionally, the horizontal flux of the atmospheric kinetic energy was identified as a continuous energy source throughout the cyclone’s lifecycle. Full article
(This article belongs to the Section Weather, Events and Impacts)
Show Figures

Figure 1

27 pages, 26505 KiB  
Article
Dynamic Diagnosis of an Extreme Precipitation Event over the Southern Slope of Tianshan Mountains Using Multi-Source Observations
by Jiangliang Peng, Zhiyi Li, Lianmei Yang and Yunhui Zhang
Remote Sens. 2025, 17(9), 1521; https://doi.org/10.3390/rs17091521 - 25 Apr 2025
Viewed by 610
Abstract
The southern slope of the Tianshan Mountains features complex terrain and an arid climate, yet paradoxically experiences frequent extreme precipitation events (EPEs), which pose significant challenges for weather forecasting. This study investigates an EPE that occurred from 20 to 21 August 2019 using [...] Read more.
The southern slope of the Tianshan Mountains features complex terrain and an arid climate, yet paradoxically experiences frequent extreme precipitation events (EPEs), which pose significant challenges for weather forecasting. This study investigates an EPE that occurred from 20 to 21 August 2019 using multi-source data to examine circulation patterns, mesoscale characteristics, moisture dynamics, and energy-instability mechanisms. The results reveal distinct spatiotemporal variability in precipitation, prompting a two-stage analytical framework: stage 1 (western plains), dominated by localized convective cells, and stage 2 (northeastern mountains), characterized by orographically enhanced precipitation clusters. The event was associated with a “two ridges and one trough” circulation pattern at 500 hPa and a dual-core structure of the South Asian high at 200 hPa. Dynamic forcing stemmed from cyclonic convergence, vertical wind shear, low-level convergence lines, water vapor (WV) transport, and jet-induced upper-level divergence. A stronger vorticity, divergence, and vertical velocity in stage 1 resulted in more intense precipitation. The thermodynamic analysis showed enhanced low-level cold advection in the plains before the event. Sounding data revealed increases in precipitable water and convective available potential energy (CAPE) in both stages. WV tracing showed vertical differences in moisture sources: at 3000 m, ~70% originated from Central Asia via the Caspian and Black Seas; at 5000 m, source and path differences emerged between stages. In stage 1, specific humidity along each vapor track was higher than in stage 2 during the EPE, with a 12 h pre-event enhancement. Both stages featured rapid convective cloud growth, with decreases in total black body temperature (TBB) associated with precipitation intensification. During stage 1, the EPE center aligned with a large TBB gradient at the edge of a cold cloud zone, where vigorous convection occurred. In contrast to typical northern events, which are linked to colder cloud tops and vigorous convection, the afternoon EPE in stage 2 formed near cloud edges with lesser negative TBB values. These findings advance the understanding of multi-scale extreme precipitation mechanisms in arid mountains, aiding improved forecasting in complex terrains. Full article
Show Figures

Figure 1

19 pages, 12447 KiB  
Article
Characteristics of Strong Cooling Events in Winter of Northeast China and Their Association with 10–20 d Atmosphere Low-Frequency Oscillation
by Qianhao Wang and Liping Li
Atmosphere 2024, 15(12), 1486; https://doi.org/10.3390/atmos15121486 (registering DOI) - 12 Dec 2024
Cited by 1 | Viewed by 1137
Abstract
In the past 42 years from 1980 to 2021, 103 regional strong cooling events (RSCEs) occurred in winter in Northeast China, and the frequency has increased significantly in the past 10 years, averaging 2.45 per year. The longest (shortest) duration is 10 (2) [...] Read more.
In the past 42 years from 1980 to 2021, 103 regional strong cooling events (RSCEs) occurred in winter in Northeast China, and the frequency has increased significantly in the past 10 years, averaging 2.45 per year. The longest (shortest) duration is 10 (2) days. The minimum temperature series in 60 events exists in 10–20 d of significant low-frequency (LF) periods. The key LF circulation systems affecting RSCEs include the Lake Balkhash–Baikal ridge, the East Asian trough (EAT), the robust Siberian high (SH) and the weaker (stronger) East Asian temperate (subtropical) jet, with the related anomaly centers moving from northwest to southeast and developing into a nearly north–south orientation. The LF wave energy of the northern branch from the Atlantic Ocean disperses to Northeast China, which excites the downstream disturbance wave train. The corresponding LF positive vorticity enhances and moves eastward, leading to the formation of deep EAT. The enhanced subsidence motion behind the EAT leads to SH strengthening. The cold advection related to the northeast cold vortex is the main thermal factor causing the local temperature to decrease. The Scandinavian Peninsula is the primary cold air source, and the Laptev Sea is the secondary one, with cold air from the former along northwest path via the West Siberian Plain and Lake Baikal, and from the latter along the northern path via the Central Siberian Plateau, both converging towards Northeast China. Full article
Show Figures

