Analysis of Lofoten Vortex Merging Based on Altimeter Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Methods
2.2.1. AMEDA
2.2.2. Calculation of Eddy Amplitude, Kinetic Energy, and Strain Field
- (1)
- Eddy amplitude calculation:
- (2)
- Kinetic energy calculation:
- (3)
- A standardized strain variable is used to describe the strain field of the eddy:
- (4)
- Relative vorticity advection:
3. Results
3.1. Climatological Characteristics
3.2. Merging Event
3.3. The Sea Surface Characteristics of Vortex Merging
3.4. The Sea Surface Characteristics of Vortex Substitution
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Blindheim, J.; Rey, F. Water-mass formation and distribution in the nordic seas during the 1990s. ICES J. Mar. Sci. 2004, 61, 846–863. [Google Scholar] [CrossRef]
- Boyer, T.P.; Levitus, S.; Antonov, J.; Locarnini, R.; Garcia, H. Linear trends in salinity for the world ocean, 1955–1998. Geophys. Res. Lett. 2005, 32, L01604. [Google Scholar] [CrossRef]
- Nilsen, J.E.Ø.; Nilsen, F. The atlantic water flow along the vøring plateau: Detecting frontal structures in oceanic station time series. Deep-Sea Res. Part I 2007, 54, 297–319. [Google Scholar] [CrossRef]
- Segtnan, O.; Furevik, T.; Jenkins, A. Heat and freshwater budgets of the nordic seas computed from atmospheric reanalysis and ocean observations. J. Geophys. Res. Oceans 2011, 116, C11003. [Google Scholar] [CrossRef]
- Bosse, A.; Fer, I.; Lilly, J.M.; Søiland, H. Dynamical controls on the longevity of a non-linear vortex: The case of the lofoten basin eddy. Sci. Rep. 2019, 9, 13448. [Google Scholar] [CrossRef]
- Spall, M.A.; Almansi, M.; Huang, J.; Haine, T.W.; Pickart, R.S. Lateral redistribution of heat and salt in the nordic seas. Progr. Oceanogr. 2021, 196, 102609. [Google Scholar] [CrossRef]
- Mayot, N.; Matrai, P.; Arjona, A.; Bélanger, S.; Marchese, C.; Jaegler, T.; Ardyna, M.; Steele, M. Springtime export of arctic sea ice influences phytoplankton production in the greenland sea. J. Geophys. Res. Oceans 2020, 125, e2019JC015799. [Google Scholar] [CrossRef]
- Rossby, T.; Prater, M.; Søiland, H. Pathways of inflow and dispersion of warm waters in the nordic seas. J. Geophys. Res. Oceans 2009, 114, C04011. [Google Scholar] [CrossRef]
- Björk, G.; Gustafsson, B.G.; Stigebrandt, A. Upper layer circulation of the nordic seas as inferred from the spatial distribution of heat and freshwater content and potential energy. Polar. Res. 2001, 20, 161–168. [Google Scholar] [CrossRef]
- Volkov, D.L.; Belonenko, T.V.; Foux, V.R. Puzzling over the dynamics of the lofoten basin-a sub-arctic hot spot of ocean variability. Geophys. Res. Lett. 2013, 40, 738–743. [Google Scholar] [CrossRef]
- Nilsen, J.E.Ø.; Falck, E. Variations of mixed layer properties in the norwegian sea for the period 1948–1999. Progr. Oceanogr. 2006, 70, 58–90. [Google Scholar] [CrossRef]
- Raj, R.P.; Johannessen, J.A.; Eldevik, T.; Nilsen, J.E.Ø.; Halo, I. Quantifying mesoscale eddies in the Lofoten Basin. J. Geophys. Res. Oceans 2016, 121, 4503–4521. [Google Scholar] [CrossRef]