Figure 1

18 pages, 8260 KiB  
Article
Role of the Europe–China Pattern Teleconnection in the Interdecadal Autumn Dry–Wet Fluctuations in Central China
by Linwei Jiang, Wenhao Gao, Kexu Zhu, Jianqiu Zheng and Baohua Ren
Atmosphere 2024, 15(11), 1363; https://doi.org/10.3390/atmos15111363 - 13 Nov 2024
Cited by 1 | Viewed by 741
Abstract
Based on statistical analyses of long-term reanalysis data, we have investigated the interdecadal variations of autumn precipitation in central China (APC-d) and the associated atmospheric teleconnection. It reveals that the increased autumn rainfall in central China during the last decade is a portion [...] Read more.
Based on statistical analyses of long-term reanalysis data, we have investigated the interdecadal variations of autumn precipitation in central China (APC-d) and the associated atmospheric teleconnection. It reveals that the increased autumn rainfall in central China during the last decade is a portion of the APC-d, which exhibits a high correlation coefficient of 0.7 with the interdecadal variations of the Europe–China pattern (EC-d pattern) teleconnection. The EC-d pattern teleconnection presents in a “+-+” structure over Eurasia, putting central China into the periphery of a quasi-barotropic anticyclonic high-pressure anomaly. Driven by positive vorticity advection and the inflow of warmer and moist air from the south, central China experiences enhanced ascending motion and abundant water vapor supply, resulting in increased rainfall. Further analysis suggests that the EC-d pattern originates from the exit of the North Atlantic jet and propagates eastward. It is captured by the Asian westerly jet stream and proceeds towards East Asia through the wave–mean flow interaction. The wave train acquires effective potential energy from the mean flow by the baroclinic energy conversion and simultaneously obtains kinetic energy from the basic westerly jet zones across the North Atlantic and the East Asian coasts. The interdecadal variation of the mid-latitude North Atlantic sea surface temperature (MAT-d) exhibits a significant negative relationship with EC-d, serving as a modulating factor for the EC-d pattern teleconnection. Experiments with CMIP6 models predict that the interdecadal variations in APC-d, EC-d, and MAT-d will maintain stable high correlations for the rest of the 21st century. These findings may contribute to forecasting the interdecadal autumn dry–wet conditions in central China. Full article
Show Figures

Figure 1

13 pages, 4813 KiB  
Article
On the Origin of Görtler Vortices in Flow over a Multi-Element Airfoil
by Hussein Kokash, Catherine Mavriplis and Gbemeho Gilou Agbaglah
J. Exp. Theor. Anal. 2024, 2(4), 121-133; https://doi.org/10.3390/jeta2040010 - 1 Nov 2024
Cited by 1 | Viewed by 895
Abstract
The flow characteristics of a 30P30N three-element high-lift airfoil at low Reynolds numbers O104 are examined through three-dimensional simulations using a high-order spectral element method. This study primarily investigates the flow structures of the slat cove and Görtler vortices formed on [...] Read more.
The flow characteristics of a 30P30N three-element high-lift airfoil at low Reynolds numbers O104 are examined through three-dimensional simulations using a high-order spectral element method. This study primarily investigates the flow structures of the slat cove and Görtler vortices formed on the upper surface of the main airfoil. Spanwise instability grows exponentially in the slat cove with a constant wavelength, corresponding to that of the subsequently formed Görtler vortices. Görtler number calculations show that curvature-induced centrifugal instability at the slat cusp leads to the subsequent formation of Görtler vortices. Proper orthogonal decomposition (POD) is used to analyze the development of flow structures in the slat cove in different time ranges. At early time, the flow in the slat cove is dominated by shear layers that evolve into spanwise perturbations. These perturbations further evolve into distinct bell-shaped structures close to the slat cusp and are advected to the upper surface of the main airfoil, leading to the formation of Görtler vortices. Full article
Show Figures

Figure 1

21 pages, 1612 KiB  
Article
Effects of Anisotropy, Convection, and Relaxation on Nonlinear Reaction-Diffusion Systems
by Juan I. Ramos
Computation 2024, 12(11), 214; https://doi.org/10.3390/computation12110214 - 25 Oct 2024
Viewed by 856
Abstract
The effects of relaxation, convection, and anisotropy on a two-dimensional, two-equation system of nonlinearly coupled, second-order hyperbolic, advection–reaction–diffusion equations are studied numerically by means of a three-time-level linearized finite difference method. The formulation utilizes a frame-indifferent constitutive equation for the heat and mass [...] Read more.
The effects of relaxation, convection, and anisotropy on a two-dimensional, two-equation system of nonlinearly coupled, second-order hyperbolic, advection–reaction–diffusion equations are studied numerically by means of a three-time-level linearized finite difference method. The formulation utilizes a frame-indifferent constitutive equation for the heat and mass diffusion fluxes, taking into account the tensorial character of the thermal diffusivity of heat and mass diffusion. This approach results in a large system of linear algebraic equations at each time level. It is shown that the effects of relaxation are small although they may be noticeable initially if the relaxation times are smaller than the characteristic residence, diffusion, and reaction times. It is also shown that the anisotropy associated with one of the dependent variables does not have an important role in the reaction wave dynamics, whereas the anisotropy of the other dependent variable results in transitions from spiral waves to either large or small curvature reaction fronts. Convection is found to play an important role in the reaction front dynamics depending on the vortex circulation and radius and the anisotropy of the two dependent variables. For clockwise-rotating vortices of large diameter, patterns similar to those observed in planar mixing layers have been found for anisotropic diffusion tensors. Full article
Show Figures

Figure 1

20 pages, 15528 KiB  
Article
Analysis of Lofoten Vortex Merging Based on Altimeter Data
by Jing Meng, Yu Liu, Guoqing Han, Xiayan Lin and Juncheng Xie
Remote Sens. 2024, 16(20), 3796; https://doi.org/10.3390/rs16203796 - 12 Oct 2024
Viewed by 981
Abstract
The Lofoten Vortex (LV), which is identified as a quasi-permanent anticyclonic eddy, strengthens through continuous merging with external anticyclonic eddies. Our investigation used the Lagrangian method to monitor the LV on a daily basis. Utilizing satellite altimeter data, we conducted multi-year tracking and [...] Read more.
The Lofoten Vortex (LV), which is identified as a quasi-permanent anticyclonic eddy, strengthens through continuous merging with external anticyclonic eddies. Our investigation used the Lagrangian method to monitor the LV on a daily basis. Utilizing satellite altimeter data, we conducted multi-year tracking and statistical analysis of merging events involving the LV. The results indicate a characteristic radius of approximately 42.72 km and a mean vorticity at the eddy center of approximately −2.23 × 10−5 s−1. The eddy exhibits oscillatory motion within the sea basin depression, centered at 70°N, 3°E, characterized by counterclockwise trajectories between 0.5°E and 6°E and between 69°N and 70.5°N. There are two types of merging events: fusion events (55%), in which eddies of similar strengths interact within a closed flow line and then merge to form a new eddy; and absorption events (45%), in which the stronger LV absorbs the weaker anticyclonic eddies without destroying the structure of the LV itself. The nodes where strong vorticity advection occurs correspond to the nodes where merging occurs, suggesting that their effect on merging can be well characterized by the vorticity advection time series. We also observe occasional fluctuations and substitution events involving the LV and external anticyclonic eddies, suggesting a dynamic succession rather than a single vortex entity. Full article
Show Figures