- Sandalyuk, N.V.; Bosse, A.; Belonenko, T.V. The 3-d structure of mesoscale eddies in the lofoten basin of the norwegian sea: A composite analysis from altimetry and in situ data. J. Geophys. Res. Oceans 2020, 125, e2020JC016331. [Google Scholar] [CrossRef]
- Furevik, T.; Mauritzen, C.; Ingvaldsen, R. The flow of Atlantic water to the Nordic Seas and Arctic Ocean. In Arctic Alpine Ecosystems and People in a Changing Environment; Ørbæk, J.B., Kallenborn, R., Tombre, I., Hegseth, E.N., Falk-Petersen, S., Hoel, A.H., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 123–146. [Google Scholar]
- Belonenko, T.V.; Volkov, D.L.; Norden, Y.E.; Ozhigin, V.K. Water circulation in the lofoten basin of the norwegian sea. Vest. St. Petersburg. Univ. 2014, 7, 108–121. [Google Scholar]
- Ivanov, Y.; Korablev, A. Formation and regeneration of the pycnocline lens in the norwegian sea. Russ. Meteorol. Hydrol. 1995, 9, 62–69. [Google Scholar]
- Pereskokov, A. On the physical nature of large-scale counter-cyclical cycle in the water column of the norwegian sea. Rep. Acad. Sci. 1999, 364, 549–552. [Google Scholar]
- Søiland, H.; Prater, M.; Rossby, T. Rigid topographic control of currents in the nordic seas. Geophys. Res. Lett. 2008, 35, L18607. [Google Scholar] [CrossRef]
- Bashmachnikov, I.; Sokolovskiy, M.; Belonenko, T.; Volkov, D.; Isachsen, P.; Carton, X. On the vertical structure and stability of the lofoten vortex in the norwegian sea. Deep-Sea Res. Part I 2017, 128, 1–27. [Google Scholar] [CrossRef]
- Liu, Y.; Meng, J.; Wang, J.; Han, G.; Lin, X.; Chen, J.; Ji, Q. Analysis of seasonal and long-term variations in the surface and vertical structures of the lofoten vortex. Remote Sens. 2023, 15, 1903. [Google Scholar] [CrossRef]
- Alexeev, G.; Bagryantsev, M.; Bogorodsky, P.; Vasin, V.; Shirokov, P. Structure and circulation of water masses in the area of an anticyclonic vortex in the north-eastern part of the norwegian sea. Russ. Probl. Arct. Antarct. 1991, 65, 14–23. [Google Scholar]
- Köhl, A. Generation and stability of a quasi-permanent vortex in the lofoten basin. J. Phys. Oceanogr. 2007, 37, 2637–2651. [Google Scholar] [CrossRef]
- Travkin, V.S.; Belonenko, T.V. Seasonal variability of mesoscale eddies of the Lofoten Basin using satellite and model data. Russ. J. Earth Sci. 2019, 19, ES5004. [Google Scholar] [CrossRef]
- Ivanov, Y.; Korablev, A. Dynamics of an intrapycnocline lens in the Norwegian sea. Russ. Meteorol. Hydrol. 1995, 10, 32–37. [Google Scholar]
- Wang, Z.; Sun, L.; Li, Q.; Cheng, H. Two typical merging events of oceanic mesoscale anticyclonic eddies. Ocean Sci. 2019, 15, 1545–1559. [Google Scholar] [CrossRef]
- Qiu, C.; Mao, H.; Liu, H.; Xie, Q.; Yu, J.; Su, D.; Ouyang, J.; Lian, S. Deformation of a warm eddy in the northern South China Sea. J. Geophys. Res. Oceans 2019, 124, 5551–5564. [Google Scholar] [CrossRef]
- Qiao, J.; Qiu, C.; Wang, D.; Huang, Y.; Zhang, X. Multi-stage development within anisotropy insight of an anticyclone eddy in northwestern South China Sea in 2021. Geophys. Res. Lett. 2023, 50, e2023GL104736. [Google Scholar] [CrossRef]