Figure 1

27 pages, 14463 KiB  
Article
Numerical Investigation of Track and Intensity Evolution of Typhoon Doksuri (2023)
by Dieu-Hong Vu, Ching-Yuang Huang and Thi-Chinh Nguyen
Atmosphere 2024, 15(9), 1105; https://doi.org/10.3390/atmos15091105 - 11 Sep 2024
Viewed by 1566
Abstract
This study utilized the WRF model to investigate the track evolution and rapid intensification (RI) of Typhoon Doksuri (2023) as it moved across the Luzon Strait and through the South China Sea (SCS). The simulation results indicate that Doksuri has a smaller track [...] Read more.
This study utilized the WRF model to investigate the track evolution and rapid intensification (RI) of Typhoon Doksuri (2023) as it moved across the Luzon Strait and through the South China Sea (SCS). The simulation results indicate that Doksuri has a smaller track sensitivity to the use of different physics schemes, while having a greater intensity sensitivity. Sensitivity numerical experiments with different physics schemes can well capture its northwestward movement in the first two days, but they predict less westward track deflection as the typhoon moves across the Luzon Strait and through the SCS. Moreover, all the experiments successfully simulated Doksuri’s RI, albeit with quite different rates and a time lag of 12 h. Among different combinations of physics schemes, there exists an optimal set of cumulus parameterization and cloud microphysics schemes for track and intensity predictions. Doksuri’s track changes as the typhoon moved across the Luzon Strait and through the SCS were influenced by the topographic effects of the terrain of the Philippines and Taiwan, to different extents. The track changes of Doksuri are explained by the wavenumber-one potential vorticity (PV) tendency budget from different physical processes, highlighting that the horizontal PV advection dominates the PV tendency throughout most of the simulation time due to the offset of vertical PV advection and differential diabatic heating. In addition, this study applies the extended Sawyer–Eliassen (SE) equation to compare the transverse circulations of the typhoon induced by various forcing sources. The SE solution indicates that radial inflow was largely driven in the lower-tropospheric vortex by strong diabatic heating, while being significantly enhanced in the lower boundary layer due to turbulent friction. All other physical forcing terms were relatively insignificant for the induced transverse circulation. The coordinated radial inflow at low levels may have led to the eyewall development in unbalanced dynamics. Intense diabatic heating thus was vital to the severe RI of Doksuri under a weak vertical wind shear. Full article
(This article belongs to the Special Issue Typhoon/Hurricane Dynamics and Prediction (2nd Edition))
Show Figures

Figure 1

19 pages, 10160 KiB  
Article
Performance Evaluation of TGFS Typhoon Track Forecasts over the Western North Pacific with Sensitivity Tests on Cumulus Parameterization
by Yu-Han Chen, Sheng-Hao Sha, Chang-Hung Lin, Ling-Feng Hsiao, Ching-Yuang Huang and Hung-Chi Kuo
Atmosphere 2024, 15(9), 1075; https://doi.org/10.3390/atmos15091075 - 5 Sep 2024
Viewed by 2064
Abstract
This study employed the new generation Taiwan global forecast system (TGFS) to focus on its performance in forecasting the tracks of western North Pacific typhoons during 2022–2023. TGFS demonstrated better forecasting performance in typhoon track compared to central weather administration (CWA) GFS. For [...] Read more.
This study employed the new generation Taiwan global forecast system (TGFS) to focus on its performance in forecasting the tracks of western North Pacific typhoons during 2022–2023. TGFS demonstrated better forecasting performance in typhoon track compared to central weather administration (CWA) GFS. For forecasts with large track errors by TGFS at the 120th h, it was found that most of them originated during the early stages of typhoon development when the typhoons were of mild intensity. The tracks deviated predominantly towards the northeast and occasionally towards the southwest, which were speculated to be due to inadequate environmental steering guidance resulting from the failure to capture synoptic environmental features. The tracks could be corrected by replacing the original new simplified Arakawa–Schubert (NSAS) scheme with the new Tiedtke (NTDK) scheme to change the synoptic environmental field, not only for Typhoon Khanun, which occurred in the typhoon season of 2023, but also for Typhoon Bolaven, which occurred after the typhoon season, in October 2023, under atypical circulation characteristics over the western Pacific. The diagnosis of vorticity budget primarily analyzed the periods where divergence in typhoon tracks between control (CTRL) and NTDK experiments occurred. The different synoptic environmental fields in the NTDK experiment affected the wavenumber-1 vorticity distribution in the horizontal advection term, thereby enhancing the accuracy of typhoon translation velocity forecasts. This preliminary study suggests that utilizing the NTDK scheme might improve the forecasting skill of TGFS for typhoon tracks. To gain a more comprehensive understanding of the impact of NTDK on typhoon tracks, further examination for more typhoons is still in need. Full article
(This article belongs to the Special Issue Typhoon/Hurricane Dynamics and Prediction (2nd Edition))
Show Figures