- Volkov, D.L.; Kubryakov, A.A.; Lumpkin, R. Formation and variability of the lofoten basin vortex in a high-resolution ocean model. Deep-Sea Res. Part I 2015, 105, 142–157. [Google Scholar] [CrossRef]
- Chelton, D.B.; Schlax, M.G.; Samelson, R.M.; de Szoeke, R.A. Global observations of large oceanic eddies. Geophys. Res. Lett. 2007, 34, 15. [Google Scholar] [CrossRef]
- Nencioli, F.; Dong, C.; Dickey, T.; Washburn, L.; McWilliams, J.C. A vector geometry–based eddy detection algorithm and its application to a high-resolution numerical model product and high-frequency radar surface velocities in the southern california bight. J. Atmos. Ocean. Technol. 2010, 27, 564–579. [Google Scholar] [CrossRef]
- Mkhinini, N.; Coimbra, A.L.S.; Stegner, A.; Arsouze, T.; Taupier-Letage, I.; Béranger, K. Long-lived mesoscale eddies in the eastern mediterranean sea: Analysis of 20 years of aviso geostrophic velocities. J. Geophys. Res. Oceans 2014, 119, 8603–8626. [Google Scholar] [CrossRef]
- Le Vu, B.; Stegner, A.; Arsouze, T. Angular momentum eddy detection and tracking algorithm (ameda) and its application to coastal eddy formation. J. Atmos. Ocean. Technol. 2018, 35, 739–762. [Google Scholar] [CrossRef]
- Koszalka, I.; LaCasce, J.; Andersson, M.; Orvik, K.; Mauritzen, C. Surface circulation in the nordic seas from clustered drifters. Deep-Sea Res. Part I 2011, 58, 468–485. [Google Scholar] [CrossRef]
- Fu, M.; Han, G.; Lu, X.; Sun, W.; Sommeria, J.; Stegner, A.; Caldeira, R.M.; Dong, C. Analysis of vortex merging from a rotating tank laboratory experiment. Progr. Oceanogr. 2024, 222, 103227. [Google Scholar] [CrossRef]
- Fu, M.; Dong, C.; Dong, J.; Sun, W. Analysis of mesoscale eddy merging in the subtropical northwest pacific using satellite remote sensing data. Remote Sens. 2023, 15, 4307. [Google Scholar] [CrossRef]
- Trodahl, M.; Isachsen, P.E.; Lilly, J.M.; Nilsson, J.; Kristensen, N.M. The regeneration of the lofoten vortex through vertical alignment. J. Phys. Oceanogr. 2020, 50, 2689–2711. [Google Scholar] [CrossRef]
- Belkin, I.; Foppert, A.; Rossby, T.; Fontana, S.; Kincaid, C. A double-thermostad warm-core ring of the gulf stream. J. Phys. Oceanogr. 2020, 50, 489–507. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, J.; Liu, Y.; Han, G.; Lin, X.; Xie, J. Analysis of Lofoten Vortex Merging Based on Altimeter Data. Remote Sens. 2024, 16, 3796. https://doi.org/10.3390/rs16203796
Meng J, Liu Y, Han G, Lin X, Xie J. Analysis of Lofoten Vortex Merging Based on Altimeter Data. Remote Sensing. 2024; 16(20):3796. https://doi.org/10.3390/rs16203796
Chicago/Turabian StyleMeng, Jing, Yu Liu, Guoqing Han, Xiayan Lin, and Juncheng Xie. 2024. "Analysis of Lofoten Vortex Merging Based on Altimeter Data" Remote Sensing 16, no. 20: 3796. https://doi.org/10.3390/rs16203796
APA StyleMeng, J., Liu, Y., Han, G., Lin, X., & Xie, J. (2024). Analysis of Lofoten Vortex Merging Based on Altimeter Data. Remote Sensing, 16(20), 3796. https://doi.org/10.3390/rs16203796