Figure 1

17 pages, 22804 KiB  
Article
The Diagnostic Analysis of the Thermodynamic Characteristics of Typhoon “Maysak” during Its Transformation Process
by Guanbo Zhou and Han Du
Atmosphere 2024, 15(9), 1058; https://doi.org/10.3390/atmos15091058 - 1 Sep 2024
Viewed by 1433
Abstract
This study utilized high-resolution numerical simulation data from the WRF model to conduct a thermodynamic diagnosis of the process by which Typhoon “Maysak” transformed and merged with the Northeast Cold Vortex. The results indicated that the continuous intrusion of cold vortex air and [...] Read more.
This study utilized high-resolution numerical simulation data from the WRF model to conduct a thermodynamic diagnosis of the process by which Typhoon “Maysak” transformed and merged with the Northeast Cold Vortex. The results indicated that the continuous intrusion of cold vortex air and the relative cold advection formed by the typhoon’s movement led to the demise of the typhoon’s warm core structure. The low-level low-pressure convergence and upper-level high-pressure divergence structure disappeared. After the transformation and merging with the Northeast Cold Vortex, the cyclone became cold throughout the entire layer, with a cold center appearing at low levels. During the process of the typhoon’s transformation and merging with the Northeast Cold Vortex, cold air accumulated near the low levels of the cyclone, causing the pseudo-adiabatic potential temperature lines to tilt and resulting in the slanted development of vertical vorticity in the mid-levels of the cyclone. After the typhoon transformed and merged with the Northeast Cold Vortex, the positive vertical vorticity advection at the bottom of the upper-level cold vortex trough promoted the cyclone’s development directly from the mid-levels to the upper levels, while the jet stream at the bottom of the cold vortex trough facilitated the maintenance of the positive vertical vorticity advection. Concurrently, the thermodynamic shear vorticity parameter could describe the typical vertical structure characteristics of the dynamic and thermodynamic fields above the rain area during the typhoon transformation process. In terms of temporal evolution trends, there was a certain correspondence with the development and movement of the ground rain area, and the perturbation thermodynamic divergence parameter had a good indicative effect on the area of heavy rainfall. Full article
Show Figures

Figure 1

18 pages, 10242 KiB  
Article
Comparative Analysis of Two Tornado Processes in Southern Jiangsu
by Yang Li, Shuya Cao, Xiaohua Wang and Lei Wang
Atmosphere 2024, 15(8), 1010; https://doi.org/10.3390/atmos15081010 - 21 Aug 2024
Viewed by 1263
Abstract
Jiangsu is a province in China and has the highest frequency of tornado occurrences. Studying the meteorological background and mechanisms of tornado formation is crucial for predicting tornado events and preventing the resulting disasters. This paper analyzed the meteorological background, instability mechanisms, and [...] Read more.
Jiangsu is a province in China and has the highest frequency of tornado occurrences. Studying the meteorological background and mechanisms of tornado formation is crucial for predicting tornado events and preventing the resulting disasters. This paper analyzed the meteorological background, instability mechanisms, and lifting conditions of the two Enhanced Fujita Scale level 2 (EF2) and above tornadoes that occurred in southern Jiangsu on 14 May 2021 (“5.14”) and 6 July 2020 (“7.06”) using ERA5 reanalysis data. Detailed analyses of the internal structure of tornado storms were conducted using Changzhou and Qingpu radar data. The results showed that (1) both tornadoes occurred in warm and moist areas ahead of upper-level troughs with significant dry air transport following the cold troughs. The continuous strengthening of low-level warm and moist advection was crucial in maintaining potential instability and triggering tornado vortices. The 14 May tornado formed within a low-level shear line and a warm area of a surface trough, while the 6 July tornado occurred at the end of a low-level jet stream, north of the eastern section of a quasi-stationary front. (2) The convective available potential energy (CAPE) and K indices for both tornado processes were very close (391 for “5.14” and 378 for “7.06”), with the lifting condensation level (LCL) near the ground. The “5.14” showed greater instability and more favorable thermodynamic conditions, with deep southwesterly jets at the mid-level shear line producing rotation under strong convergent action (convergence center value exceeding −1 × 104s1). In contrast, the “7.06” was driven by super-low-level jet stream pulsations and wind direction convergence under the influence of the Meiyu Front (convergence center value exceeding −1.5 × 104 s1), resulting in intense lifting and vertical vorticity triggered by a surface convergence line. (3) The “5.14” tornado process involved a supercell storm over a surface dry line experiencing tilting due to strong vertical wind shear, which led to the formation of smaller cyclonic vortices near a hook echo that developed into a tornado. The “7.06” developed on a bow echo structure within a mesoscale convective system formed over the Meiyu Front, where dry air subsidence, entrainment, and convergence of the southeast jet stream triggered a “miniature” supercell. The relevant research results provide a reference for the prediction and early warning of tornadoes. Full article
(This article belongs to the Special Issue Advances in Rainfall-Induced Hazard Research)
Show Figures

Figure 1

11 pages, 2354 KiB  
Article
Influence of Abnormal Eddies on Seasonal Variations in Sonic Layer Depth in the South China Sea
by Xintong Liu, Chunhua Qiu, Tianlin Wang, Huabin Mao and Peng Xiao
Remote Sens. 2024, 16(15), 2845; https://doi.org/10.3390/rs16152845 - 2 Aug 2024
Viewed by 1414
Abstract
Sonic layer depth (SLD) is crucial in ocean acoustics research and profoundly influences sound propagation and Sonar detection. Carrying 90% of oceanic kinetic energy, mesoscale eddies significantly impact the propagation of acoustic energy in the ocean. Recent studies classified mesoscale eddies into normal [...] Read more.
Sonic layer depth (SLD) is crucial in ocean acoustics research and profoundly influences sound propagation and Sonar detection. Carrying 90% of oceanic kinetic energy, mesoscale eddies significantly impact the propagation of acoustic energy in the ocean. Recent studies classified mesoscale eddies into normal eddies (warm anticyclonic and cold cyclonic eddies) and abnormal eddies (cold anticyclonic and warm cyclonic eddies). However, the influence of mesoscale eddies, especially abnormal eddies, on SLD remains unclear. Based on satellite altimeter and reanalysis data, we explored the influence of mesoscale eddies on seasonal variations in SLD in the South China Sea. We found that the vertical structures of temperature anomalies within the eddies had a significant impact on the sound speed field. A positive correlation between sonic layer depth anomaly (SLDA) and eddy intensity (absolute value of relative vorticity) was investigated. The SLDA showed significant seasonal variations: during summer (winter), the proportion of negative (positive) SLDA increased. Normal eddies (abnormal eddies) had a more pronounced effect during summer and autumn (spring and winter). Based on mixed-layer heat budget analysis, it was found that the seasonal variation in SLD was primarily induced by air–sea heat fluxes. However, for abnormal eddies, the horizontal advection and vertical convective terms modulated the variations in the SLDA. This study provides additional theoretical support for mesoscale eddy–acoustic coupling models and advances our understanding of the impact of mesoscale eddies on sound propagation. Full article
(This article belongs to the Special Issue Remote Sensing Applications in Ocean Observation (Third Edition))
Show Figures

Figure 1

20 pages, 4593 KiB  
Article
Observations, Remote Sensing, and Model Simulation to Analyze Southern Brazil Antarctic Ozone Hole Influence
by Lucas Vaz Peres, Damaris Kirsh Pinheiro, Hassan Bencherif, Nelson Begue, José Valentin Bageston, Gabriela Dorneles Bittencourt, Thierry Portafaix, Andre Passaglia Schuch, Vagner Anabor, Rodrigo da Silva, Theomar Trindade de Araujo Tiburtino Neves, Raphael Pablo Tapajós Silva, Gabriela Cacilda Godinho dos Reis, Marco Antônio Godinho dos Reis, Maria Paulete Pereira Martins, Mohamed Abdoulwahab Toihir, Nkanyiso Mbatha, Luiz Angelo Steffenel and David Mendes
Remote Sens. 2024, 16(11), 2017; https://doi.org/10.3390/rs16112017 - 4 Jun 2024
Viewed by 1610
Abstract
This paper presents the observational, remote sensing, and model simulation used to analyze southern Brazil Antarctic ozone hole influence (SBAOHI) events that occurred between 2005 and 2014. To analyze it, we use total ozone column (TOC) data provided by a Brewer spectrophotometer (BS) [...] Read more.
This paper presents the observational, remote sensing, and model simulation used to analyze southern Brazil Antarctic ozone hole influence (SBAOHI) events that occurred between 2005 and 2014. To analyze it, we use total ozone column (TOC) data provided by a Brewer spectrophotometer (BS) and the OMI (Ozone Monitoring Instrument). In addition to the AURA/MLS (Microwave Limb Sounder) instrument, satellite ozone profiles were utilized with DYBAL (Dynamical Barrier Localization) code in the MIMOSA (Modélisation Isentrope du Transport Mésoéchelle de l’Ozone Stratosphérique par Advection) model Potential Vorticity (PV) fields. TOC has 7.0 ± 2.9 DU reductions average in 62 events. October has more events (30.7%). Polar tongue events are 19.3% in total, being more frequently observed in October (50% of cases), with medium intensity (58.2%), and in the stratosphere medium levels (55.0%). Already, polar filament events (80.7%) are more frequent in September (32.0%), with medium intensity (42.0%), and stratosphere medium levels (40.7%). Full article
Show Figures

Figure 1

18 pages, 5010 KiB  
Article
Synoptic Analysis of Flood-Causing Rainfall and Flood Characteristics in the Source Area of the Yellow River
by Lijun Jin, Changsheng Yan, Baojun Yuan, Jing Liu and Jifeng Liu
Water 2024, 16(6), 857; https://doi.org/10.3390/w16060857 - 16 Mar 2024
Cited by 2 | Viewed by 1708
Abstract
The source area of the Yellow River (SAYR) in China is an important water yield and water-conservation area in the Yellow River. Understanding the variability in rainfall and flood over the SAYR region and the related mechanism of flood-causing rainfall is of great [...] Read more.
The source area of the Yellow River (SAYR) in China is an important water yield and water-conservation area in the Yellow River. Understanding the variability in rainfall and flood over the SAYR region and the related mechanism of flood-causing rainfall is of great importance for the utilization of flood water resources through the optimal operation of cascade reservoirs over the upper Yellow River such as Longyangxia and Liujiaxia, and even for the prevention of flood and drought disasters for the entire Yellow River. Based on the flow data of Tangnaihai hydrological station, the rainfall data of the SAYR region and NCEP-NCAR reanalysis data from 1961 to 2020, three meteorological conceptual models of flood-causing rainfall—namely westerly trough type, low vortex shear type, and subtropical high southwest flow type—are established by using the weather-type method. The mechanism of flood-causing rainfall and the corresponding flood characteristics of each weather type were investigated. The results show that during the process of flood-causing rainfall, in the westerly trough type, the mid- and high-latitude circulation is flat and fluctuating. In the low vortex shear type, the high pressures over the Ural Mountains and the Okhotsk Sea are stronger compared to other types in the same period, and a low vortex shear line is formed in the west of the SAYR region at the low level. The rain is formed during the eastward movement of the shear line. In the subtropical high southwest flow type, the low trough of Lake Balkhash and the subtropical high are stronger compared to other types in the same period. Flood-causing rainfall generally occurs in areas with low-level convergence, high-level negative vorticity, low-level positive vorticity, convergence of water vapor flux, a certain amount of atmospheric precipitable water, and low-level cold advection. In terms of flood peak increment and the maximum accumulated flood volume, the westerly trough type has a long duration and small flood volume, and the low vortex shear type and the subtropical high southwest flow type have a short duration and large flood volume. Full article
Show Figures

Figure 1

Back to TopTop